Automatic Arabic Hand Written Text Recognition System
Abstract
Despite of the decent development of the pattern recognition science applications in the last decade of the twentieth century and this century, text recognition remains one of the most important problems in pattern recognition. To the best of our knowledge, little work has been done in the area of Arabic text recognition compared with those for Latin, Chins and Japanese text. The main difficulty encountered when dealing with Arabic text is the cursive nature of Arabic writing in both printed and handwritten forms. An Automatic Arabic Hand-Written Text Recognition (AHTR) System is proposed. An efficient segmentation stage is required in order to divide a cursive word or sub-word into its constituting characters. After a word has been extracted from the scanned image, it is thinned and its base line is calculated by analysis of horizontal density histogram. The pattern is then followed through the base line and the segmentation points are detected. Thus after the segmentation stage, the cursive word is represented by a sequence of isolated characters. The recognition problem thus reduces to that of classifying each character. A set of features extracted from each individual characters. A minimum distance classifier is used. Some approaches are used for processing the characters and post processing added to enhance the results. Recognized characters will be appended directly to a word file which is editable form.
DOI: https://doi.org/10.3844/ajassp.2007.857.864
Copyright: © 2007 Ismael Ahmad Jannoud. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
- 3,466 Views
- 2,883 Downloads
- 10 Citations
Download
Keywords
- Arabic character
- classification
- discrete wavelet transform
- features selection