Application of Adaptive Neuro-Fuzzy Inference System for Information Secuirty
- 1 Universiti Sains, Malaysia
Abstract
Problem statement: Computer networks are expanding at very fast rate and the number of network users is increasing day by day, for full utilization of networks it need to be secured against many threats including malware, which is harmful software with the capability to damage data and systems. Fuzzy rule based classification systems considered as an active research area in recent years, due to their unique capability of classifying. Approach: This study presents a neural fuzzy classifier based on Adaptive Neuro-Fuzzy Inference System (ANFIS) for malware detection. Firstly, the malware exe files was analyzed and the most important API calls were selected and used as training and testing datasets, using the training data set the ANFIS classifier learned how to detect the malware in the test dataset. Results and Conclusion: The performances of the Neuro fuzzy classifier were evaluated based on the performance of training and accuracy of classification, the results show that the proposed Neuro fuzzy classifier can detect the malware exe files effectively.
DOI: https://doi.org/10.3844/jcssp.2012.983.986
Copyright: © 2012 Altyeb Altaher, Ammar Almomani and Sureswaran Ramadass. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
- 3,849 Views
- 3,537 Downloads
- 9 Citations
Download
Keywords
- Adaptive Neuro-Fuzzy Inference System (ANFIS)
- fuzzy logic
- malware detection