Comparative Study of Data Mining Classification Techniques for Detection and Prediction of Phishing Websites
- 1 Arab Open University, Kuwait
Abstract
Data mining is the process of discovering or extracting information from large amount of data that are stored in databases or datasets such as phishing dataset. Phishing is a vital web security problem that involves simulating legitimate websites to mislead online users in order to steal their sensitive information. This paper aims to detect and predict the type of the website to either legitimate or phishing class label. It investigates different data mining classifiers that are applied to the phishing dataset aiming to determine the effective ones in terms of classification performance. The comparison between nine classifiers with help of rapid miner software was conducted. Here, for comparing the result, five different metrics were used including accuracy, precision, recall, sensitivity and F-Measure. In this study, it has been able to identify the classifiers that precisely recognize fake websites especially with respect to the evolutionary nature of the information attacks.
DOI: https://doi.org/10.3844/jcssp.2019.384.394
Copyright: © 2019 Luai Al-Shalabi. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
- 3,913 Views
- 1,889 Downloads
- 0 Citations
Download
Keywords
- Classification
- Website Security
- Data Mining
- Phishing