Low Complexity Performance Effective Task Scheduling Algorithm for Heterogeneous Computing Environments
Abstract
A heterogeneous computing environment is a suite of heterogeneous processors interconnected by high-speed networks, thereby promising high speed processing of computationally intensive applications with diverse computing needs. Scheduling of an application modeled by Directed Acyclic Graph (DAG) is a key issue when aiming at high performance in this kind of environment. The problem is generally addressed in terms of task scheduling, where tasks are the schedulable units of a program. The task scheduling problems have been shown to be NP-complete in general as well as several restricted cases. In this study we present a simple scheduling algorithm based on list scheduling, namely, low complexity Performance Effective Task Scheduling (PETS) algorithm for heterogeneous computing systems with complexity O (e) (p+ log v), which provides effective results for applications represented by DAGs. The analysis and experiments based on both randomly generated graphs and graphs of some real applications show that the PETS algorithm substantially outperforms the existing scheduling algorithms such as Heterogeneous Earliest Finish Time (HEFT), Critical-Path-On a Processor (CPOP) and Levelized Min Time (LMT), in terms of schedule length ratio, speedup, efficiency, running time and frequency of best results.
DOI: https://doi.org/10.3844/jcssp.2007.94.103
Copyright: © 2007 E. Ilavarasan and P. Thambidurai. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
- 4,846 Views
- 4,483 Downloads
- 163 Citations
Download
Keywords
- DAG
- task graph
- task scheduling
- heterogeneous computing system
- schedule length
- speedup
- efficiency