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Abstract: This research describes the development of a reuctsred 2D CFD solver for
compressible flow. The high-speed turbulent flowandiffuser and a cascade of nozzle blade is
predicted using standardekturbulence model. The new finite volume CFD soleewploys second-
order accurate central differencing scheme foriapdiscretization and multi-stage Runge-Kutta time
integration to solve the set of nonlinear governewuations with variables stored at the vertices.
Artificial dissipations with pressure sensors amgraduced to control solution stability and capture
shock discontinuity. In general, the predictionmpare well with the experimental measurements.
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INTRODUCTION researchers such as DertbrNil”’, Dawe&, Ollivier’®
and Lassalin&.

In general, there are two methods available in  The vast majority of fluid applications involve
solving the compressible Navier-Stokes Equationgurbulence. Cases such as fluid flow in a pipewflo
(NSE). The most prominent method is to solve theprocesses in the combustion chamber, flow over an
system of non-linear equations in a segregated emannaijrfoil will exhibit a chaotic complex motion deéd as
by employing an iterative procedure in which sa@o8  turbulent flow. While the popularity of Direct
are alternatively obtained from the pressure atocity ~ Numerical Simulation (DNS) and Large Eddy
fields. The link is then provided by the continuity Simulation (LES) have become noticeable due to the
equation. In this algorithm, pressure is treatedh®s apid development of High-Performance Computing
primary flow variable due to the fact that pressure(HpC) technology, the general turbulent fluid mosio
gradient is always finite regardless of Mach regime gre well described by the Reynolds-Averaged Navier-
Therefore, this is the common scheme employed &y thgigkes (RANS) equations with the inclusion of
modern commercial CFD codes due to the robustrfess Reynolds stresses into the original full Navierké®
the numerical procedure. Known as Pressure Base@quation, which is computationally chedfer To

Method (PBM), this algorithm has been applied ggoe the Reynolds stresses, more equations are

extensively in the incompressible flow field origily necessary and these extra equations are classi§ied
and has been extended to compressible flow byalsda turbulence models

1] [2] i
;oclgyos\;ﬁ t,t Va%] Dogr‘Taj!ﬂet ;I'w\’l.tr':/k;Gl:j'.rk ?R.d In this study, the new CFD solver will be used to
age’, Watlersoff' and Jasar. Notwithstanding this, d’nvestigate the high-speed compressible flow in a

due to the fact that the momentum, continuity an giffuser and nozzle blade cascade with standaal k-

pressure eq_uat|ons are §olved in an uncouple urbulence model for closure. The idea presentahis
approach, this may result in convergence problems : . S
. o . éxtension of the original invoiced 2D solver forotw
especially in situations where the gradients ofwflo 1
phase steam flo.

variables are relatively large such as the stagnati
point at the leading edge. The idea of densityatim
in compressible flow field has led to the emergeote MATHEMATICAL FORMULATION

coupled solution technique since density existsaas

dependent variable in the system of compressibldhe Governing Equations. The two-dimensional
Navier-Stokes equations. By realizing the capabdit = Reynolds-averaged Navier-Stokes equations wittkthe
time-marching technique to circumvent the numerical€ turbulence model as closure describing the turitule
difficulties in mixed subsonic-supersonic probleime  flow of a compressibthe strong conservation forrgron
marching procedure has been utilized to solve theonservation form in the x-, y-Cartesian co-ordinat
system of NSE in a coupled manner by manysystem may be written as:

Corresponding Author: M. Z. Yusoff, Department of Mechanical Engineggituniversiti Tenaga Nasional, Km.

7, Jalan Kajang-Puchong, 43009 Kajang, SelangoulBdrsan, Malaysia.
1325




Am. J. Applied Sci., 2 (9): 1325-1330, 2005

[S9)
=
SY)
n
[S9)
®

1) pre-process&?. The mesh system is commonly known
as H-mesh and divides the physical domain inta afse
discrete rectangular control volumes.

Where: A cell-vertex formulation is used in which thewilo

variables are stored at the four vertices of a

quadrilateral cell. It has been shown by Martifélji
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p o+ P Dick™, Swanson and Radiesptdl that cell-vertex
pu ouv -1 * formulation offers some advantages over the cell-
v Y centered one in which cell-vertex method offershkig
W= = Q% accuracy on irregular grid. For a uniform meshrehe
W oo | F puhy, y g 9
’ puk—(p+&)% would be no difference between the cell-centered an
pk o, 0x .
. K cell-vertex schemes; however, cell-vertex schemesdo
P pug—(p+&)@ not require extrapolation to the solid boundargiain
g, OX the wall static pressure, which is necessary iwisgl
pv the momentum equations for cells adjacent to thid so
puv-Tt,, boundary.
pvi+P-1 Starting from known values of primitive variables
ovh, +Q iyqj from the previous time-step, the valuesfofand G are
G = o 20k calculated for each node. Then the line integrat®n
pvk—(p+ﬂ)a— performed for each control volume in turn for the s
O Y conserved variables (RANS +&Turbulence Model).
pvs-(u+&)§
o, oy

Thediscretized RANS:

0
0 Rij =
0
1 1
J=|0 _Qiﬁf’(Fijcdy_ (3|jC dX)+qu“>( !j:V dy— q%/ d)) (2)
ij ij
B —pe 1
€ g? +§TSE(FUT dy- G!jT dX) +J
Car R= G- u
W is known as the conserved variablé&sand G The discretized standard&-model:
are the overall fluxes in x-, y- directions respeat
and J represents the source vector. Ry = —isﬁ(ﬁm dy- Gy d>§ + 4, 3)
i Q i

i

NUMERICAL SCHEMES
After the spatial integration, the cell residuall w

Solving Procedure: Starting from the flow field take the form:
variables obtained from the previous time step, the
conserved variables in RANS are solved with thefo w) _
appropriate boundary conditions. The updated vi$ab (atjij =R, (w)
are then substituted in the standardg< kturbulence
model to solve for turbulent kinetic energy and
turbulent dissipation rate. Wall functions and tuemnt
boundary conditions are then imposed. The updated @r turbulence model.
and £ will be used to calculate the turbulent viscosity ~ The calculated residuals apply to the values of
and the Reynolds stresses. Subsequently, the newoperties within the cell, whereas, the variabdes
Reynolds stresses will be utilized to solve RANSha actually stored at the nodes. Consequethiby
next iteration. The loop continues until convergeie have to be redistributed to the four surrénogd
achieved. nodes. This is done by sharing the chainge

equally between the four nodes in the context of
Cell-vertex finite-volume spatial discretization: The  central differencing.
flow domain is replaced by a finite number of grid Thus, the equivalent discretized equation for @eno
points, which are generated algebraically by thé-bu  will be:
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aw interior if the inflow is subsonic. Otherwise, all
[ﬁj =R, (w) (%) variables are fixed at the inlet. On exit, if thefow is
A subsonic, only the static pressure is fixed, widtal

Artificial dissipations: All second-order central- Pressure, total temperature and flow angle are
differencing schemes, even with a stable time-steptXtrapolated — from the interior by zero-order
suffer from certain tendencies to instability deethe ~ €Xtrapolation. If the exit flow is supersonic, &tiur
odd-even decoupling near a discontinuity. The sehemVvariables are extrapolated from the interior. Fog k
can be stabilized by introducing a small amount offansport equations, k a#d are extrapolated for
artificial viscosity, suggested by Jamesral.!%. First ~ arbitrary exit flow conditions.

—order upwind differencing scheme may be used to  Periodic boundary condition is essential in
remedy the stability problem, however, the scheméimulating flow in turbomachines. The periodicity
tends to damp the solution so much and alter the fl condition on the bounding streamlines is easilisBad
physics. Therefore, "% order accurate central With treating the calculating points on each of the
differencing scheme, which is consistent with thebounding streamline as if they are interior oneg, b

framework of Navier-Stokes equations, iplmg  assuming that all properties are equal for cornedingy
to both RANS and turbulence model ia th Points on each of the streamliri¢odes on the periodic

current work with suitable amount of fietal  boundaries will have contributions from four
viscosity. corresponding cells on both sides of the boundaries

This artificial viscosity formulation is a blend o On solid walls, the values of velocity components
second and fourth-order terms with a pressure bwitc as Well as k ancE' are set to zero. Adiabatic condition
detect changes in pressure gradiént After the IS imposed. For nodes adjacent to the wall, wall
addition of the dissipation terms, Equation (5)drees: ~ functions are introduced to calculate k afid

[MJ =R, (w)+ D, (w) ) Initial conditions: To start the computation, initial flow
at), " AV field variables must be specified at all calculgtin
points. In this approach, a linear variation ofgstge
The multi-stage runge-kutta time stepping: Equation ~ Petween the inlet and exit planes is assumed fraifw
(6) is integrated with respect to time by meana fifur-  the pressures at all calculating points can beiméda
stage Runge-Kutta time stepping scheme, as proposddi€ tangency condition is enforced to obtain the

by Jamesonet al.*®: velocity components at each calculating points aad
variation of other properties along the pitch iswased.
0" Using the inlet stagnation temperature and pressiee
- O’ 0 assumed static pressure and velocity componerisy ot
w=w +0(1At(B +D ) properties can be calculated using isentropicicelat

1 o)’ For turbulence models, k ané are set to the
(7)  values consistent to the inlet k ahd The fluctuating
), Reynolds stresses are then calculated using bssines
3 0) relation.

W= w APPLICATIONS

, . Blade-to-blade calculations on a turbine nozzle
yvhere, th.e supersc_np.ts, n a_nd n+1 refer to the UM cascade: In order to validate the current solver, blade-
intervals in f[he main mtegratlon sequence, 1,243 (5 plade flow simulation on a turbine nozzle blade
refer to the mtermgdmte time-steps in the RUNge&  coqcage will be presented. The blade profile beddog
scheme. The coefficients,,a,,a,,a, are 0.250, 0.333, 5 giator of a low-pressure steam turbine. The gegme
0.500 and 1.000, respectively. of the blade was generated using the in-house pre-

processor of the current sol# as shown in Fig. 1.
Boundary conditions: The mathematical theory of The experimental surface pressure measurementseon t
incompletely parabolic PDEs indicates the numbet ancascade were performed by Maftfat
type of boundary conditions for the unsteady Three cases in overall inlet total to outlet stati
compressible RANS. In the present work, Euler-tgpe pressure ratio, fe/P, of 1.49, 1.83 and 2.32 were
boundary condition is applied except at solid wallsimulated. The overall pressure ratio of 2.32
where no-slip condition is imposed. At the inldiet corresponded to supersonic outlet, while 1.83
total pressure, total temperature, flow angle, uleht  corresponded to transonic outlet. The flow condgio
kinetic energy and turbulent dissipation rate axed,  with subsonic outlet were represented by testsnat a
while the static pressure is extrapolated from theoverall pressure ratio of 1.49.
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Mesh at leading edge

33x230

Mesh at trailing edge

Fig. 1: The blade geometry of the nozzle blade
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Fig. 2: Pressure plot at suction side for the rezzl
cascade in subsonic flow condition
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Fig. 3: Pressure plot at suction side for the rezzl
cascade in transonic flow condition
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Fig. 4: Pressure plot at suction side for the rozzl
cascade in supersonic flow condition
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Fig. 5: The geometry of the sajben diffuser

The mesh consisted of 33 x 230 grids. The mesh
resolution near the wall was adjusted to be higber
account for the boundary layer development. A
comparison of measured and calculated values dibla
surface static pressure for subsonic flow, trarséoiv
and supersonic flow is illustrated in Fig. 2-4 general,
the numerical results show good agreement with the
experimental data, except the pressure ratio at the
trailing edge due to mesh distortion.

Sajben diffuser: Transonic turbulent flow has been
computed in a two-dimensional converging-diverging
duct using the standard k- model. Extensive
experimental data are available for t@emetry,
at a variety of flow conditions (Chen, Sajben and
Kroutil,®,  Bogar, Sajben and Krodt#, Salmon,
Bogar and Sajb&¥, Sajben, Bogar and
Kroutil®”,Bogaf?). The flow fields being modelled
were the weak- and strong-shock diffuser cases of
Sajbeff®. The geometry of the diffuser is presented in
Fig. 5.

A 51x81 body-fitted computational mesh was
generated algebraically. Adiabatic no-slip condisio
were used on both the top and bottom walls. The
pressure ratio (Ry/Poinie) Was 0.82 and 0.72 for strong-
and weak-shock case, respectively.

Figure 6 and 7 compares the pressure
distributions along the bottom and the top waltlod
diffuser. The shock location predicted by the cotre
solver compares well with the experimental data
carried out at Bi/Poiner= 0.82 (weak shock).
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Fig. 9: Pressure plot at top wall fog,@Poinet = 0.72

(strong shock)

Next, the strong-shock case was simulated. Agaim, t
illustrated results are comparable with the expenital
data, except that the shock is predicted to ocogiridl
point further downstream as shown in Fig. 8 and 9.
However, by considering the coarseness of the mesh
employed in the current solver, the result is &atiery.

CONCLUSION

In the present work, a new two-dimensional
compressible flow solver has been developed for
structured grid. It uses the second-ordeutate
cell-vertex finite-volume spatial discretimat and
Runge-Kutta temporal integration. Standarel k-
turbulence model has been successfullyapted
to  simulate the compressible turbulent flowain
cascade of nozzle blade and Sajben ugdift
Both cases show a good comparison with the
experimental data, except the excessive smearing of
shock wave at the trailing edge of the nozild
cascade. Research is still in progresshen
existing  turbulence model to compute the
turbulent viscosity in a more accurate way.

Further work to be done on the solver includes the
extension to 3D environment and modification to
handle arbitrary meshes.
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