American Journal of Applied Sciences 2 (9): 13094,32005
ISSN 1546-9239
© 2005 Science Publications

A Methodology to Segment the Text for Index Terms
Muhammad Shoaib and Abad Ali Shah

Department of Computer Science and Engineering
University of Engineering and Technology, LahorakiBtan

Abstract: The problem of information overload is a hot issuith the growth of the world wide web.
The need for the tools those should be able torBlibes huge information and eliminate this problem
is evident especially for IR systems. Text is netraple sequence of words but carries a structti®.
essential to handle these uncontrollable compledctstres of sentence, grammatical and lexical
irrelevancy of different units. The main idea tontiee these problems is to segment the text into
elementary units, which will be simpler and lessemplex than their equivalent text. We have used
cue phrases, punctuations. We are presenting anithly, which is not only efficient but also
handling more than 500 cue phrases and most oftpatiens. This proposed algorithm can yield
elementary units, which can be used by Rhetoricghtions Finder to get relations among them,
which can be used by the RST Parser for the cartgiruof RST Tree which will be used to design an
RST based indexetn future, the algorithm can be enhanced for hawgdbther discourse markers,
which will enable us to handle the most complexesashere cue phrases and punctuations are not
applicable.

Key words: RST, text segmentation, cue phrases, punctuations

INTRODUCTION There are many application areas of the text
segmentation like Information retrietfaf”.
It is commonly admitted that the text has struetur Text Segmenter is also helpful in finding the

which is independent of world and domain specificsubtopic, which facilitates the user to jump fromeo
knowledgé’. Sentences in the text are closelytopic to another topic or to his required inforroati
interrelated and grouped in certain ways to for@ th The Text Segmenter also provides the structural
whole text. Sentences relations are weaker than th@formation about the document, which enables rtd fi
relation that exists between words but the senteB® the relations, which exists in any document. It aiso

interpreted jointly and they meant to coexist. Wt e ysed for effective query and analysis. Our main
same way there exist a relation between the paphsra jnierest in text segmentation is to use for Indgxin

. -5]
in any documefit®. purpose and ultimately to improve the performante o

araT?gllitger;elgﬁogsgfr ?ﬁ;leet%nf.tr%o t?]ijarg?ahm.shorlnformation Retrieval Systems. There are many ways
baragraphs 1s mu : ! ™ in which text can be broken down into segméhteve

between two longer units of text. This fact hasseau have used cue phrases and punctuations for text
to the distinction between the global and local X P P
segmentation.

structures of discourse. c h ds that -
The theorie&™ support this distinction. The theory ueé pnrases are words that connect two or more
spans and add structure to the discourse of text, f

developed by Gresz and Sinder deals specificaltir wi | h ven: “first”. “and”
local discourse structufe This shows the need for ?xarr?,p e some cu% p rases ?re“ glv?’n.“ Irst’, “an
now”, “accordingly”, “actually”, “also”, “although

identifying the boundaries of the segments of text.
Segmentation is the process to identify the urfitext ete. Mg%fe creatgd a set of more than 4.50 cue
whose sentences are strongly connected to each Othghrase_ ._A_Iso, Simon H Corsto_n-Oll_/_er d_escrlbes a
Text segmentation of any document problem focuses 0>et of _Ilngmstlc cues that can be_é%entlﬂed Iteat as
how to identify the regions of text ends and anothe a" evidence of discourse relationsas well as to
begins of that document. Simply we can say thatxa t segment the text.

is divided into N Segments, which display certain

characteristics (i.e Text spans, a topic or an)ide NEED FOR TEXT SEGMENTATION

In order to automatically build the valid text
Text Tgl T2 Tg3 Tg4 Tg5 structure of an arbitrary text, we need only teed®ine
[| I | I the elementary units of that text. Therefore, acueate
determination of the elementary units of a texthis

Corresponding Author: Muhammad Shoaib, Department of Computer Sciencendirteering, University of Engineering and
Technology, Lahore, Pakistan, Tel: +92+333-4214364
1309

Am. J. Appl. i, 2 (9): 1309-1314, 2005

most important task. Using cue phrases is onéh®f t construction of discourse structure. Although GST
best ways to determine elementary utits According provided an idea of the DS or elementar(units they
9

to Litman and Hirschberg, Cue phrases are wordsjever explained as a particular methodoldgy
phrases, or linguistic expressions that may diyeatid Daniel Marcu proposed a comprehensive
explicitly mark the structure of a discouf&e methodology of Shallow Processing to decompose

The main cause to divide text into elementarysunit given text into elementary units and named them as
is to eliminate the complexity of large grammatical Text Spand. He used cue phrases, comma and
sentences. Finding the elementary units at eaalgest parenthetical as a basic tool. He also elabor&ieddea
carries many advantages as follows: to handle the duel behavior of cue phrases (seatent

and discourse usage) like and or. Unfortunately he
* Elementary units provide an easy to handle Naturamissed much other punctuation, which can play al vit

Language Programming role in the segmentation of text into elementarytsun
* Elementary units of text help to extract relason and his algorithm is not as efficient as it sholddalso
more easily. it has not provided an automated solution to text
* Elementary units enhance the efficiency of asegmentation
complete process, as smaller text units are etsier In this study, we presented novel scalable and
handle with respect to their larger equivalents. robust text segmentation technique, which covethall

deficiencies present in the algorithm of Daniel Mag.
Hearst introduced the Text Tilling algorithfh

This algorithm segments the text into multiple PROPOSED ALGORITHM FOR TEXT
paragraphs of coherent discourse units. As Hearst's SEGMENTATION

approach segments at the paragraph level, thiotis n

suitable for the applications like Information Retal. The accuracy and efficiency can be achieved by

Kozima gives the approach of a “Lexical Cohesionusing the following proposed algorithms, which is
profile” to keep track of the semantic cohesiveneks providing the stub parts of RST for tree developmen
words in a text within a fixed length wind8%. Kozima The get Text Span procedure serves as the matmgtar
uses a semantic network to provide knowledge aboytoint for this proposed solution, this procedurketa
related word pairs. The network is trained autocadlfi input the string to be processed and calls the
using a language specific knowledge, generalizifgyi makeParagraphArray procedure to divide text into
applying it to a window of text and finding the paragraphs with the help of utility procedure
cohesiveness of successive text windows in a documegetParagrph and afterwards the output is sent to
and hence finding the boundaries of the text seggnen makeSentenceArray which divides the paragraphs into

Reynaft® present the graphically motivated sentences with the help of utility procedure
segmentation technique called dot plotting .It uses getSentence. And each sentence is analyzed by
simplified notion of lexical cohesion. It exclusiye analyseTextSpan procedure, which provides the core
depends upon on word repetition to find tight regiof functionality to extract elementary units:
topic similarity.

Grosz and Sidner proposed the Grosz and Sidnerinput: Unstructured text
Theory (GST), in which, they named linguistic teaitu Output: The Elementary Units
units as Discourse Segments (DS), which are used iRrocessing:

Step 1:

Procedure Name getTextSpan

Input String to Process

Output ArrayList of Elementary Units

Process This Procedure takes input the string fordeessed and calls the makeParagraphArray proegaldivide text into

paragraphs and afterwards the output is sent t@e8ekenceArray which divides the paragraphs initesees. And
each sentence is analyzed by analyseTextSpan pirecechich provide the core functionality to extralementary
units.

getTextSpans(string st)
st = handleMultiWordCuePhrases(st)
aParagraphs = makeParagraphArray(st)
for(i=0 to aParagraphs.Count-1)
aSentences=makeSentenceArray((string)(aParagrhphsli
for(j=0 to aSentences.Count-1)
index=-1,
iStart=0;
sSentence=aSentences][j]
while(index <sSentence.Length-1)
sTkn = getNextToken(sSentence, index)
if(sTknis not NULL)

131C

Am. J. Appl. i, 2 (9): 1309-1314, 2005

if(sTkn is delim OR sTkn is cuePhrases))

sUTS=analyseTextSpan(sSentence,

iStart, index, sTkn, sNextTkn)
if(SUTS is Null and sTK is cuePhrase)
sLastCuePhrase = sNextTkn;
else if (SUTS is not NULL)
if (sLastCuePhrase is not NULL)

sCuePhrase=sLastCuePhrase

sLastCuePhrase=""

End if

if(sTkn.IndexOfAny(delim)>-1)
sPunctuation = sTkn;

else

sLastCuePhrase = sTkn;

End if

if(sNextTkn!="")

sPunctuation=sNextTkn;
tn = new
CTextNode(sUTS, iUID,
j, I, sPunctuation,

sCuePhrase);
aTextSpans.Add(tn);
++iUID;
End if
End if
End if
End While
End For
End For
return aTextSpans

End getTextSpans
Step 2:
Procedure Name analyseTextSpan
Input Sentence to Process

Starting Index

Current Index

Token to Analyze

Next Token
Output Elementary Unit
Process This Procedure takes input the Senterime poocessed and provide the core functionaligxteact

elementary units; this procedure uses getNextTpkecedure to tokenize the input.

analyseTextSpan(string sSentence, By Referené8tant, By Reference int index, string sTkn, By &ehce string sNextTkn)
sNTkn = getNextToken(sSentence, ref iNext).Trim();
if(sTkn.IndexOfAny(parentheticals)>-1)
if(bParenthetical==false)
sTS= sSentence.Substring(iStart, index-iStakiadIength)
bParenthetical=true
iStart=index+1
index++
else
sTS= sSentence.Substring(iStart, index-iStakiidlength+1)
iStart=index+sTkn.Length
index+=sTkn.Length
bParenthetical=false
End if
else if(bParenthetical==true)
return sTS;
else if(sSentence.Substring(iStart,index-iStafiknsLength). Trim()==sTkn &
CString.IndexOfAny(sTkn,cuePhrases)>-1)
sNextTkn=sTkn;
return sTS;
else if(sTkn=="," && sNTkn.ToUpper()!="AND" && sN'’kn.ToUpper()!="OR")
sTS= sSentence.Substring(iStart, index-igsdikn.Length)
iStart=index+sTkn. Length
index++
else if(sTkn=="," && (sNTkn.ToUpper()!="AND" ||¥Tkn.ToUpper()!="OR"))
return sTS;
else if(CString.IndexOfAny(sTkn.ToUpper(),cuePes)>-1 && sNTkn.IndexOfAny(delim)>-1)

1311

Am. J. Appl. i, 2 (9): 1309-1314, 2005

sTS= sSentence.Substring(iStart, iNext-iStart#4ghNdength)
iStart=iNext+sNTkn. Length
index=iNext+1
sNextTkn=sNTkn
else if(CString.IndexOfAny(sTkn.ToUpper(),cuePlasis-1)
If (index-estate-sTkn. Length>-1)
sTS= sSentence.Substring(iStart, index-iStakiid¥ength);
else
sTS= sSentence.Substring(iStart, index+sTkn.tlgng
iStart=index-sTkn.Length
index+=sTkn. Length
else if(sTkn.IndexOfAny(delim)>-1)
sTS= sSentence.Substring(iStart, index-iStartmdIéagth)
iStart=index+sTkn. Length
index++
End if
return sTS
End analyseTextSpan

Step 3:

Procedure Name makePar agraphArray

Input String to Process

Output ArrayList of Paragraphs

Process This Procedure takes input the string frdeessed and divide text into paragraphs witthéie of

procedure getParagraph.

makeParagraphArray(string st)
Set index=-1
While (index < St. Length-1)
Set stkn = getParagraph(st index)
if(stkn is not NULL)
aParagraphs.Add(stkn)
end if
End While
return aParagraphs
End makeParagraphArray

Step 4:
Procedure Name getParagraph
Input String to Process
Starting Index of new Paragraph
Output Paragraph String
Process This Procedure takes input the string torbeessed and return the next paragraph on the dfas

new line criteria.

getParagraph(string st, by Reference int index)
if (not End of String)

do
if(no new line found)
inc index by 1
Set sTP=st
else if(st.IndexOf(newLine, index+1)>0)
Set sTP = st.Substring(from index to new line)
Set index = st.IndexOf(next newLine)
else
sTP=st.Substring(index+1)
index += st.Length- st.LastindexOf(newLine);
End if
while((sTP.IndexOf(newLine) > 0 OR sTp is not NULIAND index<st.Length-1)
End if
return sTP

End getParagraph

Step 5:

Procedure Name makeSentenceArray

Input String to Process in form of Paagad

Output ArrayList of Sentences

Process This Procedure takes input the paragraipé poocessed and divide text into sentences wlinelp

of procedure getSentence.
makeSentenceArray(string st)

131:

Am. J. Appl. i, 2 (9): 1309-1314, 2005

Set index=-1
while(index < st.Length-1)
stkn = getSentence(st, index)
if(stknis not NULL)
aSentences.Add(stkn)
return aSentences
End makeSebtenceArray

Step 6:
Procedure Name getSentence
Input String to Process in form of Pazai
Starting Index of new Sentence
Output Sentence String
Process This Procedure takes input the string tprbeessed and return the next sentence on the ofasi

new sentence criteria.

getSentence(string st, by Reference int index)
if (not end of String)
do
if(st.IndexOfAny(newSentence,index+1)==0)
inc in index by 1
set sTP=st
else if(st.IndexOfAny(newSentence, index + 1))>
sTP=st.Substring(index + 1, nextSentence)
index = st.IndexOfAny(newSentence, indglek)
else
sTP=st.Substring(index + 1).Trim();
index += st.Length - st.LastindexOfAny(newSen&nc
while(sTP.Trim().Length < 1 && index<st.Length:1)
return sTP
End getSentence

Step 7:
Procedure Name getNextToken
Input String to Process
Starting Index of Token
Output Token String
Process This Procedure takes input the string frdeessed and return the next token which caerelith a

simple word, a cue phrase or a punctuation.

getNextToken(string st, by Reference int index)
set sTkn=""
if (index<st.Length-1)
do

if(st.IndexOfAny(delim,index+1)==0)
inc index by 1
sTkn=""

else if(st.IndexOfAny(delim, index + 1) > 0)

if (first char is delim)
sTkn=st.Substring(first char)

else

sTkn=st.Substring(next char)
End if
index = st.IndexOfAny(delim, index+1)
if (sTkn is not NULL)

dec index by 1

End if
else
sTkn=st.Substring(index)
index = last index of delim
End if

while(sTkn is NULL AND Not End of String)
return sTkn
End getNextToken

COMPUTATIONAL EVALUATIONS

Complexity of Algorithm :Z:ZJS:'; k‘i: Dperations

Although the complexity of the proposed solution\where:
seems to be exponential from general mathematica = Total Number of Paragraphs in giving Text

representation:

S = Total Number of Sentences in respective Papagra
131¢

Am. J. Appl. i, 2 (9): 1309-1314, 2005

U= Total Number of Elementary Units in respective4.
Sentence

But with the analysis of the results it yieldsreebr 5.
relationship with following mathematical represeiaia

Complexity of Algorithm = Operations

Where:
N = Total Number of Elementary Units in giving Text 7

The analytic study shows that our algorithm i38
more efficient for text segmentation. '

CONCLUSION

We have presented a technique of segmenting th%‘
text into elementary units, which will help us twrh a
rhetorical tree. The text spans will be used for
extracting relations. The pseudocode presented h
been implemented in the programming language C# -
and results are promising. The results are beinfead
on different types of the text as well as mathecaditi
it has been proved that the execution flow of our
proposed algorithm is linear which is more effitcien
than exponential algorithms.

11.

12.

Future work: Currently we are working on the
extension of our proposed weight assignment approac
and considering both keywords and the RST13
relationships of a collection for the purpose afaring '
and referring it to as this indexing technique as
composite dynamic indexing technique. The output of
the technique demonstrated in the paper will be fise 14
RST relation based tree constructing whose node wil™ ™
contain a text segment and relations. The nextpape
will demonstrate this technique. These techniquitls w
finally be used for indexing technique in the IR

Systems. 15.

REFERENCES

1. Carlson, L., J. Conroy, D. Marcu, D. O'LearyBM.
Okurowski, A. Tayloret al., 2001. An empirical
study of the relation between abstracts, extrauts a
the discourse structure of texts. Proc. Document
Understanding Conf. (DUC-2001), New Orleans,
Louisiana. 16.

2. Bateman, J. and K.J. Rondhuis, 1997. Coherence
relations: Towards a general specification.
Discourse Processes, 24: 3-49. 17.

3. Corston, S. and M. Cardoso de Campos, 2000.
Automatically recognizing the discourse structure18.
of a body of text. United States Patent 6,112,168,
Microsoft Corporation.

16

131¢

Mann, W.C. and S.A. Thompson, 1998. Rhetorical
structure theory: Towards a functional theory of
text organization. The J. Text, 8: 243-28.

Shoaib, M. and A. Shah, 2005. A dynamic weight
assignment approach for IR systems. Ist Intl. Conf.

Computer and Commun. Technology., IEEE,
Pakistan.

Grosz B. and S. Candace, 1986. Attention,
intentions and the structure of discourse.

Computational Linguistics.

Kintsch and van Dijik, 1978. The structure of
Discourse. Computational Linguistics.

Afantenos, S., V. Karkaletsis and P.
Stamatopoulos, 2005. Summarization of medical
documents: A survey. Artif. Intell. in Med., 33:
157-177.

Shah, A. and M. Shoaib, 2005. Sources of
irrelevancy in information retrieval systems. Intl.
Multi Conf. In Computer Sci. & Computer Engg.,
USA.

Shoaib, M. and A. Shah, 2005. Remote informatio
retrieval using a cell phone. Intl. Multi Conf. In
Computer Sci. & Computer Engg., USA.

Marcu, D., 1996. Building up rhetorical struetu
trees. Proc. 13th Natl. Conf. Artif. Intell., USA;
1069-107.

Marcu, D., 1997. The rhetorical parsing of naltu
language texts. Proc. 35th Ann. Meeting of the
Assoc. for Computational Linguistics (ACL-97),
pp: 96-103.

Marcu, D., 2000. The theory and practice of
discourse parsing and summarization. Proc. 35th
Ann. Meeting of the Assoc. Computational
Linguistics (ACL-97), pp: 96-103.

Simon, H. and Corston-Oliver, 1998. Computing
representations of the structure of written
discourse. Technical Report MSR-TR-98-15,
Microsoft Research, Microsoft Corporation, One
Microsoft Way, Redmond, WA 98052.

Burstein, J., D. Marcu and K. Knight, 2003.
Finding the WRITE stuff: Automatic identification
of discourse structure in student essays. IEEE
Intelligent Systems, 18: 32-39.

Redeker, G., 2000. Coherence and Structure in
Text and Discourse. W. Black and H. Bunt (Eds.),
Abduction, Belief and Context in Dialogue. Studies
in Computational Pragmatics, John Benjamins,
Amsterdam and Philadelphia, pp: 233-263.

Hearst, M., 1994. Multi-paragraph segmentatibn
expository text. 32nd Ann. Meeting of the Assoc.
for Computational Linguistics.

Kozima, H., 1993. Text segmentation based on
similarity between words. Proc. ACL'93, Ohio.
Reynar, J., 1994. An automatic method of figdin
topic boundaries. 32nd Ann. Meeting of the Assoc.
for Computational Linguistics.

