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Asymptotic Hyper stability of Dynamic Systemswith Point Delays
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Abstract: It is proved that a linear time-invariant systenthwinternal point delays is asymptotically
hyperstable independent of the delays if an aswodelay-free system is asymptotically hyperstable
and the delayed dynamics are sufficiently small.
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INTRODUCTION The obtained results are independent of the sizes o
the delays provided that the delayed dynamics are
Global Lyapunov’'s stability (asymptotic stability) sufficiently small what is evaluated in terms of
configurations consisting of linear time-invariant sufficient smallness of the absolute value of a
systems in the forward loop with arbitrary nonlinea normalizing scalar parameter. Such results are also
(and, perhaps time-varying) devices satisfying Rapo independent of the delayed dynamics being strudture
type time-integral inequalities are the so-calledor not. The above issues are the main noveltiedeet|
hyperstability (asymptotic hyperstability) propéfty.  to previous results. The manuscript organizatidioves
The importance of the topic relies on the fact tha in brief the following guidelines. First, a modelr fthe
stability property holds for all nonlinearity sdgi;lg  linear plant is fixed with a free parameter to thal
Popov’s in equality for all time. In this brief,latied  with the amount of tolerated delayed dynamics being
results are obtained when the linear plant is stitfea  compatible with the asymptotic hyperstability. Alde
finite number of bounded incommensurate delays (i.eclass of admissible feedback nonlinear/ time-vayyin
The delays are not necessarily an integer multipla  devices satisfying a Popov’s type integral inedyddir
real number) if its associated dynamics are seffity  all time is defined. Subsequently, a preliminargute
small. The importance of such systems is well- kmow Lemma 1 is given concerning with the sufficiencpey
in many physical systems including problems such asonditions guaranteeing strict positive realnesshef
war /peace or population growth models, large scaléransfer function for all sizes of delays and amperp
systems as well as in many engineering applicatians bound of the absolute value of the above mentioned
for instance, those involving transmission andparameter. Then, the main asymptotic hyperstability
telecommunication problefd. The study of result Theorem 1 is derived based on the intuitive
stability/hyperstability properties for systemsadhxing  physical idea that, if the transfer function isicily
external (i.e. In the inputs or outputs) delays nbay positive real, then the input/output energy iscsiri
addressed by direct extensions from the analysipositive and bounded for all time what implies the
methods concerning delay-free systems by simplhasymptotic vanishing of the relevant signals in the
transforming the relevant signals in new ones erfted  closed loop system.
by delay&*®. However, the related problems become
much more involved in the case of internal (i.etha FORMULATION
state) delays since the relevant dynamics possess
infinitely many modes. Different techniques haveibe
used to deal with the stability of such systemsuitiog
Lyapunov's theory and its extensions as well
frequency analysis methddd. In this manuscript, the
asymptotic hyperstability of continuous time-delay
systems is focused on for systems including anigefin .
number of incommensurate internal point delays of X(t) = Ax(t) +8 ) Aix(t —hi)+bu(t)
arbitrary sizes provided that the plant free ofagiet! =
dynamics satisfies a strict positive realness dmdi y(t) =c x(t) + du(t) 1)

Consider the open-loop linear and time-invariant

single-input single-output system with an arbitrary

%humber r of incommensurate internal point delays
h,>0 ( i:ﬂ) given by:
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where, x(t)OR", u(t) and y(t) are , respectively, the n- requires the definition of the (spectral)-norm of a
state vector and the scalar input and output and Aieal matrix (or vector) B asB |, =A% ( B'B).

Ai(i =1,7), bOR", cOR" and dOR ; § is a scalar

parameter which allows the characterization ofdlzae = Lemma 1: Assume that d > 0 and that there exists real
of the delayed dynamics for giveh (y- matrices. The p=p'> O(I] Rﬁxn), L=LT>0 (DR nxn), qOR", eOR"

initial condition of (1) is any piecewise contin®uU \\hich satisfy:
function:

AP+ PA=-qq" -¢L (Lyapunov’s matrix equation):
o0 =h,0] - R”(T]z Ma( h)) . Assume that

I<isr

u(t)=-®(y(t)) subject to: Pb-c=y/dq @)
Assume also that:
[,o(y(1)y(r)dr=-v; @)
’ 18] <3, = d (5)
Amax (P)
- ol vzl o 37570 1ol 4
for all t = 0 where the constang, #0 is independent @0 A mn (P)

of t and @ is a piecewise continuous function of time
which is locally continuous within a small open where,a, =|(s1-A)™|. and:
neighborhood of zero witld =0 iff y = 0. The transfer
function of (1) is:

a=

(sI—A)'l( izr_:Aie‘“S] N

<a,B

G(s.,0)= CT[ sl- A—er: Aie'hisj"l b+ ¢ (3) With:

where, Z (s) denotes Laplace’s transform of mvih ~ g=)"|A |,

if G(s) is biproper and d = 0 if G(s) is strictlyoper. i=1

The asymptotic hyperstability of (1) is investighte

assuming that the delay-free systent) = Az(t) + bu(t) Thus, GOSPR for all real & satisfying

satisfies a strict positiveness condition. Note, in\é\l][o 5 ) [in particular, G, 0SPR].

particular, that if the proper rational transfendtion of e T

such a delay-free system, namely,

G,(s)= G s,():( (st A b d) is strictly Remarks (1) Lemma 1 gu}arantees_ tha’g Ais a stqbili_ty
matrix through Lyapunov’s equation in (4). This is

necessary for G,O0SPR what implies also that

Re Go(s)>0 if Res 20 and, furthermore, all the G pry  poth being biproper sincezd0. Thus, all

poles of including possible zero/ pole cancellatidif ero/bole cancellations irG if anv. are strictl
any) are strictly stable (i.e. located in Re s £ zerolp : G, (), 1 any, Ictly

Thus, in addition, G, JRH _ is endowed with théi .- Stable what is always guaranteed (c',A) is
norm H G H _ Sup(\ Gy w)‘) with detectable and (A, b) is stabilizable. Note thatl#0
oM ore then G ¢ (s) and G (s) are strictly proper and then at

R;=R"|J { 0} ={ sJ R:Rer p. Itis well-known that most (non strictly) positive real.

this delay- free system is asymptotically hyperstab Lemma 1 may be used with g=0 implying ¢ = P b.
under the same output equation as in (1) and any

feedback controller (2) ifG,0SPR. The subsequent pyqqf- Define A(jm):iAie“'““' and
result addresses the problem of guaranteeing i=1

sufficiently small. This fact will then allow rpving  m"(jw)=c"mg( jw) with

the asymptotic  hyperstability of (1) for any -

N sl AN A Y
feedback (2§, For establishing the result, it requires mq (j0) =(1-3(jed -A) A @)™

the related extended definition of the squared-norm
of a strictly transfer matrix G according via iiagular Which exists for all real w if

values as || G| 2 = Sup( A o GT ()G (). It also  1>[3] Sup(| ( foI- A) ™ A( jw)|)
wORg wlRg

1280

positive real (denoted bg,0SPR) then



Am. J. Appl. Sci., 2 (9): 1279-1282, 2005

mS(Jw):(I—é(jm =A)HA(] m))'1 which exists for all

realwif 1>\6\igp(\ (o A)*a(jw))).

What is, in particular, ensured if (5) holds). blot
that m,(jw)=1+P (jw) with

P(jw)

=3(jod —A)*A(jw)(1 -3 o A )*A{ w))" (6)
Such that:

Pi . <120 it 5]<a )

Thus, direct calculations using (6)-(7) as welttees

energy in the time and frequency domains, (1)-(2),
GOSPR fromLemmaland ImG (p) =-Im G (-w)

for all w, one gets for all & 0:

0< Inf (ReG( p))j; u (@)

wOR,

<[7 6(jw)| U, (jw)]|?do=[" Y, (jo)U?(Fw) do

-0

=2n[” y,@u@dr=2t] yg)ug)dr

<2mys < o

9)

These expressions dictate that the input/output
product time-integral (a measure of the input/outpu
energy) is monotonically non-decreasing with time
since it is positive and strictly positive for &l 0 since

Re G () > 0 so that u(t) is bounded piecewise

odd symmetry of the involved frequency responsecontinuous onRg and converges asymptotically to zero

curves lead to:
2Req( 2)= & 1)+ G (- 1)
2d + mT(jw)(ij—A)'lb—bT(jml+AT)'1m(—joo)
2d+(qT(ij—A)‘lb—\/a)2—
eb”(jol +AT) L (job -A )b +
{b7(-jwl -AT)* (PP () - P(~jw) P)( kI~ A) b}
b (~jeol —AT) P (~jw)
d .
a+q"PT(p)(ki-A )* b

2d+s‘T(jw)‘2—ZGGOWHbHZ

1-18]a (8)
[ (A raP)+ad maP) ], +] ¢, ]
where, T(jw)=L T(ju -A )™ with L  such

ast -» o except (potentially) over a set of zero measure
of bounded discontinuities. Thug(t) -0 as t -

and is bounded oR since GOR H,,. Now, since the
nonlinear feedback functionb () eq. 2, is locally
continuous around the equilibriumy(t) — 0 implies
u(t) - 0 as t - o so that the above mentioned set of
potential discontinuities of u (t) is empty aftesnge

finite time. As a result, both u (t) and y (t) cenge
asymptotically to zero.

EXAMPLE
Consider (1) with n=2, r=1;
0 1
b"=(-1,8) k; ¢"=(1,0 and A= ;
(-18) ki eT=(1.0and A= O]
0 1 .
Alza{_ _J with a > 0,>0 and d > 0. The

thatL =L T L >0 . The last identity of (8) is greater open-loop forward-loop is globally asymptotically

than zero if (5) holds and the proof follows dihgct

Theorem 1
hyper stability):

(main

result of asymptotic
Assume i

that GOSPR what is

guaranteed if Lemma 1 holds. Thus, the closed-loop

system (1)-(2) is asymptotically hyperstable; {&). is
globally Lyapunov’s stable for all feedback contew
(2), for any real & satisfying 8/ 0[0,5,). That

property holds independently of the sizes of tHayde

Proof: Define truncated time signals (1) = z (¥)for

all T0[0,t] andz,(t) =0, otherwise), of the Fourier
transformz, (jw) for any vector signal z (t), of Fourier
transform Z (jw), for any time t= 0 and any frequency

stable if |&|<

and A is a stability matrix. Thus

a;

(3)-(4) hold withq=( P b- ¢) 4/ d, and:

L—s‘l(Ll—d‘l(PbbTP+ cd - Pbé- cB)f) (10)

Being symmetric (and positive definite for

sufficiently smalle >0) for arbitrary L,=L] >0. A
simple calculation combining those constraints dsel

P=[" L'd then satisfying the matrix

Lyapunov EquatiolA™ P+ PA=- L, .

Thus, from Lemma 1,GOSPR if dgin (5) is

. From Parseval’s theorem relating the input- dutpuC""ICUI"ﬂeOI by using < a,[aza and:
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2.

+a)?+(B+a

aos\/l{(ﬁ)azﬁz(ﬁ)] (11)
Obtained from the calculations of the related- 3

norms. Thus, from Theorem 1, the feedback.

configuration (1)-(2) is asymptotically hyperstatite

any nonlinear device satisfying the constraint ). (4.
The associate transfer function possesses a trictl

stable zero/pole cancellation at s $ which has not

been taken into account in the above calculatidhs
is reasonable when the transfer function numeranolr
denominator are not factored explicitly from thatst
space description especially for higher order systdf
such a cancellation is known “a priori” and removed
a minimum state-space realization of (1) resulimg

A=-a, A, =-a , b=k, c=1then
5. = ada
° ‘al‘(da+ 2k ar ) 3

(12)

5.

6.

7.

From Lemma 1 with P = 1/k , g=0. In this simple 8.

example, the calculations may also be performenh fro

the

cancellation, if known, is removed. In this cadeist 9.

real part of the transfer function once the

leads to d > 0,60:i

[
constraint. However, obtaining factored
functions from a state-space realization is noy das
high-order systems in the presence of delays. fHuis

justifies the adequacy of the proposed method t(?Ll

practical problems.
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