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Abstract: This study presents a concise graphical analysis of solitonic solutions to a nonlinear 
Schrodinger equation (NLSE). A sequence of code using the standard NDSolve function has been 
developed in Mathematica to investigate the acceptable accuracy of the NLSE in relatively small 
ranges of the dispersive parameter space. An operator splitting approach was used in the numerical 
solutions to expand the boundaries and reduce the artifacts for a reliable solution. These numerical 
routines were implemented through the use with Mathematica and the results give a very clear view of 
this interesting and important practical phenomenon. 
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INTRODUCTION 

 
 The nonlinear Schrödinger equation (NLSE): 
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May be used to model the propagation of pulsed light in 
optical fibres[1,2]. When 0Γ = α =  this becomes the 
standard model of picosecond pulses[3]. u( , )ξ τ  is a 
complex-valued function modelling the envelope of the 
effective electric field as a function of distance ξ  along 
the fiber and time τ  in a frame moving at the group 
velocity.  The left-hand side of Equation (1) models the 
effects of group velocity dispersion and self-phase 
modulation while the right-hand side accounts for the 
refractive nature of the fiber (with refractive index Γ ) 
and higher order linear dispersion effects (with 
coefficient α ).  As an initial attempt to understand the 
contribution of the dispersion term, results for non-zero 
α  (and 0=Γ ) will be compared to the well-known 
soliton solution of the standard model. Defining the 
NLSE operator as: 
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the fundamental Zakharov-Shabat soliton solution of 
the standard model[4] can be verified: 
 

i / 2u( , ) Sech( )eξξ τ = τ  (2) 
 
Simplify[nlse[0,0][Sech[τ ]Exp[ i ξ /2]]==0,{ τξ , }∈
Reals]: The standard methods available with 
Mathematica's NDSolve function did not provide 
sufficient accuracy for our analysis.  Rob Knapp has 
kindly provided a package  
 
u[o, ] Sech[ ]τ = τ  (3) 

 
based on a split step method used in this study.  The 
NLSE with nth order dispersion is solved numerically 
with initial condition and asymmetric boundary 
condition: 
 
u( , lim) u( , lim)ξ −τ = ξ τ  (4) 

 
which models a train of interacting pulses. 
 
Function definitions: The standard NDSolve method 
of StiffnessSwitching is implemented in the following 
function: 

 

 
 
 The non-standard Split Step method is implemented in the following function: 
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 The following functions produce amplitude, contour and τ and  ξ  cross-section plots for the NLSE solution: 
 

 
 

 
 
This function displays the plots: 
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These functions produce a series of τ cross-section plots (using the Split Step method) for animation: 
 

 
 
Results of Split Step and StiffnessSwitching cases 
plotted side by side: The following plots explore the 
effect of order n linear dispersion.   The dispersion 
coefficient α  is   chosen   to   produce   representative   
examples behavior e   observed behavior.   On   the   
left   side   of the graphic columns are the Split Step 
method graphs.  The plots on the   right   show   the 
results for the StiffnessSwitching method.  In each 
case, plots a. and b. Illustrate the evolution of the 
soliton for 0 lim≤ ξ ≤ ξ , plot (a) showing the   forward 
amplitude   and   plot (b) the reverse.  Plot (c) shows the 
associated contour plot.  Plot (d) shows two cross-
sectional profiles along the τ  axis, the direction   of   
motion   of   the   wave, and compares the   initial   
pulse at ξ  = 0 (red) with the pulse obtained   at 

limξ = ξ  (green).  Finally, plot  (e) gives the 
corresponding cross-section along the ξ  axis and   
indicates   the deviation   along   the crest of the wave   
of   the   final   pulse   compared   to   the initial pulse.  
 For the Split Step method PrecisionGoal was set 
at 4 to achieve suitable accuracy for n > 0.  The 
maximum achievable consistent value of 
PrecisionGoal was 2 for the StiffnessSwitching 
method. 

* No dispersion 

Zero order: Soliton solution remains unchanged.  No 
apparent difference between methods. 

* Higher order dispersion 
First order: Soliton solution is retarded. 

StiffnessSwitching method apparently 
introduces numerical artifacts. 

Second order: Soliton solution disperses 
symmetrically. 

Third order, low αααα: Nonsymmetric radiation 
produced, possible numerical 
artifacts appearing as transverse 
waves originating on τ 
boundaries. 

Third order, higher αααα: Nonsymmetric radiation 
increased and feeding into a 
pulse. 

Fourth order: Symmetric dispersion, possible small 
radiation or numerical artifacts. 

Fifth order: Increasing α from 0.005 to 0.006 initiates 
nonconvergence of StiffnessSwitching 
method before non-symmetric radiation 
becomes pronounced.  

Sixth order: Increasing α past 0.009 initiates non-
convergence of numerical method, 
numerical anomaly evident in the plot. 
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DISCUSSION 
 
 In the first set of plots; No dispersion, zero order, 
as was to be expected from the definition of a pure 
soliton wave, there was also no noticeable difference in 
the wave plots produced by the two methods under 
review here.  
 In the second case, part 1; Higher order dispersion, 
first order, coefficient (coef.) α = 1, we get another 
soliton solution. This time the wave is retarded, as 
exhibited by its angle to the τ axis in the amplitude and 
contour plots and its separation in the first cross-
section. The second cross-section shows the extent of 
the retardation. In part 2; coef. = 1.8, the previous 
observations are more marked, and here is observed an 
artifact in the StiffnessSwitching (St.Sw.) plots. 
 In the second order plots, coef. = 1.5 the soliton 
solution still disperses symmetrically, and as predicted 
for an even order, shows less evidence of other activity, 
especially in SplitStep. However the accuracy of both 
methods now comes into question. Most other 
resemblance to a soliton has gone. The Split Step case 
has been severely retarded, as has the St.Sw., which is 
again showing the presence of numerical artefacts.  
 In the graphs representing the third order, the lower 
coef. = 0.05 now shows the appearance of non-
symmetric radiations, in both methods, though minor at 
this coef., where retardation seems less evident. Moving 
up to the coef. = 1.5 these effects become much more 
evident. Differences in the two methods are now 
evident, as is retarded. The radiation is seen to be 
feeding into the pulse and the question is now apparent 
as to whether this is due to nothing more than numerical 
artifacts.  
 Next is presented a short animation of the τ cross-
section, which may be of some interest here. Coming 
now to the fourth order, the expectedly more peaceful 
background is again evident, though a small radiation, 
or artifact, may be seen. The resemblance to the 
classical definition of a soliton is, however markedly 
absent. In the Split Step the retardation is very severe 
and again raises serious doubts regarding the accuracy 
of this method.  
 For the fifth order non-convergence of the St.Sw. 
Method starts between coef. = 0.005 and 0.006. Up to 
this level radiation is minor and retardation has not set 
in. The evident differences in the form of this 
"radiation" in the two methods again reinforce the 
argument for the belief that it is an artifact.  

 For the sixth order, any attempt at increasing the 
coef. Past 0.0009 initiates non-convergence. Up to this 
point however the same inconsistencies are clearly 
emerging, again bringing into question the reliability of 
either method.  
 

CONCLUSION 
 
 There is no evidence here in the results produced 
using either the traditional StiffnessSwitching Method, 
or the newer Split Step method which would reinforce 
the premise that secondary radiation in the soliton wave 
exists in the quadratic range and not in the cubicle. The 
results produced here would even give ground to the 
assertion that secondary radiations do not occur at all! 
 The only conclusion that we can reach from this is 
that the methods provided in Mathematica to assist in 
the use of the NDSolve command are full of flaws, 
especially in respect to the presence, or the creation of 
numerical artifacts. From what we have observed with 
the Split Step method we can safely say that, while 
there are minor improvements, it does not instill 
sufficient confidence in the user that he might conclude 
the absence of artifacts here either. 
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