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Abstract: It is proved that a linear time-invariant system with internal point delays is asymptotically 
hyperstable independent of the delays if an associate delay-free system is asymptotically hyperstable 
and the delayed dynamics are sufficiently small.  
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INTRODUCTION 

 
 Global Lyapunov´s stability (asymptotic stability) 
configurations consisting of linear time-invariant 
systems in the forward loop with arbitrary nonlinear 
(and, perhaps time-varying) devices satisfying Popov´s-
type time-integral inequalities are the so-called 
hyperstability (asymptotic hyperstability) property[1-3]. 
The importance of the topic relies on the fact that the 
stability property holds for all nonlinearity satisfying 
Popov´s in equality for all time. In this brief, related 
results are obtained when the linear plant is subject to a 
finite number of bounded incommensurate delays (i.e. 
The delays are not necessarily an integer multiple of a 
real number) if its associated dynamics are sufficiently 
small. The importance of such systems is well- known 
in many physical systems including problems such as 
war /peace or population growth models, large scale 
systems as well as in many engineering applications as, 
for instance, those involving transmission and 
telecommunication problems[4-8]. The study of 
stability/hyperstability properties for systems involving 
external (i.e. In the inputs or outputs) delays may be 
addressed by direct extensions from the analysis 
methods concerning delay-free systems by simply 
transforming the relevant signals in new ones influenced 
by delays[2,4,5]. However, the related problems become 
much more involved in the case of internal (i.e. In the 
state) delays since the relevant dynamics possess 
infinitely many modes. Different techniques have been 
used to deal with the stability of such systems including 
Lyapunov´s theory and its extensions as well as 
frequency analysis methods[4-8]. In this manuscript, the 
asymptotic hyperstability of continuous time-delay 
systems is focused on for systems including any finite 
number of incommensurate internal point delays of 
arbitrary sizes provided that the plant free of delayed 
dynamics satisfies a strict positive realness condition.  

 The obtained results are independent of the sizes of 
the delays provided that the delayed dynamics are 
sufficiently small what is evaluated in terms of 
sufficient smallness of the absolute value of a 
normalizing scalar parameter. Such results are also 
independent of the delayed dynamics being structured 
or not. The above issues are the main novelties related 
to previous results. The manuscript organization follows 
in brief the following guidelines. First, a model for the 
linear plant is fixed with a free parameter to then deal 
with the amount of tolerated delayed dynamics being 
compatible with the asymptotic hyperstability. Also the 
class of admissible feedback nonlinear/ time-varying 
devices satisfying a Popov´s type integral inequality for 
all time is defined. Subsequently, a preliminary result 
Lemma 1 is given concerning with the sufficiency-type 
conditions guaranteeing strict positive realness of the 
transfer function for all sizes of delays and an upper-
bound of the absolute value of the above mentioned 
parameter. Then, the main asymptotic hyperstability 
result Theorem 1 is derived based on the intuitive 
physical idea that, if the transfer function is strictly 
positive real, then the input/output energy is strictly 
positive and bounded for all time what implies the 
asymptotic vanishing of the relevant signals in the 
closed loop system. 

 
FORMULATION 

 
 Consider the open-loop linear and time-invariant 
single-input single-output system with an arbitrary 
number r of incommensurate internal point delays 

( )ih 0 i 1, r> =  given by: 
 

( )
r

i i
i 1

x(t) Ax(t) A x t h bu(t)
=

= + δ − +∑ɺ  

Ty(t) c x(t) du(t)= +  (1) 
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where, ( ) nx t R∈ , u(t) and y(t) are , respectively, the n- 

state vector and the scalar input and output and A, 

( )iA i 1,r= , nb R∈ , nc R∈  and d R∈  ; δ  is a scalar 

parameter which allows the characterization of the size 
of the delayed dynamics for given   A (.) - matrices. The 

initial condition of (1) is any piecewise continuous 
function: 

 

 ( )( )n
i

1 i r
h , 0 R h Max h

≤ ≤
 φ∈ − → =  . Assume that 

( )u(t) y(t)= −Φ  subject to:  

 

 ( )( ) ( )t 2
00

y y dΦ τ τ τ ≥ − γ∫   (2) 

 
for all t ≥ 0  where the constant 0 0γ ≠  is independent 

of t and Φ is a piecewise continuous function of time 
which is locally continuous within a small open 
neighborhood of zero with Φ = 0 iff y = 0. The transfer 
function of (1) is: 

 

 ( ) i

r
h sT 1

i
i

G s , c sI A A e b d− −

=

 
= − − +  

 
∑δ δ  (3) 

  
where, Z (s)  denotes Laplace´s transform of z (t) with  
if G(s) is biproper and d = 0 if G(s) is strictly proper. 
The asymptotic hyperstability of (1) is investigated 
assuming that the delay-free system z(t) Az(t) bu(t)= +ɺ  

satisfies a strict positiveness condition. Note, in 
particular, that if the proper rational transfer function of 
such a delay-free system, namely, 

( ) ( )( )T 1
0G (s) G s, 0 c sI A b d−= = − +  is strictly 

positive real (denoted by 0G SPR∈ ) then 

  Re G0 (s) > 0  if   Res ≥ 0  and, furthermore, all the   
poles of including possible zero/ pole cancellations (if 
any) are strictly stable (i.e. located in Re s < 0)[9-12]. 
Thus, in addition, 0G ∞∈ RH  is endowed with the   H ∞ -

norm ( )( )
0

0 0
R

G Sup G j
+

∞
ω∈

= ω  with 

{ } { }0R R 0 s R : Res 0+ += = ∈ ≥∪ . It is well-known that 

this delay- free system is asymptotically hyperstable 
under the same output equation as in (1) and any 
feedback controller (2) if 0G SPR∈ . The subsequent 

result addresses the problem of guaranteeing 
sufficiently small. This fact will then allow     proving     
the    asymptotic   hyperstability  of  (1) for any 
feedback (2)[3,11]. For establishing the result, it requires 
the related extended definition of the squared H ∞ -norm 

of a strictly transfer matrix G according via its singular 

values as ( )( )
0

2
max

R

Sup ( j ) ( j )
+

∞
ω∈

= λ ω ωTG G G . It also 

requires the definition of the (spectral) 2l -norm of a 

real matrix (or vector) B as ( )1/2 T
2 maxB B B= λ . 

 
Lemma 1: Assume that d > 0 and that there exists real 

( )T nxnP P 0 R= > ∈ , ( )T nxnL L 0 R= > ∈ , nq R∈ , R +ε ∈  

which satisfy: 
 

T TA P PA qq L+ = − − ε  (Lyapunov´s matrix equation):  

 
Pb c d q− =  (4) 

 
Assume also that: 
 

( )
( )

0
max

0 2 2 2
0 min

d

P
d 2 b b c

P

< =
  +

+ +   
   

δ δ
λ

α α
α λ

 (5) 

 
where, ( ) 1

0 s I A −
∞α = −  and: 

 

( ) i

r
h s1

i 0
i

s I A A e −−

=
∞

 
α = − ≤ α β 

 
∑   

 
With: 
 

r

i 2
i 1

A
=

β =∑  

 
 Thus, G SPR∈  for all real δ  satisfying 

)00 ,δ ∈ δ  [in particular, 0G SPR∈ ].  

 
Remarks: (1) Lemma 1 guarantees that A is a stability 
matrix through Lyapunov´s equation in (4). This is 
necessary for 0G SPR∈  what implies also that 

G RH∞∈  both being biproper since d≠ 0 . Thus, all 

zero/pole cancellations in 0G (s), if any, are strictly 

stable what is always guaranteed if ( )Tc , A  is 

detectable and (A, b) is stabilizable. Note that if d=0 
then   G 0 (s )  and G (s) are strictly proper and then at 
most (non strictly) positive real. 
 Lemma 1 may be used with q=0 implying c = P b. 
 

Proof: Define ( ) i

r
j h

i
i 1

j A e − ω

=

∆ ω =∑  and 

( ) ( )T T T
0m j c m jω = ω with

( ) ( ) ( )( )T 1 1
0m j I j I A j− −ω = −δ ω − ∆ ω . 

 
 Which exists for all real ω if 

( ) ( )( )
0

1

R

1 Sup j I A j
+

−

ω∈
> δ ω − ∆ ω  
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( ) ( ) ( )( )T 1 1
0m j I j I A j− −ω = −δ ω − ∆ ω  which exists for all 

real ω if ( ) ( )( )
0

1

R

1 Sup j I A j
+

−

ω∈
> δ ω − ∆ ω . 

 
 What is, in particular, ensured if (5) holds). Note 
that ( ) ( )'

0m j I P jω = + ω  with  

 
( )'P jω  

( ) ( ) ( ) ( )( )1 1 1j I A j I j I A j− − −= δ ω − ∆ ω − δ ω − ∆ ω   (6) 

 
Such that: 
 

P '
∞ 1

δ α
≤

− δ α
 if 1−δ < α  (7) 

 
 Thus, direct calculations using (6)-(7) as well as the 
odd symmetry of the involved frequency response 
curves lead to: 
 

( ) ( ) ( )
( ) ( ) ( ) ( )

T

T 1 T T 1

2 Re G j G j G j

2d m j j I A b b j I A m j− −

ω = ω + − ω =

+ ω ω − − ω + − ω
 

( )( )
( ) ( )

2
T 1

1T T 1

d q j I A b d

b j I A L j I A b

−

− −

≥ + ω − − −

ε ω + ω − +
 

( ) ( ) ( )( )( ){ }T T 1 ' T ' 1b j I A P P j P j P j I A b− −− ω − ω − − ω ω −   

( ) ( )
( )( )

T T 1 '

T 'T 1

b j I A P j
d

q q P j j I A b

−

−

 − ω − − ω +  
+ ω ω −  

( )

( )
2 2

0 22

max 0 min

b
d T j 2

1

(P ) (P) b c

αα δ
≥ + ε ω −

− δ α
 λ + α λ + 

 (8)  

 
where, ( ) ( )' T 1T j L j I A b−ω = ω −  with L '  such 

that ' T 'L L L 0= > . The last identity of (8) is greater 

than zero if (5) holds and the proof follows directly. 
 
Theorem 1 (main result of asymptotic 
hyperstability): Assume that G SPR∈  what is 

guaranteed if Lemma 1 holds. Thus, the closed-loop 
system (1)-(2) is asymptotically hyperstable; i.e. (1) is 
globally Lyapunov´s stable for all feedback control law 
(2), for any real δ  satisfying [ )00 ,δ ∈ δ . That 

property holds independently of the sizes of the delays. 
 
Proof: Define truncated time signals ( )tz τ  = z (τ)for 

all [ ]0 , tτ∈  and ( )tz τ  = 0 , otherwise), of the Fourier 

transform ( )tZ jω  for any vector signal z (t), of Fourier 

transform Z (j ω), for any time t ≥  0 and any frequency 
ω. From Parseval´s theorem relating the input- output 

energy in the time and frequency domains, (1)-(2), 
G SPR∈  from Lemma 1 and Im G (j ω ) = - Im G ( -jω ) 

for all ω, one gets for all t ≥  0: 
 

0 ( )( )
0

t 2

0R
Inf Re G j u ( )d

+ω ∈
< ω τ τ∫  

 ( ) ( ) ( ) ( )
t

2 2 2
t tG j U j d Y j U j d

∞ ∞

−∞ −∞
≤ ω ω ω = ω − ω ω∫ ∫  

= 
t

t t 0
2 y ( ) u ( ) d 2 y ( ) u( ) d

∞

− ∞
π τ τ τ = π τ τ τ∫ ∫  

2
02≤ π γ  < ∞  (9) 

 
 These expressions dictate that the input/output 
product time-integral (a measure of the input/output 
energy) is monotonically non-decreasing with time 
since it is positive and strictly positive for all t > 0 since 
Re G (jω) > 0 so that u(t) is bounded piecewise 
continuous on 0R +  and converges asymptotically to zero 

as t → ∞  except (potentially) over a set of zero measure 

of bounded discontinuities. Thus, y(t) 0→ as t → ∞  

and is bounded on 0R +  since G R H∞∈ . Now, since the 

nonlinear feedback function (.)Φ  eq. 2, is locally 

continuous around the equilibrium, y(t) 0→ implies 

u(t) 0→ as t → ∞  so that the above mentioned set of 

potential discontinuities of u (t) is empty after some 
finite time. As a result, both u (t) and y (t) converge 
asymptotically to zero. 
 

EXAMPLE 
 
 Consider (1) with n=2, r=1; 

( )Tb 1, k= − β ; ( )Tc 1 , 0= and ( )
0 1

A
a a

 
=  − β − β + 

; 

1 1

0 1
A a

a 1

 
=  − − 

 with a > 0, β > 0  and d > 0. The 

open-loop forward-loop is globally asymptotically 

stable if  
1

a

a
δ <  and A is a stability matrix. Thus 

(3)-(4) hold with ( )q P b c / d= − , and: 

 

( )( )1 1 T T T T
1L L d Pbb P c c Pbc cb P− −= ε − + − −  (10) 

 
 Being symmetric (and positive definite for 
sufficiently small ε >0) for arbitrary T

1 1L L 0= > . A 

simple calculation combining those constraints yields 
TA A

10
P e L e d

∞ τ τ= τ∫  then satisfying the matrix 

Lyapunov Equation T
1A P PA L+ = − . 

 Thus, from Lemma 1, G SPR∈  if δ 0 in (5) is 

calculated by using 0 1a aα ≤ α  and:  
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( ) ( )2

0 2 2

a a
1

a

 β + + β +
α ≤ +   β 

 (11) 

 
 Obtained from the calculations of the related H ∞ - 

norms. Thus, from Theorem 1, the feedback 
configuration (1)-(2) is asymptotically hyperstable for 
any nonlinear device satisfying the constraint in (2). 
The associate transfer function possesses a strictly 
stable zero/pole cancellation at s = - β which has not 
been  taken  into account in the above calculations. This 
is reasonable when the transfer function numerator and 
denominator are not factored explicitly from the state-
space description especially for higher order systems. If 
such a cancellation is known “a priori” and removed for 
a minimum state-space realization of (1) resulting in:  
 
A=-a, 1A a= − , b=k, c=1 then  

( )( )0
1

ada

a da 2k a 1 a
δ =

+ +
  (12) 

 
 From Lemma 1 with P = 1/k , q=0. In this simple 
example, the calculations may also be performed from 
the real part of the transfer function once the 
cancellation, if known, is removed. In this case, this 

leads to d > 0, 0
1

a

a
δ =  which is the weakest found 

constraint. However, obtaining factored transfer 
functions from a state-space realization is not easy for 
high-order systems in the presence of delays. This fact 
justifies the adequacy of the proposed method to 
practical problems. 
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