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Effects of Higher Order Dispersion Termsin the Nonlinear Schrodinger Equation

Robert Beech and Frederick Osman
University of Western Sydney, Penrith-South, 17®1stralia

Abstract: This study presents a concise graphical analysisobtonic solutions to a nonlinear
Schrodinger equation (NLSE). A sequence of codegusine standard NDSolve function has been
developed in Mathematica to investigate the actdptaccuracy of the NLSE in relatively small
ranges of the dispersive parameter space. An apesptitting approach was used in the numerical
solutions to expand the boundaries and reduce rtifacts for a reliable solution. These numerical
routines were implemented through the use with Eadtica and the results give a very clear view of
this interesting and important practical phenomenon
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INTRODUCTION the fundamental Zakharov-Shabat soliton solution of
the standard modélcan be verified:
The nonlinear Schrédinger equation (NLSE):
u(&,t) = Secht )& ()
2 3

10U 20U Aper?Ju = —iru+ia O ) o _
0g 20t ot Simplify[nlse[0,0][Sech[ 7 JExp[i ¢ /2]]==0{¢&, T}
) ) Reals]|: The standard methods available with
May be used to model the propagation of pulsed ligh  pmathematica's NDSolve function did not provide
optical fibre§"?. When r=a=0 this becomes the gyfficient accuracy for our analysis. Rob Knapps ha
standard model of picosecond puldesu(,1) is a kindly provided a package
complex-valued function modelling the envelopehd t
effective electric field as a function of distan€ealong  u[o,t]=Sechf ] 3)
the fiber and timer in a frame moving at the group
velocity. The left-hand side of Equation (1) mad#die  based on a split step method used in this studge T
effects of group velocity dispersion and self-phaseNLSE with """ order dispersion is solved numerically
modulation while the right-hand side accounts fog t with initial condition and asymmetric boundary
refractive nature of the fiber (with refractive @dl')  condition:
and higher order linear dispersion effects (with
coefficient a ). As an initial attempt to understand the ;@ _t|im) = u 1 lim) 4)
contribution of the dispersion term, results fonfmero
a (and I =0) will be compared to the well-known

. . o which models a train of interacting pulses.
soliton solution of the standard model. Defining th

NLSE operator as: Function definitions: The standardNDSolve method
of StiffnessSwitching is implemented in the following

nisefr _,n_J{u_]= 9, u+ 1/, u Abs[U] L function:

—iaa(m)u

nsolStSwla , n , {lim , 7lim ] :=nso0lStSw[a, n, {lim, 7lin] -
Hb5olve[{nl=e[a, n][u[€, t]] == 0, u[0, ] == Sech[z], u[€, -1lim] == u[£, zlim]},
u[¢, 7], {z, -1lim, 7lim}, {&, O, £lim}, Method - StiffnessSwitching,
MaxSteps — Infinity, Precisiontzoal — 2][[1]]

The non-standar8plit Step method is implemented in the following function:
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nsolsSpSta , n_, £1im , 71im ] :=nsolSpSt[a, n, £1im, 71lim] =
HDhSolve[{nlze[a, n][u[f, 1] =0, u[0, ] == Sech[z], u[f, -z1lim] == u[£, T1lim]},
u[#, r], {7, -7lim, Tlim}, {&, 0, £lim}, Method — {"MethodDflines" ,
"SpatialDiscretization" — {"TensorProductGrid",
"Differencedrder" — "Pzeuwdospectral" , "MinPoints" - mp, "MaxPoints" —mp},
Method — {DoubleStep, Method — {SplitStep, "DifferenceOrder" 4},
StiffnessTest — False}}, PrecizionGoal — 4, hocuracyGoal —4]1[[1]11

m = 2049;

DEf[General::"spelll"]

The following functions produce amplitude, contandT and & cross-section plots for the NLSE solution:

ampliPlotlifa . n , {lim , 71lim , method ] :-
PlotiD[Abs[ulf, r] /. method[a, n, £lim, T1im]], {£, 0, £1im},
{z, —-z1lim, ¥1lim}, PlotRange — 11, PlotPoints — 100, Mesh - False, Boxed — False,
ViewPoint — {-2, -1.5, 1.5}, hxesLabel — {&, 7, "|2{&, ) |" },
Ticks — {{&flim f2, £1lim}, {-21imF3, O, 2 zlimf 3}, {0, 1}},
PlotLabel — "a. Forward amplitude plot"]

ampliPlot2fa . n , {1lim , 71im , method ] :-
PlotiD[fbs[u[f, r] /. method[a, n, £lim, T1im]], {&, 0, £1lim},
{z, —-z1lim, 71im}, PlotRange — 11, PlotPoints — 100, Mesh - False, Boxed — False,
ViewPoint — {2, 1.5, 1.5}, hxesLabel - {&, ¥, " |2(&, )"},
Ticks — {{&flim f 2, £1im}, {-21imF 3, O, 2 zlimf 3}, {0, 1}},
PlotLabel — "h. Reverse amplitude plot"]

contrPlotlifa . n , {lim , 71im , method ] :-
ContourPlot [Abhs[ul[€, ] Ff. method[a, n, £1im, rlim]l], {&, 0, £1lim},
{z, -zlim, rlim}, PlotRange — All, PlotPoints — 100, Frame — True,
ContourShading — False, FrameLahel — { £, )}, RotatelLabel — Fal=e, AxesLabel — { &, ¥},
FrameTicks — [f0, £lim f2, £1im}, {-2¥1im/f 3, 0, 270im/3}, {1}, {3},
PlotLabel — "c. Contour plot'"]

croegPlotlifa . n , {1lim , 71im , method ] :-
Plot[{Sech[t], fhs[{u[f, ] /. method[a, n, £lim, 1im]} F. £— £lim]}, {z, -*lim, rlim},
PlotRange — i11, PlotPoints — 100, PlotStyle — Table[Hue[i f 3], {i, 0, 1}],
AxeszLabel — {z, " |a{{,z)|"}, Axe=0rigin - {-15, 0},
Ticks —» {{-2¥1lim f3, 0, 2 t1imf 3}, {0, 0.5, 1}}, PlotLahel —"d. 1 cross-section plot"]

crossPlot2[a , n , €lim , tlim , method ] :=
Plot[{1, Abs[{u[f, ] /. method[a, n, £lim, z1im]} /. = 0]},
{€, 0, €lim}, PlotRange — {0, 1}, PlotPoints - 100,
PlotStyle — Table[Hue[i f 3], {i, 0, 1}], AxesLahel — {&, " Ja({, )"},
Ticks - {{0, £lim /2, £1lim}, {0, 0.5, 1}}, PlotLabel --"e. £ cross-section plot"]

This function displays the plots:
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<= Graphics Graphics’
showflots[a , n , £lim , 7lim ] :=

{Print["Pulse evolution for HLSE wWth a = ", a, ", & = ", N,
" {Left column: SplitStep method, Right column: StiffnessSyitching method)"]:
DiszplayTogetherhrray[

ffampliPlotl[a, n, £lim, 1im, nsolSpSt], ampliPlotl[a, n, £1lim, T1im, nsolStS5w]},
fampliPlot2[a, n, £1im, ¥1im, nsolSpSt], ampliPlot2[a, n, £€lim, 71im, nsolStSw]},
{fcontrPlotlf[a, n, £lim, 1im, nsolSpSt], contrPlotlfa, n, £1lim, 1im, nsolStS5w]},
{crossPlotl[a, n, £lim, 1im, nsolSpSt], crossPlotl[a, n, £1lim, ¥1im, nsolStS5w]},
fcrossPlot?[a, n, £lim, 71im, nsolSpSst],
crossPlot2[a, n, £1lim, 71im, n=solS5tSw]}), ImageSize — 6007}

These functions produce a serieq @foss-section plots (using tBplit Step method) for animation:

crossPlotifa , n , £lim , 7lim , {0 ] :=
Flot [Ah=s[{u[£, ] /. nsolSpSt[a, n, £lim, ¥1im]) f. €= &n], {¥, -tlim, 7lim},
PlotRange — {0, 1}, PlotPoints — 50, PlotStyle - Hue[1/ 3], AxesLabel — {z, " |2{£, z)|"},
AxesOrigin— {-15, 0}, Ticks — {{-2lim /3, 0, 271lim 3}, {0, 0.5, 1}}, ImageSize — 300]

animatecrogsPlot[a . n , £1im , 7lim ] :=
Table[crossPFlot3[a, n, £lim, z1im, &n], {&n, 0, 2, 0.1}]:

On[General::"spelll"]

Results of Split Step and StiffnessSwitching cases  Zeroorder: Soliton solution remains unchanged. No
plotted side by side: The following plots explore the apparent difference between methods.
effect of ordern linear dispersion. The dispersion *  Higher order dispersion

coefficienta is chosen to produce representativdmirst —order:  Soliton solution is retarded.

examples behavior e observed behavior. On the StiffnessSwitching method apparently

left side of the graphic columns are @it Step introduces numerical artifacts.

method graphs. The plots on the right showe t Second  order:  Soliton  solution  disperses

results for theStiffnessSwitching method. In each symmetrically.

case, plots a. and b. lllustrate the evolution kg t Third order, low a: Nonsymmetric radiation

soliton for 0<&<¢&lim, plot (a) showing the forward produced, possible numerical

amplitude and plot (b) the reverse. Plot tx)ves the artifacts appearing as transverse

associated contour plot. Plot (d) shows two cross- waves  originating on T

sectional profiles along th& axis, the direction of boundaries.

motion of the wave, and compares the initiaThird order, higher a: Nonsymmetric radiation

pulse at¢ = 0 (red) with the pulse obtained at increased and feeding into a

g=E&lim (green). Finally, plot (e) gives the pulse.

corresponding cross-section along tlfe axis and Fourth order: Symmetric dispersion, possible small

indicates the deviation along the crest efwave radiation or numerical artifacts.

of the final pulse compared to theidhipulse. Fifth order: Increasinga from 0.005 to 0.006 initiates
For theSplit Step methodPrecisionGoal was set nonconvergence ofStiffnessSwitching

at 4 to achieve suitable accuracy for> 0. The method before non-symmetric radiation

maximum achievable consis.tent vglug of becomes pronounced.

PrecisionGoal was 2 for the StiffnessSwitching  gixth order: Increasinga past 0.009 initiates non-

method. convergence of numerical method,

*  Nodispersion numerical anomaly evident in the plot.
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Pulse ewolution for WLEE wich o = 1, = = 1

(Left colurm: SplitStep method, Right column: Ftiffnes=Switching method)

a. Foexward amplitude plot a. Ferwazd amplitude pleot
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Fulse ewvolution for WLEE with o = 1.8, = = 1

(Left column: 5SplitStep method, Right column:

StiffnessSwitching method)
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Pulse ewvolution for WLBE with o = 1.5, = = 2
(Left column: 3plit3tep method, Right columm: Stiffne==Switching mathod)

2. Tormard amplitude plot a. Fermward amplitude plot
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Pul=s avelutisn for HLSE with O = 0.05, = = 2
(Left column: FplitStep methed, Right column: StiffnessSwitching methed)

a. Tormard amplitude plot a. Fermard ampl itude plot
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Pulse ewvolution for WLBE with o = 1.5, = = 2
(Left column: 3plit3tep method, Right columm: Stiffne==Switching method)

2. Tormard amplitude plot a. Fermward amplitude plot
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no= 4
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Pul=zse ewslution for WLEE with o = 0.005, = = &
(Left ceolumm: SplitStep methed, Right celumn: StiffnessSwitching method)
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= 0.005, = = &
StiffrnessSwitching method)

Fulse ewvolution for WLSE wmith o
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Pul=e awolution £or MLEE with o = 0.0009, = = &
(Left celumn: Splitdtep method, Right celumn: StiffnessSwitching metheod)
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animatecrossPlot[1.53, 3, 2, 15];

lz=(S .20
1

-10 o 10

DISCUSSION For the sixth order, any attempt at increasing the
coef. Past 0.0009 initiates non-convergence. Uthit
In the first set of plots; No dispersion, zeroand point however the same inconsistencies are clearly
as was to be expected from the definition of a pureemerging, again bringing into question the religpibf
soliton wave, there was also no noticeable diffeeein  either method.
the wave plots produced by the two methods under

review here. CONCLUSION
In the second case, part 1; Higher order dispeysio
first order, coefficient (coef.p = 1, we get another There is no evidence here in the results produced

soliton solution. This time the wave is retarded, a using either the tradition&tiffnessSwitching Method,
exhibited by its angle to theaxis in the amplitude and or the neweiSplit Step method which would reinforce
contour plots and its separation in the first crossthe premise that secondary radiation in the solitaxe
section. The second cross-section shows the erfent exists in the quadratic range and not in the cebithe
the retardation. In part 2; coef. = 1.8, the presio regylts produced here would even give ground to the
observations are more marked, and here is obseved agsertion that secondary radiations do not occaillat
artifact in theStiffnessSwitching (St.Sw.) plots. . The only conclusion that we can reach from this is
In the second order plots, coef. = 1.5 the solitoy ot the methods provided in Mathematica to assist
solution stil disperses symmetru_:ally, and as mtmi the use of the NDSolve command are full of flaws,
for an even order, shows less evidence of othéviyct especially in respect to the presence, or the ioreaf

especially inSplitStep. However the accuracy of both rnumerical artifacts. From what we have observedh wit

methods now comes into question. Most othe . :
resemblance to a soliton has gone. The Split Sasp ¢ the Split Step_ method we can saf(_ely say that, V.Vh'le
there are minor improvements, it does not instill

has been severely retarded, as has the St.Sw.hvghic o ) _ )
again showing the presence of numerical artefacts. sufficient confidence in the user that he mightatode

In the graphs representing the third order, thesto  the absence of artifacts here either.
coef. = 0.05 now shows the appearance of non-
symmetric radiations, in both methods, though mitor ACKNOWLEDGEMENT
this coef., where retardation seems less evideating ] )
up to the coef. = 1.5 these effects become muclemor ~ The authors acknowledge the assistance given to
evident. Differences in the two methods are nowthem in the production of this work by Dr Rob Knapp
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section, which may be of some interest here. Comingdvice, with particular reference to the Mathenaatic
now to the fourth order, the expectedly more padcef coding used in this study.
background is again evident, though a small raafiati
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