
American Journal of Applied Sciences 2 (9): 1309-1314, 2005
ISSN 1546-9239
© 2005 Science Publications

Corresponding Author: Muhammad Shoaib, Department of Computer Science & Engineering, University of Engineering and
Technology, Lahore, Pakistan, Tel: +92+333-4214364

1309

A Methodology to Segment the Text for Index Terms

Muhammad Shoaib and Abad Ali Shah

Department of Computer Science and Engineering
University of Engineering and Technology, Lahore, Pakistan

Abstract: The problem of information overload is a hot issue with the growth of the world wide web.
The need for the tools those should be able to absorb this huge information and eliminate this problem
is evident especially for IR systems. Text is not a simple sequence of words but carries a structure. It is
essential to handle these uncontrollable complex structures of sentence, grammatical and lexical
irrelevancy of different units. The main idea to handle these problems is to segment the text into
elementary units, which will be simpler and lesser complex than their equivalent text. We have used
cue phrases, punctuations. We are presenting an algorithm, which is not only efficient but also
handling more than 500 cue phrases and most of punctuations. This proposed algorithm can yield
elementary units, which can be used by Rhetorical Relations Finder to get relations among them,
which can be used by the RST Parser for the construction of RST Tree which will be used to design an
RST based indexer. In future, the algorithm can be enhanced for handling other discourse markers,
which will enable us to handle the most complex cases where cue phrases and punctuations are not
applicable.

Key words: RST, text segmentation, cue phrases, punctuations

INTRODUCTION

 It is commonly admitted that the text has structure,
which is independent of world and domain specific
knowledge[1]. Sentences in the text are closely
interrelated and grouped in certain ways to form the
whole text. Sentences relations are weaker than the
relation that exists between words but the sentences are
interpreted jointly and they meant to coexist. IN the
same way there exist a relation between the paragraphs
in any document[1-5].
 To find the relationship between two adjacent short
paragraphs is much easier than to find the relationship
between two longer units of text. This fact has caused
to the distinction between the global and local
structures of discourse.
 The theories[6,7] support this distinction. The theory
developed by Gresz and Sinder deals specifically with
local discourse structure[6]. This shows the need for
identifying the boundaries of the segments of text.
Segmentation is the process to identify the units of text
whose sentences are strongly connected to each other.
Text segmentation of any document problem focuses on
how to identify the regions of text ends and another
begins of that document. Simply we can say that a text
is divided into N Segments, which display certain
characteristics (i.e Text spans, a topic or an idea).

 There are many application areas of the text
segmentation like Information retrieval[8-10].
 Text Segmenter is also helpful in finding the
subtopic, which facilitates the user to jump from one
topic to another topic or to his required information.
The Text Segmenter also provides the structural
information about the document, which enables to find
the relations, which exists in any document. It can also
be used for effective query and analysis. Our main
interest in text segmentation is to use for Indexing
purpose and ultimately to improve the performance of
Information Retrieval Systems. There are many ways
in which text can be broken down into segments[4]. We
have used cue phrases and punctuations for text
segmentation.
 Cue phrases are words that connect two or more
spans and add structure to the discourse of text, for
example, some cue phrases are given: “first”, “and”,
“now”, “accordingly”, “actually”, “also”, “although”
etc. Marcue created a set of more than 450 cue
phrases[11-13]. Also, Simon H Corston-Oliver describes a
set of linguistic cues that can be identified in a text as
an evidence of discourse relations[14] as well as to
segment the text.

NEED FOR TEXT SEGMENTATION

 In order to automatically build the valid text
structure of an arbitrary text, we need only to determine
the elementary units of that text. Therefore, an accurate
determination of the elementary units of a text is the

Am. J. Appl. Sci., 2 (9): 1309-1314, 2005

 1310

most important task. Using cue phrases is one of the
best ways to determine elementary units[15]. According
to Litman and Hirschberg, Cue phrases are words,
phrases, or linguistic expressions that may directly and
explicitly mark the structure of a discourse[16].
 The main cause to divide text into elementary units
is to eliminate the complexity of large grammatical
sentences. Finding the elementary units at early stages
carries many advantages as follows:

* Elementary units provide an easy to handle Natural

Language Programming
* Elementary units of text help to extract relations

more easily.
* Elementary units enhance the efficiency of a

complete process, as smaller text units are easier to
handle with respect to their larger equivalents.

 Hearst introduced the Text Tilling algorithm[16].
This algorithm segments the text into multiple
paragraphs of coherent discourse units. As Hearst’s
approach segments at the paragraph level, this is not
suitable for the applications like Information Retrieval.
 Kozima gives the approach of a “Lexical Cohesion
profile” to keep track of the semantic cohesiveness of
words in a text within a fixed length window[17]. Kozima
uses a semantic network to provide knowledge about
related word pairs. The network is trained automatically
using a language specific knowledge, generalizing it by
applying it to a window of text and finding the
cohesiveness of successive text windows in a document
and hence finding the boundaries of the text segments.
 Reynan[18] present the graphically motivated
segmentation technique called dot plotting .It uses the
simplified notion of lexical cohesion. It exclusively
depends upon on word repetition to find tight regions of
topic similarity.
 Grosz and Sidner proposed the Grosz and Sidner’s
Theory (GST), in which, they named linguistic textual
units as Discourse Segments (DS), which are used in

construction of discourse structure. Although GST
provided an idea of the DS or elementary units, but they
never explained as a particular methodology[6].
 Daniel Marcu proposed a comprehensive
methodology of Shallow Processing to decompose
given text into elementary units and named them as
Text Spans[4]. He used cue phrases, comma and
parenthetical as a basic tool. He also elaborated the idea
to handle the duel behavior of cue phrases (sentential
and discourse usage) like and or. Unfortunately he
missed much other punctuation, which can play a vital
role in the segmentation of text into elementary units
and his algorithm is not as efficient as it should be also
it has not provided an automated solution to text
segmentation
 In this study, we presented novel scalable and
robust text segmentation technique, which cover all the
deficiencies present in the algorithm of Daniel Marcue.

PROPOSED ALGORITHM FOR TEXT
SEGMENTATION

 The accuracy and efficiency can be achieved by
using the following proposed algorithms, which is
providing the stub parts of RST for tree development.
The get Text Span procedure serves as the main starting
point for this proposed solution, this procedure takes
input the string to be processed and calls the
makeParagraphArray procedure to divide text into
paragraphs with the help of utility procedure
getParagrph and afterwards the output is sent to
makeSentenceArray which divides the paragraphs into
sentences with the help of utility procedure
getSentence. And each sentence is analyzed by
analyseTextSpan procedure, which provides the core
functionality to extract elementary units:

Input: Unstructured text
Output: The Elementary Units
Processing:

Step 1:
Procedure Name getTextSpan
Input String to Process
Output ArrayList of Elementary Units
Process This Procedure takes input the string to be processed and calls the makeParagraphArray procedure to divide text into

paragraphs and afterwards the output is sent to makeSentenceArray which divides the paragraphs into sentences. And
each sentence is analyzed by analyseTextSpan procedure, which provide the core functionality to extract elementary
units.

getTextSpans(string st)
 st = handleMultiWordCuePhrases(st)
 aParagraphs = makeParagraphArray(st)

for(i=0 to aParagraphs.Count-1)
aSentences=makeSentenceArray((string)(aParagraphs[i]));

 for(j=0 to aSentences.Count-1)
 index=-1;
 iStart=0;

 sSentence=aSentences[j]
while(index <sSentence.Length-1)

 sTkn = getNextToken(sSentence, index)
 if(sTknis not NULL)

Am. J. Appl. Sci., 2 (9): 1309-1314, 2005

 1311

if(sTkn is delim OR sTkn is cuePhrases))
sUTS=analyseTextSpan(sSentence,

iStart, index, sTkn, sNextTkn)
 if(sUTS is Null and sTK is cuePhrase)
 sLastCuePhrase = sNextTkn;
 else if (sUTS is not NULL)
 if (sLastCuePhrase is not NULL)

sCuePhrase=sLastCuePhrase
 sLastCuePhrase=""

End if
if(sTkn.IndexOfAny(delim)>-1)

 sPunctuation = sTkn;
 else
 sLastCuePhrase = sTkn;

End if
if(sNextTkn!="")
sPunctuation=sNextTkn;

tn = new
CTextNode(sUTS, iUID,
j, i, sPunctuation,
sCuePhrase);

 aTextSpans.Add(tn);

 ++iUID;
 End if
 End if
 End if
 End While
 End For
 End For
 return aTextSpans
End getTextSpans

Step 2:
Procedure Name analyseTextSpan
Input Sentence to Process
 Starting Index
 Current Index
 Token to Analyze
 Next Token
Output Elementary Unit
Process This Procedure takes input the Sentence to be processed and provide the core functionality to extract

elementary units; this procedure uses getNextToken procedure to tokenize the input.

analyseTextSpan(string sSentence, By Reference int iStart, By Reference int index, string sTkn, By Reference string sNextTkn)
 sNTkn = getNextToken(sSentence, ref iNext).Trim();
 if(sTkn.IndexOfAny(parentheticals)>-1)
 if(bParenthetical==false)
 sTS= sSentence.Substring(iStart, index-iStart-sTkn.Length)
 bParenthetical=true
 iStart=index+1
 index++
 else
 sTS= sSentence.Substring(iStart, index-iStart-sTkn.Length+1)
 iStart=index+sTkn.Length
 index+=sTkn.Length
 bParenthetical=false
 End if
 else if(bParenthetical==true)
 return sTS;
 else if(sSentence.Substring(iStart,index-iStart+ sTkn.Length).Trim()==sTkn &
 CString.IndexOfAny(sTkn,cuePhrases)>-1)
 sNextTkn=sTkn;
 return sTS;
 else if(sTkn=="," && sNTkn.ToUpper()!="AND" && sNTkn.ToUpper()!="OR")
 sTS= sSentence.Substring(iStart, index-iStart+sTkn.Length)
 iStart=index+sTkn. Length
 index++
 else if(sTkn=="," && (sNTkn.ToUpper()!="AND" || sNTkn.ToUpper()!="OR"))
 return sTS;
 else if(CString.IndexOfAny(sTkn.ToUpper(),cuePhrases)>-1 && sNTkn.IndexOfAny(delim)>-1)

Am. J. Appl. Sci., 2 (9): 1309-1314, 2005

 1312

 sTS= sSentence.Substring(iStart, iNext-iStart+sNTkn.Length)
 iStart=iNext+sNTkn. Length
 index=iNext+1
 sNextTkn=sNTkn
 else if(CString.IndexOfAny(sTkn.ToUpper(),cuePhrases)>-1)
 If (index-estate-sTkn. Length>-1)
 sTS= sSentence.Substring(iStart, index-iStart-sTkn.Length);
 else
 sTS= sSentence.Substring(iStart, index+sTkn.Length)
 iStart=index-sTkn.Length
 index+=sTkn. Length
 else if(sTkn.IndexOfAny(delim)>-1)
 sTS= sSentence.Substring(iStart, index-iStart+sTkn.Length)
 iStart=index+sTkn. Length
 index++
 End if
 return sTS
End analyseTextSpan

Step 3:
Procedure Name makeParagraphArray
Input String to Process
Output ArrayList of Paragraphs
Process This Procedure takes input the string to be processed and divide text into paragraphs with the help of

procedure getParagraph.

makeParagraphArray(string st)
 Set index=-1
While (index < St. Length-1)
 Set stkn = getParagraph(st index)
 if(stkn is not NULL)
 aParagraphs.Add(stkn)
 end if
 End While
 return aParagraphs
End makeParagraphArray

Step 4:
Procedure Name getParagraph
Input String to Process
 Starting Index of new Paragraph
Output Paragraph String
Process This Procedure takes input the string to be processed and return the next paragraph on the basis of

new line criteria.

getParagraph(string st, by Reference int index)
 if (not End of String)
 do
 if(no new line found)
 inc index by 1
 Set sTP=st
 else if(st.IndexOf(newLine, index+1)>0)
 Set sTP = st.Substring(from index to new line)
 Set index = st.IndexOf(next newLine)
 else
 sTP=st.Substring(index+1)
 index += st.Length- st.LastIndexOf(newLine);
 End if
 while((sTP.IndexOf(newLine) > 0 OR sTp is not NULL) AND index<st.Length-1)
 End if
 return sTP
End getParagraph

Step 5:
Procedure Name makeSentenceArray
Input String to Process in form of Paragraph
Output ArrayList of Sentences
Process This Procedure takes input the paragraph to be processed and divide text into sentences with the help

of procedure getSentence.
makeSentenceArray(string st)

Am. J. Appl. Sci., 2 (9): 1309-1314, 2005

 1313

 Set index=-1
 while(index < st.Length-1)
 stkn = getSentence(st, index)
 if(stknis not NULL)
 aSentences.Add(stkn)
 return aSentences
End makeSebtenceArray

Step 6:
Procedure Name getSentence
Input String to Process in form of Paragraph
 Starting Index of new Sentence
Output Sentence String
Process This Procedure takes input the string to be processed and return the next sentence on the basis of

new sentence criteria.

getSentence(string st, by Reference int index)
 if (not end of String)
 do
 if(st.IndexOfAny(newSentence,index+1)==0)
 inc in index by 1
 set sTP=st
 else if(st.IndexOfAny(newSentence, index + 1) > 0)
 sTP=st.Substring(index + 1, nextSentence)
 index = st.IndexOfAny(newSentence, index + 1)
 else
 sTP=st.Substring(index + 1).Trim();
 index += st.Length - st.LastIndexOfAny(newSentence);
 while(sTP.Trim().Length < 1 && index<st.Length-1);
 return sTP
End getSentence

Step 7:
Procedure Name getNextToken
Input String to Process
 Starting Index of Token
Output Token String
Process This Procedure takes input the string to be processed and return the next token which can either be a

simple word, a cue phrase or a punctuation.
getNextToken(string st, by Reference int index)
 set sTkn=""
 if (index<st.Length-1)
 do
 if(st.IndexOfAny(delim,index+1)==0)
 inc index by 1
 sTkn=""
 else if(st.IndexOfAny(delim, index + 1) > 0)
 if (first char is delim)
 sTkn=st.Substring(first char)
 else
 sTkn=st.Substring(next char)
 End if
 index = st.IndexOfAny(delim, index+1)
 if (sTkn is not NULL)
 dec index by 1
 End if
 else
 sTkn=st.Substring(index)
 index = last index of delim
 End if
 while(sTkn is NULL AND Not End of String)
 return sTkn
End getNextToken

COMPUTATIONAL EVALUATIONS

 Although the complexity of the proposed solution
seems to be exponential from general mathematical
representation:

Complexity of Algorithm = P 1 Sp 1 Us 1

i 0 j 0 k 0
Operations

− − −
= = =∑ ∑ ∑

Where:
P = Total Number of Paragraphs in giving Text
S = Total Number of Sentences in respective Paragraph

Am. J. Appl. Sci., 2 (9): 1309-1314, 2005

 1314

U = Total Number of Elementary Units in respective
Sentence

 But with the analysis of the results it yields a linear
relationship with following mathematical representation

Complexity of Algorithm = N 1

k 0
Operations

−
=∑

Where:
N = Total Number of Elementary Units in giving Text

 The analytic study shows that our algorithm is
more efficient for text segmentation.

CONCLUSION

 We have presented a technique of segmenting the
text into elementary units, which will help us to form a
rhetorical tree. The text spans will be used for
extracting relations. The pseudocode presented has
been implemented in the programming language C#
and results are promising. The results are being verified
on different types of the text as well as mathematically
it has been proved that the execution flow of our
proposed algorithm is linear which is more efficient
than exponential algorithms.

Future work: Currently we are working on the
extension of our proposed weight assignment approach
and considering both keywords and the RST
relationships of a collection for the purpose of indexing
and referring it to as this indexing technique as
composite dynamic indexing technique. The output of
the technique demonstrated in the paper will be used for
RST relation based tree constructing whose node will
contain a text segment and relations. The next paper
will demonstrate this technique. These techniques will
finally be used for indexing technique in the IR
Systems.

REFERENCES

1. Carlson, L., J. Conroy, D. Marcu, D. O'Leary, M.E.

Okurowski, A. Taylor et al., 2001. An empirical
study of the relation between abstracts, extracts and
the discourse structure of texts. Proc. Document
Understanding Conf. (DUC-2001), New Orleans,
Louisiana.

2. Bateman, J. and K.J. Rondhuis, 1997. Coherence
relations: Towards a general specification.
Discourse Processes, 24: 3-49.

3. Corston, S. and M. Cardoso de Campos, 2000.
Automatically recognizing the discourse structure
of a body of text. United States Patent 6,112,168,
Microsoft Corporation.

4. Mann, W.C. and S.A. Thompson, 1998. Rhetorical
structure theory: Towards a functional theory of
text organization. The J. Text, 8: 243-28.

5. Shoaib, M. and A. Shah, 2005. A dynamic weight
assignment approach for IR systems. Ist Intl. Conf.
Computer and Commun. Technology., IEEE,
Pakistan.

6. Grosz B. and S. Candace, 1986. Attention,
intentions and the structure of discourse.
Computational Linguistics.

7. Kintsch and van Dijik, 1978. The structure of
Discourse. Computational Linguistics.

8. Afantenos, S., V. Karkaletsis and P.
Stamatopoulos, 2005. Summarization of medical
documents: A survey. Artif. Intell. in Med., 33:
157-177.

9. Shah, A. and M. Shoaib, 2005. Sources of
irrelevancy in information retrieval systems. Intl.
Multi Conf. In Computer Sci. & Computer Engg.,
USA.

10. Shoaib, M. and A. Shah, 2005. Remote information
retrieval using a cell phone. Intl. Multi Conf. In
Computer Sci. & Computer Engg., USA.

11. Marcu, D., 1996. Building up rhetorical structure
trees. Proc. 13th Natl. Conf. Artif. Intell., USA., 2:
1069-107.

12. Marcu, D., 1997. The rhetorical parsing of natural
language texts. Proc. 35th Ann. Meeting of the
Assoc. for Computational Linguistics (ACL-97),
pp: 96-103.

13. Marcu, D., 2000. The theory and practice of
discourse parsing and summarization. Proc. 35th
Ann. Meeting of the Assoc. Computational
Linguistics (ACL-97), pp: 96-103.

14. Simon, H. and Corston-Oliver, 1998. Computing
representations of the structure of written
discourse. Technical Report MSR-TR-98-15,
Microsoft Research, Microsoft Corporation, One
Microsoft Way, Redmond, WA 98052.

15. Burstein, J., D. Marcu and K. Knight, 2003.
Finding the WRITE stuff: Automatic identification
of discourse structure in student essays. IEEE
Intelligent Systems, 18: 32-39.

16 Redeker, G., 2000. Coherence and Structure in
Text and Discourse. W. Black and H. Bunt (Eds.),
Abduction, Belief and Context in Dialogue. Studies
in Computational Pragmatics, John Benjamins,
Amsterdam and Philadelphia, pp: 233-263.

16. Hearst, M., 1994. Multi-paragraph segmentation of
expository text. 32nd Ann. Meeting of the Assoc.
for Computational Linguistics.

17. Kozima, H., 1993. Text segmentation based on
similarity between words. Proc. ACL’93, Ohio.

18. Reynar, J., 1994. An automatic method of finding
topic boundaries. 32nd Ann. Meeting of the Assoc.
for Computational Linguistics.

