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Abstract: Harmonics cause major problems in power system due to non linear loads. With the rapid 
growth in the utilization of the rectifier for critical loads, e.g. In computer or medical equipment the 
need for high quality uninterruptible power is increasing. The non-linear current drawn by the rectifier 
loads distort the output of UPS system. Mainly because of output filter impedance in UPS. A distorted 
output voltage will result in reduced dc-bus voltage or rectifier loads and may lead to excessive losses 
and heating. The main objective of this study is to eliminate harmonics and reduce the power loss in 
inverters. The harmonic separation process is implemented with a processor achieves low THD using 
Blind Signal separation. It is mostly used in medical instrumentation and medical applications like 
ECG, EEG.  
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INTRODUCTION 
 
 Power quality is of increasing concern  to utilities 
and their customers alike[1]. In an optimum operation of 
power system, it is desirable to have voltage and current 
waveform as close to sinusoids as possible. Quality 
power supply means maintaining voltage and current as 
its rated rms with negligible amount of harmonics. 
There is a large growth in the use of loads that can be 
sensitive to power quality disturbances. The harmonic 
interferences in the wer systems, which are caused by 
non-linear loads, have been serious problems to solve. 
Blind Signal Separation is the best way to eliminate 
harmonics in inverters. 
 Most electronic equipment in the workplace raises 
likelihood of the potential interactions with the electric 
distribution system and requires a more sophisticated 
approach to preventing these interactions. Common 
power quality concerns, including voltage sags, swells 
and surges have led to the increased use additional 
facility equipment, such as uninterruptible sources and 
battery supported systems, to increase electrical 
reliability .In addition, signal interactions in sensitive 
equipment can be difficult to trace. Using the neural 
networks the mixed signals can be separated by 
repetitive training of neural network. 
 
Neuro computing: Neuro computing[2] is concerned 
with processing information. The Neuro computing 
approach to information processing involves a learning 
process within an artificial neural network architecture 
that adaptively responds to inputs according to a 
learning rule. After the neural network has learned what 
it needs to know, the trained network can be used to 
perform certain tasks depending on the particular 
application. The prime reason for its popularity, when 
compared to other artificial intelligent paradigms are as 
follows: 

 The ability to recall a stored memory given only 
partial input data. The ability to learn by example and 
generalize. Fault tolerant, robust and distributed in 
nature. Non-linearity and Adaptivity. The ability to 
represent unclear, non-deterministic assignments, which 
cannot be described by the conventional logical 
programming languages[3]. 
 In the future, artificial neural networks[4] are 
expected to solve the problem that could not be dealt 
with, using the conventional Von Neumann computers 
such as Feature extraction and blind signal separation. 
 
Independent component analysis: A recent trend in 
neural network research is to study various forms of 
unsupervised learning beyond standard Principal 
Component Analysis (PCA) to solve nonlinear 
problems. Independent Component Analysis (ICA) is a 
useful extension of PCA. Independent Component 
Analysis is an unsupervised learning technique that in 
many cases characterizes the data in a natural way. The 
main application area of ICA is The Blind Signal 
Separation (BSS). In signal separation, multiple streams 
of information are extracted from linear mixtures of 
these signal streams. This process is blind if the 
examples of the source signals, along with their 
corresponding mixtures, are unavailable for training. In 
BSS, signals are estimated from their unknown linear 
mixtures with the assumption that the sources are 
mutually independent. In recent times, there has been 
considerable interest in various neural realizations of 
ICA and BSS. In these approaches, the higher order 
statistics are typically taken into account by using 
suitable non-linearities in the learning phase, even 
though the final output mapping is still linear. In the 
statistical approaches, separation is usually achieved by 
optimizing some constraint functions that are defined 
explicitly in terms of the cumulants (higher order 
statistics) of the observed data. On the other hand, in 
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neural approaches to BSS and ICA, cumulants are 
replaced by suitable non-linearities in the learning 
algorithms. The non-linearities implicitly introduce the 
higher order statistics which are necessary for blind 
separation.  
 In ICA[5] the data vectors are represented in a linear 
basis which is determined by requiring that the 
coefficients of expansion must be mutually 
independent. Therefore the basis vectors of ICA are 
generally nonorthogonal  and higher order statistics are 
needed in determining the  ICA expansion. However 
this kind of representation often characterizes the 
fundamental properties of the data better than standard 
PCA. For example in blind signal separation of the 
original source signals. 
 The ICA operates on M zero mean source signals 
sk(1)….,SK (m), k=1, 2,…, that are scalar-valued and 
mutually statistically independent for each sample value 
k. The original sources are unobservable and the input 
to the ICA are different linear mixtures xk(1),….,xk (L) 
of the sources. The signal model in ICA is written in 
vector form as: 
 
 Mxk=A* sk= Σ sk(i)*a(i)  (1) i=1  
 
 Here sk= [SK (1),…, SK (M)] T is the source 
vector consisting of the M source signals SK (I) 
(i=1,…, M) at the index value k., A=[a(1),….,A (M)] is 
a constant LxM mixing matrix whose elements are the 
unknown coefficients of the mixtures. The columns a 
(I) are the basis vectors of ICA. Usually M=L i.e. the 
number of source M is assumed to be equal to the 
number of available different mixtures L, to simplify 
the derivation of BSS algorithms. In practice, it is not 
necessary for M to be equal to L. Furthermore, each 
source signals SK (1) is a stationary zero mean 
stochastic process. Only one of the source signals SK 
(I) is allowed to have a Gaussian distribution. This 
follows from the fact that it is impossible to separate 
several Gaussian’s from each other. 
 The very little prior information is assumed on the 
matrix A. Therefore the stronger independence 
assumptions are required in determining the ICA 
expansion. Even then only the directions of ICA basis 
vectors a (I), I=1, 2,3, …………. M are defined, 
because their magnitudes and amplitude of the source 
signals SK (I) can be interchanged in the model (1). 
Also the order of the terms in the sum in (1) can be 
arbitrary. To get a more Unique expansion, one can 
either require that each source SK (I) has unit variance 
or normalize the basis vectors a (I) to unit length (and 
then arranged for them according to the powers of the 
sources). 
 Linear models of the form (1) are used in several 
known techniques, but the assumptions are different .In 
the standard least square method, that the matrix A is 
completely known. That it is easy to estimate the vector 
sksk= (ATA)-1 at Xk. If the matrix A is known except for 
a few parameters, subspace type methods or the 
minimum like hood method can be used for estimating 

the unknown parameters. In standard PCA, the 
expansion (1) is determined by requiring that the basis 
vectors a (i) are orthonormal and the coefficients SK (I) 
have maximal variant. 
 
Blind signal separation: Blind Source separation has 
lately become a popular research area both in statistical 
signal processing and unsupervised neural learning. In 
BSS the goal is to separate mutually statistically 
independent but otherwise unknown source signals 
from their linear mixtures without knowing the mixing 
coefficients. 
 The abilities, generalization and self organization 
of artificial neural network have motivated novel 
studies in applying it to the feature extraction and blind 
separation. ANN's, biologically motivated and 
statistically based models, have been used successfully 
for highly parallel and error tolerant machines. 
 Blind Source Separation and the closely related 
independent Component Analysis (ICA) have been 
studied in statistical signal processing since 1980's. In 
these statistical approaches, separation is usually 
achieved by optimizing some constraint functions that 
are defined explicitly in terms of the cumulants of the 
observed data. In BSS[6] the objective is to separate 
mutually statistically independent but otherwise known 
source signals from their linear mixtures without 
knowing the mixing coefficients.  
 The task is to find {sk (i)} of the sources, with only 
the data vectors xk and the number of sources M 
known. 
 The whitening process is required for the input 
vectors so that (i) the data vectors xk has a zero mean 
(ii) the variance of the observed signals are normalized 
to unity (iii) separation algorithms have better stability 
properties and converge faster (iv) The components of 
the whitened vectors vk are mutually uncorrelated since 
it is a necessary prerequisite for the stronger 
independence condition. If the data vectors have non-
zero mean they first subtract from them. Furthermore 
the effects of higher order statistics can be removed by 
using the whitening transformation.  Standard Principal 
Component Analysis is often used for whitening, since 
one can then simultaneously compress information 
optimally in the mean square error sense and filter 
possible noise. However Whitening the data can make 
the separation problem more difficult if the mixing 
matrix is ill-conditioned or if some of the source signals 
are relatively weak compared to other signals. The 
input vectors x (k) is whitened by applying 
transformation v (k) =Vx (k). Where v(k) is the kth 
whitened vector and V is the whitening matrix. The 
whitening matrix can be determined in two ways: by 
using a batch and the approach or by neural learning. 
For the batch approach, if PCA is used to determine the 
whitening matrix is given by V=D-1/2 ET where the 
matrix V is chosen so that the covariance matrix vkvk

T 
equals the unit matrix IM. The matrix D =diag[λ(1),….., 
λ (M)] is the MxM diagonal matrix, where λ(i) is the ith 
largest eigenvalue of the data covariance matrix 
E{xkxk

T}. The matrix E =[c(1),…,c(M)] is an LxM 
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matrix, where c[i] denotes the respective ith principal 
eigenvector. Therefore the transformation actually 
consists of two steps that is compressed and whitening. 
The compression step consists of selecting the proper 
value for q (the number of source signals). Therefore 
the PCA described above for whitening can also be 
used to select (i.e.,) estimate the number of source 
signals q to be recovered.(or the number of independent 
components )if the noise term n(k) is assumed to be 
zero-mean Gaussian white noise with covariance 
matrix. Probably the simplest neural algorithm for 
learning the whitening matrix Vk is: 
 
Vk+1= Vk- uk(VkVk

T-1) Vk  (2) 
 
 Whitening and related procedures have been some 
criticized, because they do not provide uniform 
performance in subsequent operation. In uniform 
performance methods, the separation capability does 
not depend on the condition number of the mixing 
matrix A. In theory, it is then possible to separate even 
very weak  sources or use  almost similar mixtures as 
inputs. However this property assumes that the input 
data obeys the ICA model exactly with no noise. In our 
experiments, separation algorithms that require 
prewhitening usually performed quite well in normal 
conditions, for example when the mixing matrix A was 
chosen randomly. 
 The separation process can be carried out using 
many different methods. Separation can be achieved by 
optimizing some constraint functions that are defined 
explicitly in terms of the cumulants of the observed 
data. However contrast functions typically require 
extensive batch computations using estimated higher 
order statistics of the data and lead to very complicated 
adaptive separation algorithms. As we will see it is 
sufficient to use the Kurtosis (fourth order cumulant) of 
the data. There is an alternative to the neural learning 
approach presented here that converges much faster. 
Another class of separation methods involves using 
neural networks to perform the separation of the source 
signals. In fig. Neural network model the second stage 
of architecture is responsible for the separation of 
whitened signals v. The linear separation 
transformation is given by: 
 
y(k) = WT v(k) (3) 
 
 WTW=Iq is the separation matrix thus the 
separated signals are the outputs of the second stage, 
that is s(k0=y(k). An interesting observation is that 
once the source signals (k) have been estimated, this 
means the pseudo inverse of A is that A+, must have 
been blindly determined.  
 
Nonlinear pica subspace learning rule: This 
algorithm was originally introduced by Oja some years 
ago as an extension of his well known PCA subspace 
rule In BSS it is used quite similar but the update 
formula is different. 

Wk+1=Wk + µk   [ vk-Wk g (yk)]  g(yk
T) (4) 

 
 Here the learning parameter µk must be positive for 
stability reasons, restricting the applicability of mainly 
to sub- Gaussian sources. Without prewhitening, 
nonlinear PCA subspace rule is able to somehow 
separate sinusoidal type sources only, because the 
algorithm responds in this  case still largely to the 
second order statistics. 
 A major advantage of this  learning rule is that can 
be realized using a simple modification of one layer 
standard  symmetric PCA  network, allowing a simple 
and local neutral implementation. An interesting feature 
is that the underlying data model is actually slightly 
nonlinear. Non-linear PCA subspace rule can then be 
derived by approximately minimizing the mean square 
error. In spite of this, the algorithm performs well for 
sub-Gaussian sources even in larger problems. Also for 
good convergence, it is best to select the initial weight 
matrix W (0) to have as columns a set  of orthonormal 
vectors. Typically the nonlinear function is chosen as: 
 
(t) =  β tanh (t/β) (5) 
 
 Where g(t) = df(t)/dt  and f(t) =β2ln [cosh(t/β)]. 
This is not an arbitrary choice for the non linearity in 
the learning rule of (4). It is motivated by the fact that 
when determining the ICA expansion higher –order 
statistics are needed. This can be seen by observing 
another neural learning rule to perform the separation of 
unknown signals. This learning rule called Bigradient 
algorithm given by: 
 
W(k+1) = W(k) + v(k)µk g(yk

T) 
 + γ (k) γ (k) W(k) [1- WT (k) W(k)] (6) 
 
where, γ (k) is another gain parameter, typically about 
0.5 or 1. This is a stochastic gradient algorithm that 
maximizes or minimizes the performance criterion: 
 
J(W) = ∑ E { f(y i) } (7) 
 
 Under the constraint that the weight matrix W is 
orthonormal. The orthonormal constraint in (7) is 
realized in the learning rule (6) in an additive manner. 
With the appropriate function in (7), the performance 
criterion would involve the sum of the fourth order 
statistics ( fourth order cumulants)  of the outputs that is 
the Kurtosis. Therefore the criterion would be either 
minimized for sources with a negative  Kurtosis or 
maximized for the sources with a positive kurtosis 
.Source signals that have a positive Kurtosis are 
referred to as Super Gaussian signals. In (7) the 
expectation operator would be dropped because we 
only consider instantaneous values.  
 The logistic function f(t)=ln [cosh(t)] (for β =1) in 
terms of a Taylor’s series expansion: 
 
f(t) = ln [cosh(t)] = t2 /2  –t4/4  + t6/45 - (8) 
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 The second order term t2 /2   is on the average 
constant due to the whitening. The non linearity would 
then be given by g(t) = df(t) / dt =t – t3 /3   +  2t6/15 -… 
and the cubic term will be dominating (an odd function) 
if the data are prewhitened. 
 Estimation process[7] is the last stage in the neural 
network model. Two methods are presented here to 
estimate the ICA basis vectors, or the column vectors of 
the mixing matrix A. The first method is a batch 
approach where the estimate of A that is Â is given by: 
 
Â = ED ½W …. (10) 
 
 E has columns that are the associated eigenvectors 
and W is the separation matrix. The second method is a 
neural approach for estimating the ICA basis vectors. 
From the neural network model gives an estimate of the 
observed data: 
 
X = Q y (11) 
 
 Comparing (11) with (1) for n=0 (i.e ., x=As), we 
see that Q =  Â since y =s . Therefore the columns of Q 
matrix are estimates of the columns of A, the ICA basis 
vectors.  A neural learning algorithm can be derived 
from  a representation error performance measure given 
by: 
 
J(Q)= ½ IIX- XII 22   = ½  II x-Qy II22  (12) 
 

SIMULATION RESULTS 
 

 
 
Input signals for training the network 
 

 
 
Sampled mixed signals 

 
 
Separated signals from the neural network 
 

CONCLUSION 
 
 The harmonics present in the inverters is 
eliminated using Blind Signal Separation. This 
algorithm eliminates any type of harmonic mixture 
present in the signal. This is carried out in the 
simulation using Matlab Software. Implementation of 
the algorithm for estimating the harmonics is achieved 
by hardware. In future the set of algorithm can be 
implemented in a neural chip (single IC), thereby 
reducing the space and cost. 
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