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Flow of Dividendsunder a Constant Force of I nterest
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Abstract: This study addresses the issue of maximizatiativafiends of an insurer whose portfolio is
exposed to insurance risk. The insurance risk @rfsem the classical surplus process commonly
known as the CragnLundberg model in the insurance literature. Thace his financial base, the
insurer invests in a risk free asset whose prigeadycs are governed by a constant force of interest
We derive a linear Volterra integral equation o $econd kind and apply an order four Block-by-
block method of Paulseet al' in conjunction with the Simpson rule to solve Melterra integral
equations for each chosen barrier thus generatinggsponding dividend value functions. We have
obtained the optimal barrier that maximizes thaddimds. In the absence of the financial world, the
analytical solution has been used to assess theamgcof our results.
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INTRODUCTION We concentrate on barrier strategies in this study

although they may not be optimal when compounded
The model we consider in this study derives itsby a diffusion in a vibrant financial market in whi
name from the path breaking work of LundbBt@nd  case other strategies e.g. b and strategies takpar
Cramer ®°L In this model, at time, the surplusY; of  hand. Under the barrier strategy, we study the etepe

an insurance company evolves according to: d|sco_unted dividend payments prior to ruin widh as
the discount factor when the model (1) is compodnde

by a constant force of interest. According to Mille

Ny Modigliani theory, this approach can be used as a
Y =y+pt- XS (1) J v pproach

i=1 valuation tool for companies, since the value of a
company is exactly expected present value of future
dividend$. Their theory was developed under the
assumption of perfect capital markets, rationalavéedr
premium rate,{Nt}tDD+ is a Poisson process with and perfect certainty.

De Finett! underscored the importance of
dividend payments in the economic consideratiorts an
management of insurance companies. His work
distributed sequence of positive random variablégth(  culminated into a barrier strategy as being theénugdt
distribution F) independent oN, modelling the jump strategy. Dividend barrier models have a long hjstd
sizes. The distributior has finite expectatiopu and risk theory[s'lo]_ The later work on optimal dividends
finite variancer2 . was extensively discussed by Bofth?. Gerber*%

The surplus process (1) with the risk aversestudied dividend payouts in (1) with the safetytiod

. ... company in mind. Most literature is available inrter
> .
condition that P AE(Sl) leads to the unrealistic [ and the references therein. In many later papiees,

situation ¥; — o, as t - . Hence the need to problem is formulated and solved in the framewafk o

modify the surplus process to take care of thie @ay the Broyvniaer[:J’g]”notion model, see e.g. Jeanblanc-Ricqu
is to predetermine a surplus leveln such a way that and Shiryaev”, Radner and ShePp, Paulsen and

when the surplus level hits, premium income is paid GjeSSer]‘@w]' Hojgaard and Taksd, Taksar [ZaZ]”d
to shareholders as dividends. If the surplub @nd a  Zhou””, Asmussen and Tak$dt, Asmusseret al’*?,

claim occurs, the claim is paid and no dividends ar Taksal, Chouilii et al” and Paulséf?. None of the
paid until the surplus hits again. Eventually and with papers in the literature take advantage of the vast
certainty, ruin will occur at some stage in theufet ~ knowledge of Volterra integral equations as we dkb w
When ruin occurs, the process stops. The question ¢his work. More to integral equations, we use nioagr
hand is 'whatb ensures that the insurer pays maximummethods in this study. Before moving a step, wénedef
dividends to shareholders before ruin/bankruptcy?’ a dividend and a barrier strategy.

where y =Yy 2 0 is the initial reservep > 0 is the

intensity A , modelling the number of claims (jumps) in
(O, 1] and {Si }iDN is an independent and identically
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Definition 1: Dividends are taxable payments declaredv, (y) = (1- dt)(1- Adi) \, (y+ pdt) +

by the insurer's board of directors and given to

shareholders out of the company’s current or rethin
earnings.

Definition 2: A barrier strategy pays out any surplus

Adtf "V, (y-s)dR(9; 0< < b @

Substituting V +pdtV' for vy (y +pdt) into (4)

and simplifying gives:

aboveb as dividends immediately so that the surplus is

brought back td. Belowb, nothing is paid out.

EXACT SOLUTION TO (1)

V' (A +8)V +A[V (v -s)dF(9= O (5)

Specifically, let the jumps b&xp(a), so that the

To give a mathematical formulation of the modelsexpectationp=% . Then:

in this study, we take it that all processes andiom
variables are defined on

(Q, f’{ft}tDD"' ,P)satisfying the usual conditions, i.e.

fy is rightly continuous and® —complete. HereQ is

the stochastic basis

PV = (A +3)V +aA[JV, (v ~s)e ¥Sds= 0 (6)

Putx for y - s into (6), partially differentiate and

an abstract sample space whose elements is denoteliminate integral term to get:

ast; f is ano —algebra onQ ; P is a probability
measure and{ft}tDD+ is a filtration. A filtration
means an increasing and right continuous familgudif
o - algebras off , thatis, for0<s<t,fg O f O f
and ft = ft+ = N>t fS'

Using I&'s formula, the infinitesimal generator for
Y is given by the following integral-differential
operator:

Ag(y)=pd (y)+A[, (a(y-x)-d ) dF 3 ey

Now introduce a dividend barrier strateggo that
in the infinitesimal time interval of lengtt, the insurer
pays the non-negative amouttiD»:3 in dividends. With
such a strategy, (1) becomes:

N
b b t b b
Yt+dt :Yt + pdt_d|§18| —th s YO =y> 0.

Let:

b _
Vb(y):Ey[jgye &thb} 3)

denote the expected present value of dividend paisne
prior to ruin, that is, our dividend value functidere,
0>0 is the discount factor and time of ruin,

Tf,’ = inf{t > O:Ytb <O}.

In the said time intervalt,[t + df], a claim occurs
with probability /lPdt. Hence, there will be no claim
with probabilityl — Adt . By law of total probability:

pV' +(ap=-A=-3)V' -adV =0;

v,(0)=0, Vi(b)=1 0
b - b -

The solution to the specific case (7) which iDals

solution for the general case (5), up to the bgrigeof
the form{®":

g(y)) ()

where, in the case of

(),
m

a(y) =(a + ml)emly—(a + mz) e 2y. Here, m, < 0

and m, >0 are the roots of the characteristic equation

corresponding to (7). Above the barrier, the soluti

becomes vy (y) =Vy (b) +y-b. Infact g(y) is any

solution of Ag(y):Jg(y) whereA is given by (2). We
observe that (5) takes this form.

Remark 1: For a given initialy, let b denote the
optimal value oh, thmaximizese value that maximises
the expected present value of dividends. We see tha
this b is the value that maximizes (8) thus

minimizingg'(b). Henced', is the solution of

g"(b* ) = 0. Theb that maximizes (8) is:

go 1 |0gm%(°‘+m2)
- gl
elseb” =y.

All calculations were done on an IBM PC with
1024 MB RAM. The language was FORTRAN and we
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used DOUBLE PRECISION to get satisfactory

accuracy. Of course slower programs like Splus

Matlab, Maple or Mathematica could have been use

but at the expense of a considerably longer comguti

time. We obtained several valuable functions

corresponding to the various chosen barriers. The (y) {Vb(Y), O<sys<b
b

*
Remark 2: In addition to Remark 1b has geometric
gharacterization. We have the expected presené\aflu
dividends:

optimal barrier b" = 10270110 gives theV* Vb(b)+y—b, y>h.
(maximum dividend value function), all other value

functions are less than thié despiteb >b". Later, At the junctiony = b, V}, (y) is continuous and has
we numerically compute the same dividend value ) i L , ,( )_ .
functions using the block-by-block method developed® continuous first derivative since,{b)=1. Using

in Paulsenet al™ and compare the results. These (g) V”(b)zO is equivalent tog"(b)zo which in
results and ideas herein will be handy in numdsical ' 'b

computing value functions in the Cram’er-Lundberdiyrn means thatb = b*sinceg"(b*)=0. This

model compounded by a constant force of interest. . o : .
geometric characterization of the optimal valuealed

NUM ERICAL SOLUTION TO (1) the _high contact condition in the_ finance I_it_eratu_and
equivalently, the smooth pasting condition in the
optimal stopping literature. For details, Dixit and

Rindyck®.

Here, our risk process is still (1) where¥ys the
same process as the one described earlier 2 a

0 _ Theorem 1 together with (2) gives the following
Y =Y thus: version of (5):
N —x) -
b t b b : v(Vo(y =x) =V (y))
Y=y+rpt-2§ -0 g =y>0. ) pVb(y)+/1JOdF?X)_5Vb(yb):o- (10)

The dividend processDb is nondecreasing and Integrating (10) on [04 w.r.t. y one concludes that:

continuous and- (0) = O The total expected present
y[A+8 2
value of dividends with discount factérand Y(l)) =Y wp) _|Vb(0)+jo|: + _BF(y_X)i|Vb(X)dX' 0< ysb,q1)

= p

is given by (3) WhereTf,) is ruin time, equal to infinity V(o) +y=b. y>b
if ruin never occurs. Note that wheb <oo then For 0<sy<b, (11) is a linear Volterra integral
P(Tf/) < oo):]_a_s_ We use Theorem 1 below to find Equation of the second kind where the kernel igmgiv
solutions to (3). Our strategy is to find the assied y A A+0 , .
Volterra integral equation so that we use the nestin K(y, X) = —F(y— X)‘i and the forcing function,
Paulseret al™. P P

h(y) =, (0).
Theorem 1: Assume model (9) and Iét be given by For any arbitrary starting (0), g (y) will be the

(2). Let Vb()’) be bounded and twice continuously O(h4)[l] numerical solution from the block-by-block

differentiable on (Qb) with a bounded first derivative method. Then the solution to (11) is given by (B).

there. If Vy (y) solves AV (y) =, (y) on find g'(b), we use the  approximation

g(b+h)-g(b-h)
2h

0 < y < b, together with the conditions:

g'(b) = r!im0 , Whereh is the grid

- —nie 2 size.
Vb(y) =0 ony<0 WV (0) =0if op >0, We have solved (11) for several valueshofAt
Vlt’) (b) =1 Vb (y) :Vb (b) +y-b ony>bh. each4 run u_sing a FORTRAN Program that gives
O(h ) solution to Volterra equations of the second
kind (confer Paulseret al¥), we have computed

ThenV, is given by (3).
b(y) J v theg'(b). The results indicate that for any two barriers

Proof: Paulsen and Gjessing. by and by, 0<b) <by<w, g'(bl) > 9'(‘02)-
1391
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Eventually, some interval lbl'bzl is given D"is given by equation (9). A natural generalizatain
. ) o this model is to allow reserves to earn interdsthére
g'(b1)< g'(bz) for the first time. This interval is a positive constant force of interestthig reserves

. . * . . . now become
contains the optimab  which gives the optimal value

*
H —_ r ' t Ny
function Vy (b ) When b = 12 g (12) >g (10) Ytb=y+pt+rIOYsde—ZS—
implying that theb lies in the interval [1012]. =

* :y >O
To locate the actuab , we use our numerical
solution of Ag(y) = d‘g(y) to calculate all the Presence of a positive constant force of interest
derivatives: implies modifying (2) to a new infinitesimal gentra
for Y now given by the following integro-differential
i i operator:
: . i+1)h)- i—1)h
)= g 90 ((=10) o,
-0 2h Ag(y ):(ry+p) (y)+
(13)
o« Al o(y)) dF( ¥
and then locate the minimizing one. Thén =i h
. % * . .
for the minimizing i . The correspondingg'(b ) ~ Then Theorem 1 together with (13) gives the
value is then used to compute the numerical valudltegral-differential equation of Volterra type (fo
function which is given by: 0<ys<b):
oy) . o (o (Ve ) =Ve(v)) Y
g,b* , 0< ySb , (y p) b(y) J.OdF(X)—O—Vb(y):O ( )
Vb* (y) - *
glb * * Table 1:  NumericalV, (y) for Exp(Q5) jumpsp=6, A =2 and
R y_b Y2 b .
J'lb 0=01
[ y=ih o (y) gy Vi (y)
it 0 0 5 0 0
Table 1 shows the results. From the tadler 1 0.01 5 017489 17477949 53102001
1027 implying that thdd" = 1027. 2 0.02 5.0349559 1.7455936 5.328686
1 6.647174 15515921 7.034958
Finally, herere compare the exact and numerlézL 81163843 13928355 85898793
300 3 9.4437971 1.2669783 9.994731
solutions. Let Vb* (y)be the numerically calculated 4 10659443 1 le84631 11281295
_ ) . 500 5 11.788304 1.0927188 12.476012
value function when a numerical value bf, is used 600 6 12.85121 1.0359868 13.600926
A ) 700 7 13.865579 0.9951797 14.674472
andV (y) be the exact value function when the exactgoo 8 14.846027 0.9677631 15.712117
. b 1000 10 16.752547 0.9451688 17.72986
b is used. Table 2 shows the absolute percentagm24 10.24 16.979344 0.9448811 17.969888
relative error: 1025 10.25 16.988792 0.9448792 17.979888
1026 10.26 16.998241 0.944878 17.989888
1027 10.27 17.00769 0.9448776 17.999888
vV N (y) -V A (y) 1028 10.28 17.017139 0.944878 18.009888
_ b b* 1200 12 18.648711 0.955725 19.736642
D(y) =[100 A : 1400 14 20501950  0.9911446  21.793257
Vi (y) ‘ 1600 16 22.626207 1.0460063 23.946179
b 1800 18 24.786613 1.1168553 26.232618
2000 20 27.102867 1.2015941 28.683999

It is seen from Table 2 that the results are
extremely good. This then gives us confidence tlyap Table 2:  Comparison of numeric and exact solutiofzp(Q5)

the numerical method to the model later. jumps,A =2,p=6 0=01
y Vi (v) Vi (v) D(y)
MODEL (1) COMPOUNDED BY A CONSTANT > 85898793 85898805 1 424E-05
FORCE OF INTEREST 4 11.281295 11.281297 1.427E-05
6 13.600926 13.600928 1.426E-05
. 8 15.712117 15.71212 1.426E-05
The Cram’er-Lundberg model for the reselyeof 1 17 72986 17 729863 1.421E-05
an insurance company at timeith a dividend process 12 19.729888 19.736645 1.419E-05

139:
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Theorem 2: The integral-differential equation (14) can s
be represented as the linear Volterra integral tamua
of the second kind: sor

251

Vo (y) + ng (y,x)\/b (x)dx = h(y),

N
S
T

@
T

Value function

where the kernel:

K(yyx):_(r+/]+ra3;/;F(y—x), 5://

and the forcing function:

Fig. 1. Numeric value functions for export(0.5)
pVb(O) jumps,A =2,p=6,r=005 J =01

y+p o

35

Proof: Integrating (14) on [07 w.r.t. y and lettingv =
y - X one obtains:

30

N
o
T

(AFo(z=V) = (r+4,+9))

(rz+p)v"(z)_p\/"(o)+j°vb(v)dv:o (13)

Value function

N
S
T

Replacingz with y andv with x in (15) completes
the proof.
We know from Theorem 1 that when ol o

y > b, Vb(y)zvb(b)+ y—-b. Hence, our value

function takes the form: ‘ ‘ ‘ ‘ y
(r+ 5 +8) - (AFs(y-x)) o Fig. 2. Numeric value functions for a par (1.5) psn
)= Pr‘y’bjihj;[ oD Vo) 0sy<e. g gy A=2p=6r=005 5 =01

v, (b)+y-b, y>b. We now report the results when the distribution fo
S (generic for the $is Pareto. The density function is

We carry with us the analysis, results and9'Venby:

discussion from the previous section onto (16). The

_ a ~(1+a)
values ofg'(b) decrease fob = 10, 12, 14. Whenb = f(x)=(a-1)" ala-1+x) , X>0a>1
16, g'(16)> g'(14) implying that theb’ lies in the Furthermore with this distribution:

interval [14 16].

* a
To locate actualb , we again calculate all the 7( )_( a-1 j

derivatives using (12minimizing locate the minimigi a-1+x

one. The results indicate that = 1469 thus giving and
b= 1469. Figure 1 is a graph of dividend value E(x)=j8° lf(x)dx.
functions for some select barriers. The optimaldiind

value function is the one correspondingio. If we set E(S) = 2thena = 1.5 To locate actual

When we expect heavy claims, then adequat®’, we again calculate all the derivatives using
probability should be assigned to the higher jurbps (12minimizing locate the minimising one. The result
the distribution functiorF. Some of the distributions in indicate that i = 1279 thus giving b= 12.79 Figure 2
this class are Lognormal, Pareto and Mixture ofiS @& graph of dividend value functions for someesel
exponentials. These distributions are said to Heeayy barriers. The optimal dividend value function is ttne
tails. corresponding to b
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CONCLUSION 9.

We numerically obtained maximal dividend

function in the Cram’er-Lundberg model compounded10.

by a constant force of interest using the blockslnyek
method and a barrier strategy. The results in T&ble
indicate its quality. An extension of this problésnto
allow a diffusion in (1) thus:

12.

N
t

With another diffusion, the return on investment
process will no longer b&; =rt but:

Rt :rt+URWP,t; t=0.

For a detailed description of such a model, sge e.
Paulseret al.™ . However, when there is a diffusion,

band strategies might take an upper hand overebarri 16,

strategies and the mathematics changes accordingly.
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