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Abstract: This study relates the properties of operators whth well- known concepts of positive
realness and passivity properties in dynamic systamd their associate transfer functions. Those
concepts together with very close related onediteexamined from a physical point of view. Then,
they are related to hyper-stability and propeniesansfer functions while the hyper-stability tihem

is revisited and interpreted. Finally, the abovaaepts are compared to the mathematical concepts of
positivity and closely related ones in operatootigen Hilbert spaces.
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INTRODUCTION positivity of operatord”. In this study, we analyze and
interrelate the various concepts of passivity, hype

The stability properties of nonlinear dynamic stability, — positivity,  dissipation,  conservation,
systems have been widely studied in the literdiiite, regeneration etc. in Physics from their implicasidn
and®*'?. Related properties include, for instance,iNPut-output or power energy balances as well e th
Lyapunov's  stability/asymptotic ~ stability, absolute Strict- type version. We interpret those conceptsai
stability (i.e. Global Lyapunov’s asymptotic stitpiin ~ feedback framework related to general stability
the presence of nonlinear static devices belonging Properties (or roughly speaking hyper-stabilityhen,
prescribed sectors in the feedback law) or hyperWe relate those concepts to close properties in the
stability/asymptotic  hyper-stability ~ (i.e.  Global operational theoretical framework formulated in an
Lyapunov's stability/asymptotic hyper-stability the  appropriate Hilbert space.
presence of any nonlinear and /or time-varying cevi
whose time input-output integral satisfies Popdyf® Physical concepts related to power and energy
inequalities). While Lyapunov's stability may bec&@  pajances: Consider a scalar (only for purposes of
around the equilibrium, absolute — stability/hyper-tacilitating the mathematical treatment and exjosjt
stability are always global in the whole state gpand 4y namic systems with instantaneous real input and
e_stabhshed as a generic propert_y for a set (r:nbh‘qu a output signals at time t being, respectively, uatyl y
smgle element) of f_eedback dewce_s for a g|vewmd (), think of supply power (u. (t) y (t) ), whoséoeed
dev!ge or plant. .An important _phy3|cal propertyhat a energy and dissipated energy are respectively diven
positive dynamic system being hyper-stable (rOUthyfunctions S (t) and D (t). Thus, the instantangomser

speaking positively) which is feedback connectethwi balance at time>D and the energy balance in the time
any class of devices satisfying a Popov's -type

inequality implying lower bounding by a negativaife interval [0, ] are given, respectively, by.

constant is globally Lyapunov’s stable since ifsuin

output energy is nonnegative and bounded for alPower balance at time t:

time*®. On the other hand, hyper-stability of a set of

nonlinear/time-varying devices satisfying a certainy () y (t) = S(t) + D'(t) (1a)
Popov’s inequality includes the absolute stabiityany
static nonlinear device that satisfies such anugnbty.
The above concepts are very related to the morergken
one of passivity. In an operator theoretical frameuy
there are well-known related concepts based oru,y>=S () +D (f)-S(0)-D (0) (1b)
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where the dots superscript denotes the timeas a set of zero measure. A more complete clastific
derivative, as usuaku, V>t is an abbreviation for a of passivity may be made as follows:
time- integral product (i.e. A scalar product, dextb

by < u, y>, of square-integrable functions u (t) and y , . .
. The system is Weakly Passifteen called Positive
® on [0, 1 1. e Belonging to 4 [0, 1) as we)lll) if<u,y>t> Oyfor all ?2 0.

M t 1} H H “
meaning<uy> =[ uf)y()d . It's the time subscript * . The system is Weakly Strictly Passiitaen called

t “ is dropping out from the cellar product defioh Weakly Strictly Positive as well) & u, y>t>0
then the time integral, provided to exist, is; i.e.  forallt>0.
[ : : e The system is Strongly Strictly Passitken called
<u,y>= d . Note that if truncated input and . I .
oy Io .u([)y([) P Strongly Strictly Positive as well) € u, y>t >
output signals uand y replace u and y whereg z z b < u, u>t for some real constant> 0 and all t
() forallt [0, t] and z= 0 otherwise in the real axis >0.

then<u,y>=u,y > [y ()dt; i.e., the input/output

e \¢ — 0
energy ime-integral may be extended from_Conservatlve. If S* (t) =0;i.e. the stored energy

minus infinity to infinity when using truncated 1S kept constant while the supplied energy is

input/output signals. This allows to describe theentirely dissipated so thatu, y>t=D (t) - D (0)=

supplied energy equivalently in the frequency- D (0).

domain via Parseval’'s theorem for all finite time

even if the input/output product is not potentially Positive (Strictly Positive): If u (t) y (t)= 0 so thak

square-integrable on [Op). In the following, we u,y>, 20U @)y (t)>0ancu,y>t>0forallt>

drop the time argument t in order to simplify the 0). The specifications weakly or strongiyay be used

notation when no confusion is expected. In thejn the same contexts and meanings as for Strict

context of dynamic systems, we manipulate a set Opagsivity so that Strictly Positive systems may be

energies-related concepts saying that the systea is gpecified as Weakly Strictly Positive or Strongly

time t 2 0 (the constraint t > 0 for time is stated Strictly Positive ones, respectively. Positive eys$

explicitly when applicable). may be equivalently named as Weakly Passive
Systems.

Regenerative: if it does not dissipate energy but it

supplies it to the network. Thus,YOit) < 0 and D (t) It satisfies Popov’s Inequality If for some finite real

<D (0) so that u (t) y (t) <S(t) and<u, y>t<S  constant g0 and all t * 0, the following inequeliolds:

(t) - S (0) < S (b). If, in addition, the storedexgy

decreases with time then S (tS0) for allt>0 and <u,y>=-y?’> -

then<u, y> <0.

Remarks:

Passive or dissipativelf it has energetic losses since

D" ()= 0. Thus, D (t D (0) so that: « The above concepts may also be applicable only to
some finite time subinterval4|tt;] in such a way

<u()y @2 ¥ (t) that the system may be characterized under
different properties in the above context through
time.

And:

« Both passive and Positive dynamic Systems satisfy
Popov’s Inequality.
<u,y>;=3(t) - S (0) + A system which satisfies Popov's Inequality is
2B:=Mint=0S () - S (Or- S (0) always passive or conservative but not necessarily
Positive (i.e., not necessarily Weakly Passive).
Note that is a real number whose sign dependss If a system is regenerative and S<t§ (0), for all
on each particular situation related to the system” finite time, the energy supplied is negative fdr al

properties. For instance, if S (t) tends asympadifico finite time so that in fact the system supplies
zero thenB_= - S (0). Howeverf_ is nonnegative energy to the connected network. Also, its supplied
(positive for any t > 0) if S (& S (0) (S (t) > S (0) for input/output energy is upper-bounded by a negative
any t > 0). The system is said to be Strictly Rassir real number.

Strictly Dissipativeif DY (t) > 0 for all finite time so . A system is both Passive and Positivelf y> 2
that<u, y>.> S (t) - S (0) for all t > 0 except possibly B = 0. A system is Passive but not Positive (then
249
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not Weakly Passive) in some interval [0, t] if ther Such Fourier transforms always exist in finite
exists a finite negative such thak u, y>,>bf. time since the corresponding integrals exist. Note
Then, the system satisfies Popov’s Inequality ashat the input/output energy is expressed equitblen
well. in the time-domain (first line of identities in e§)
and in the frequency domain (second line of

Hyper-stability: The above concepts play a crucial Identities in eq. 3). Thus:

role in the properties of hyper-stability and

.asymptot.ic hyper-stapility which, as stated in the E(t)z(m)-lr U ()@ ()Y € o))
introduction, generalize the concept of absolute @

stability which, on the other hand, generalizes the=(2m)™[  ReB(i}?do= (a1) < u(Rég)u>
standard one of global Lyapunov’s stability. Assume

a negative feedback configuration where the forward . _ . . .
loop is defined by a linear time-invariant with the last inner product being defined in the

: _ . frequency input/output spaces by using the idesiti
input/output operations (or plant) from .the input (3) where the odd symmetry property of the
space to the output space G: U Y while the imaginary part of the hodograph

feedback loop is a, in general, nonlinear and/ormg(jw) = -Im(@§(-jw) has been used.
time-varying  operator (or feedback controller)

whose output space is equal to the input space to . . .
the forward loop F : Y- V = U such that if u is in Asympiotic hyperstability for strongly strictly
U then v = -u is in V identigal to U. Assume thaet positive real transfer functions: Now, if the h and

G-operator is Strictly Positive and the feedbacl on Rejgare Stric.tly Positive (or, in particula[, .Strongly
. . , . Strictly Passive) operators thed=MinReg(w)> 0
is anyone satisfying a Popov's -type Inequality so w0
that: [checking for negative frequencies is not necessary
sinceRe(g(jw))=- Re(gf @)]. It is then said that the
transfer functiong(s)is Strongly Strictly Positive Real,
(2 i.e. Reg(s)> &= OforRez so that Regy(jw)= d> Cfor
all real o*®, so that one gets directly from (4)
combined with the second relationship in (2) foe th
Combining the above two relationships, one getdeedback loop:
that the supplied input/output energy during thaeti
interval [0, t] satisfies after using Parseval'®dlem
and assuming that the input is not identically zero
within such an interval: =d.[; u? (t)dr > Ofort> 0

(4)

<U,y>20;-<u, =

<V, y>2-y3>-w

>V 2EM 2 @0 d [y ()]’ do
(5)

E()=<uy>=<u .y>=<y.g*y>=<y hy> 3) so that taking limits as t o it follows that the input
=(em <, , Y. 20yt < Yy gy > is bounded for all time and it converges to zero
asymptotically continuous (or it only has bounded
isolated discontinuities). Sinc&rror! Bookmark
where, j is the imaginary unit, the symbol * not defined. is strongly strictly positive real then it
denotes the convolution integral, g addbeing s strictly stable (i.e. are poles have negativel re
the impulse response and the frequency resporese (i.parts) and non-strictly proper (i.e. It has the sam
Its Fourier transform F.) ) Associated with the number of poles and zeros -or relative degree zero)
physical filter of the forward input-output G- Its inversel1/g(s) is also Strongly Strictly Positive
operator, and h being a time operator from U to YReal, strictly stable and non-strictly proper but
defining the convolution integral in the time-domai Proper (and then realizable) so
namely: thatl/dh/l)zig(g‘l(jm))>o. Thus, (5) might be re-

arranged by usingi(jw) =§ 1 (jw)¥(joy) as follows:
g*u, =h(u)®=]" gty (t-1)=[ gt )u(t-1)d
o, () =Fu) =" u @)™ o >yi2E(t)2 (2 d[ " [, (jw)*dw ©
¢63, (09 =F(y)[” v (e d =d[, Y@t > Ofort> 0
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Then, taking limits as above as time tends tdfinite bound and strictly positively bounded from
infinity, one concludes that the output is boundedbelow for all time.
provided that it is continuous almost everywherd an A key associate property is that the absolute
tends asymptotically to zero. The asymptotic hyperimaximum input/output phase deviation is 90° and tha
stability theorem is formulated as folloWsThus, if  the system is strictly stable of strictly stabledrse in
the plant is Strongly Strictly Passive (so that itsthe case of strict positivity or passivity and icatly
transfer function is Strongly Strictly Positive Rea stable (of inverse being critically stable as welith
while the feedback loop is anyone satisfying aeventual simple imaginary poles of nonnegative
Popov’s type Inequality than the closed-loop systenfssociate residuals.
is asymptotically hyper-stable (i.e., Globally Also, the hodographs of frequency responses are
Lyapunov's asymptotically stable for the class ofconfined to the first and third quadrants of thenptex
feedback laws satisfying the Popov’s Inequality inplane and they are never tangent to the imagindsyita
(2). If the transfer function is Weakly Strictly the system is Strongly Strictly Positive Real.
Positive Real, so that its associate time and Note that another important aspect is the role
frequency domain operators are Weakly Strictlyplayed by the feedback device. Note that while the

Passive, then Reg(jw)> ofor all finite-  forward loop is strictly positive/passive (and then
butLim Reg(jw)= 0. dissipative) the feedback one might have negative

supplied energy (at least during certain time iraks)
Asymptotic hyperstability for weakly strictly so that it may be regenerative at least duringaoert
positive real transfer functions: Thus, the above time intervals. In this case, the upper bound a& th
reasoning needs to be modified to get the asyneptotifeedback input/output integral satisfying Popov’s
hyper-stability result. Inequality is a negative real number during suacheti

intervals. This leads to the weaker sufficient dbads
Assume that the transfer function is weakly stricty ~ for achieving closed-loop stability, when adoptiag
positive real with Reg(jw)>Ofor all finite w physical point of view concerning the weakness of

andlim «?Reg(jw)>d,>0. Then, we perform dynamic constraints, but it is not always the case
o concerning the fulfilment of Popov’'s InequalityorF

instance, if the feedback loop consists of a dyosami
free nonlinearity inside the first/third quadrangs, in

the standard absolute stability problem, then the
above mentioned upper-bound is always positive for
the scalar product satisfying a Popov’s Inequality
type lower-bound what means that the feedback
device is either conservative or deceptive as thés
forward device (plant) while maintaining closed+oo
stability in terms of hyper-stability.

where, (.) is the input time-integral. Thus, it follows We can also point out by using again Parseval's
that this integral converges to zero as time teteds theoremin (4) to interpret it in the time-domaia the
infinity so that the input should exhibit that limi boundsin (5) that:

behavior. Continuing with such a development orts ge
the following conclusion. Thus, if the plant is Wkba
Strictly Passive (so that its transfer function is
Weakly Strictly Positive Real) while the feedback
loop is anyone satisfying a Popov’s type Inequalityif the system is Strictly Passive (or Strictly Rs), so
than the closed-loop system is asymptotically hyperthat its transfer function is Strictly Positive Read
stable (i.e. Globally Lyapunov’'s asymptotically 00>J“ g @d = ofor all t > 0 if the system is
stable for the class of feedback laws satisfying th 0
Popov’s Inequality in (2).

multiplication and division by the squared-frequgit
the frequency domain integrals of (5) to get
instead» >y2 > E(t):

2 (210, [ \Sl(jw)\zdw(mfl d {ufﬂ ® )

= dOJ; & (t)ck > Ofort> 0

o >J: gmu(@)dr>0

Weakly Passive (or Positive), so that its transfer
function is Positive Real. As a result, the impulse
response g (t) is a strictly positive function dmdinded
Further comments: Note also that, in both cases of above for all time t > 0 if the system is eitherakiy or
Strict Positive Realness, the plant input/outpugrgg  Strongly Strictly Passive/Positive and g=(tp and
and supplied power are at the same time positice anbounded above for all time t > 0 if the system is
bounded for all time: i.e., bounded above with aWeakly Passive/Positive. If the system is only
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Positive/ Weakly Passive then g (t) does notlnequality of the feedback device, one gets that th
converge asymptotically to zero. Thus, the lastinput is bounded, square-integrable and converges t

inequality ensures that the input u (t) is boundedyerg. The output has the same properties sicare

Since the transfer function is (perhaps critically) " .
stable [since Positive Real] then the output is{s}trongly positive real. Then, asymptotic hyper-gityb

. .Jollows also in this particular case of (non sirict
bounded as well and (in general, non asymptotic i | hered (s)is St v Strictl
hyper-stability is guaranteed. ositive realness whereg, (s)is Strongly Strictly

Positive Real. The proof for the case whépn(s)is

Asymptotic Hyperstability for Positve Real Weakly Strictsimilartive Real is quite similar butore
Transfer Function with a Single Pole at the Origin  involved and it may be addressed by proceeding with
(Popov's Simplest Particular Case)Now, assume the g, (s)as in the case of Weakly Strictly Positive Real

case that the plant input is not trivially zero ai@  yonofer function hyper-stability obviously in the
forward loop is only (non strict) Positive /Weakly context of asymptotic hyper-stability for stricateess
Passive while its transfer function possess ordingle ¢ the forward loop. A very related case is tha th
pole at s = 0. Assume also th@t(s)= sg(s is Strictly ~ Simplest Particular Case (i.e. Positive Realnesthef
Positive Real. After relating real and imaginarytpaf  plant with a single pole at the origin) leads tealbte
g(s) and g, (s), one gets: stability (global asymptotic Lyapunov’s stabilitydr
any nonlinear device which only generates a zero
output when its input takes a zero value.
a2 Img, (jo)
Reg(k)= ® Links with operator theory: All the above results may
be interpreted in the context of operators. We iclams
And: the input and Output spaces U (identical to V) #rak
Hilbert linear subspaces (i.e. Banach spaces, ryamel
normed spaces where any Cauchy sequence has a limit

Reg(j)=-wImg(w) in those spaces) of the set or real square -iridmgra
vector functionsL,=L 40, «) endowed with the inner

So: product (semi) norm; ie. if ue U then
|ul=+y/<u,u>and a similar norm is defined for the

Img(jw)<0and Img, (jw)<0w=0 output signal on Y. Since, we have to deal withitém

“

as time tends to infinity, it cannot be “ a priori”

guaranteed that the input/output functions are rggua

integrable over (Ogo) since this has been a previous

issue in the stability proofs of the former section

E(t):(2n)‘1jm 1€ )Y (w)= (znqujm Y (o)do Therefore, the formalism is more properly
- - established on:

for should hold in addition. Now, note that:

where, d > O provided thatg, (s)= sg(sis Strongly | .=fr:[0, 9 —R/f, OL f1 [0, 9} = U wio.

Strictly Positive Real (so that strictly stable aofl Ost<eo
relative degree zero or plus unity) singe) is Positive
a (jco)\z ie., Th_e .set of squ_are—integrable truncate_d.fonstifor
Real with a single pole at s=0 anid(jw)=——-so  some finite truncation time. Thus, for all finiiene, we
o can consider the (truncated) input and output dggna
that: of the dynamic system as members of that set. Also,
since the L-norm is rather a seminorm, since it is
) ‘0 (jco)\z def?ned through an in_tegral, we co_nsider as ideuhtic
0, (T):J‘_ I WP all input and output signals belonging to clasdes t
T only differ possibly in sets of zero measure ofd«),
E(t)= (2ﬂ)'1df: 5, (J'wi U - Jwi aw Now, we pay our attention to a key identity

. o recovered from (3), namely:
:dlj_w 5, (1)) = qUO d¢)ut)d>C
E({t)=<u, hu>=0forallt=0
. . . 1
For any nontrivial input wiré(t)= | [ujdr. o o finite t. In our context, we say that tttislds for
After combining the above inequalities with Popov'sany u t | L2 for a finite time (which, in fact, identical
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to say for any WL, [0, t] for any finite time). That infinity] so that § is Weakly Strictly Positive Real.
means that the Convolution Operator is Positivehéf As a result, it is strictly stable, having inverse
transfer function of the plant is Positive RealStrictly Strictly Positive Real and producing an absolute
Positive Real. That leads, trough Parseval’s thapte input / output phase deviation of at most 90°.

the fact that the associate response frequencyataper
which is the mapping between the correspondingtinpu
and output frequency linear spaces (being idedtiiire
particular with the real part of the frequency @sse
Error! Bookmark not defined. Is also positive,
respectively, strictly positive. Positive Operataee
self-adjoin operators. If the two-sided boundedsnes
of the input/output energy balance discussed in the ACKNOWLEDGEMENT

above section (finite above and below strictly from
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