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Abstract: In this study, the generic nature of Fourier series is pointed out and the requirement of 
dimensional homogeneity for physical systems is emphasized. By suitable application of non-
dimensional variables, both time versus frequency and spatial versus wave number decomposition of 
Fourier series are included properly to put the physics involved into the right physical meanings. 
Furthermore, the high frequency noise features through differentiation and integration are revealed 
nicely by the Fourier series representation of a signal including noise. 
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INTRODUCTION 

 
 Fourier series and related transforms have been 
used quite extensively in engineering application for 
their ability to reveal the spectral contents of a signal. It 
can be easily shown that the Sturm-Liouville equation 
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 This is a typical representation of Fourier series. 
Because of its periodic nature, Fourier series is 
particularly applicable to wave related phenomena. 
Conventionally, Fourier series for a periodic function f 
(x) with a period of 2L is typically written as: 
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 The coefficients an and bn can be obtained from 
Euler formulas. 
 Equation (1) can be recast into its spectral 
components by treating 2π/2L = ω as the fundamental 
angular frequency of f (x) as follows: 
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 The corresponding Euler formulas can be 
expressed by: 
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 If n

2
n( ) n ,n 1,2,3...

2L

πω = = ω = is used in equation (2), 

then the spectral decomposition of f(x) can be 
expressed by the fundamental frequency ω and its 
harmonics, in addition to the dc component a0. The 
argument given above as typically given in Advanced 
Engineering Mathematics textbooks, e.g.,[1-3], is fine if 
the dimension or unit of the independent variable x is of 
no concern; namely, the variable x is treated as a 
generic variable and can be used to represent either a 
time or a spatial coordinate. On the other hand, physical 
phenomena always require a proper dimension or unit 
for which dimensional homogeneity is preserved. 
Therefore, in all of the above equations, if the variable 
x is treated as time t, then the spectral components are 
properly expressed and the period of 2L takes the 
dimension of t−1. However, if the variable x is 
considered as a spatial coordinate, then 2L has to 
assume the dimension of x−1 so that the dimensional 
consistency is insured. 
 The requirement of a dimensionless argument for 
either  a  sine  or  cosine  function can be readily 
seen from the Taylor series expansion for these 
functions. 
 For example, the Taylor series expansion of the 
cosine function cos x about x = 0 is: 
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 It can be seen that the first, second and third term 
on the right hand side of equation (4) are 1, x2/2 and 
x4/24, respectively. The first term is a pure number and 
thus dimensionless. The second and third term has the 
dimensions of x to the power of 2 and 4, respectively. If 
x is not dimensionless, dimensional inhomogeneity is 
implicitly hidden in these functions and can lead to 
inconsistent results. Therefore, the importance of 
dimensional homogeneity of physical systems has to be 
stressed to avoid the wrong application of these types of 
functions. In fact, this concept applies equally well to 
Laplace transform and any other integral 
transformations. 
 For the Fourier series in spatial coordinates, the 
concept of the fundamental frequency is not suitable. 
Instead, a dimension parallel to frequency and yet 
pertinent to the spatial coordinate has to be used for 
dimensional homogeneity. 

 
Fourier decomposition in wave number space: The 
fascinating color exhibited by animals, birds, insects 
and plants has attracted investigations of many 
scientists. In general, living systems have two ways of 
making their colors, namely, pigments and structural 
colors. The principles of colorization are quite 
different for them. Pigment relies on the differential 
absorption of different wavelengths; whereas 
structural colorization is based on interference or 
diffraction through physical structures. Because of this 
difference, the colorization by physical structures 
tends to last longer and can be seen under low light 
levels, such as colors observed from the sea mouse of 
deep sea[4]. 
 Photonic crystals are the technological counterparts 
of nature’s colorization through physical structures. In 
photonic crystals, the periodic variation of physical 
properties, such as dielectric constant, is made by 
various manufacturing techniques. Because of their 
unique ability of color confinement, they are considered 
to be an important emerging technology. Thus, it is 
essential for Fourier series decomposition of spatial 
periodic functions applicable to these types of 
structures. In the situation of x being a spatial 
coordinate, there are several candidates for the period 
2L. Among them are the wavelength λ of a wave, the 
lattice constant of an atomic structure and the spatial 
periodicity of the phenomenon considered as in 
material dielectric periodicity of photonic crystals, just 
to name a few examples. 
 Taking 2L = λ as an example, the fundamental 
angular frequency w needs to be replaced by a 

corresponding wave number 
2 2

k
2L

π π= =
λ

Thus, Fourier 

series given above becomes: 
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 Comparing equations (5) and (6) to (2) and (3), it is 
easy to see that they are identical except the difference 
in notations. Since mathematicians always seek generic 
expression for the variables to take care of different 
situations in different fields, it is reasonable that the 
Fourier series of the textbooks on Advanced 
Engineering Mathematics for engineering majors is 
usually given by equation (1), e.g.,[1-3]. On the other 
hand, as the technology evolves continuously, situations 
with spatial periodicity will become a commonality in 
the future, especially in the fields of optoelectronics, in 
addition to the conventional field of image processing 
and material science. Thus, both spectral and spatial 
decomposition of Fourier series are equally important, 
especially the associated physical meanings. 
 It should be mentioned that by expressing Fourier 
series in either form of equation (2) or (5), the 
coefficients obtained from Euler formulas assume the 
dimension of the function f(x). This situation can be 
achieved only when both sine and cosine functions are 
dimensionless. That is to say, the arguments of sine and 
cosine functions have to be dimensionless as stated 
previously. 
 The importance of decomposition in both spectral 
and spatial domain can be further explored from the 
following wave equation for which Fourier series is a 
natural solution: 
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 In the above equation, the symbol t, x and c denote 
the time and spatial coordinate and the speed of wave 
propagation, respectively. It can be checked easily that 
the equation is dimensional homogeneous. Its solution 
in terms of characteristic is[1-3]: 
 
u(x, t) f (x ct) g (x ct)= − + +  (8) 
 
 However, the arguments x-ct and x+ct assume the 
dimension of a spatial length and are not dimensionless. 
If equation (8) is to be rephrased into a sine or cosine 
form, difficulties will arise. On the other hand, if x in 
equation (7) is made non-dimensional by the wave 
number k, then equation (7) becomes: 
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where, the notation w2 represents k2c2. In other words, 
by normalizing by x 1/k, the dimensionless variable ωt 
appears as a natural consequence. Then its solution in 
terms of different traveling modes is: 
 
u f (kx t) g(kx t)= − ω + + ω  (10) 
 
 Comparing to the arguments of both functions of 
equation (8), the arguments of both functions in 
equation (10), kx-ωt and kx + ωt, are dimensionless. 
Thus, equation (10) can be expressed in terms of 
Fourier series: 
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where,  φ1 and φ2 are phase angles. It should be noted 
that the right traveling mode of the equation (11) is 
written in sine form to match the general expression of 
Fourier series. In fact, the right traveling mode can be 
changed into the cosine form since a phase angle of  π/2 
can be easily incorporated into φ2 without loss of 
generality. Moreover, the equation (11) can be extended 
to three-dimensional wave equations readily by 
replacing k and x by a corresponding wave number 
vector k and a position vector r, respectively. Namely: 
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 Thus, both spectral and spatial domains are 
included properly and dimensional homogeneity is 
assured by having the dimensions of an and bn the same 
as that of u. 
 
Noise features of Fourier series: The frequency 
dependence of Fourier series reveals an interesting 
feature of noise amplification and suppression through 
differentiation and integration, respectively. Consider a 
function f(t) composes of a signal as cos ωst and a noise 
an cos ωnt as follows: 
 

s s n nf (t) a cos t a cos t= ω + ω  (13) 

 
 Through differentiation and integration of equation 
(13), one can obtain the following equations, 
respectively: 
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 Thus, if the signal to noise ratio of f (t) is defined 
as as/an, it can be seen that the signal to ratios become 
(as/an) (ωs/ωn) and (as/an) (ωn/ωs) through differentiation 
and integration, respectively. It is clear that 
differentiation tends to reduce the signal to noise ration 
by a factor of ωs/ωn if ωn>ωs. In other words, 
differentiation tends to increase the high frequency noise 
levels. On the other hand, integration tends to reduce the 
high frequency noise levels.  
 It needs to point out that a similar conclusion also be 
drawn if the frequency ω in equation (13) is replaced by 
the wave number k. Namely, higher wave number noises 
tend to make the signal noisier after differentiation and 
vice versa. 
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