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Pattern Classification: An Improvement
Using Combination of VQ and PCA Based Techniques
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Abstract: This study firstly presents a survey on basicsifeess namely Minimum Distance Classifier
(MDC), Vector Quantization (VQ), Principal Compomnémalysis (PCA), Nearest Neighbor (NN) and
K-Nearest Neighbor (KNN). Then Vector QuantizednBipal Component Analysis (VQPCA) which
is generally used for representation purposes lisidered for performing classification tasks. Some
classifiers achieve high classification accuracytheir data storage requirement and processing tim
are severely expensive. On the other hand someondtior which storage and processing time are
economical do not provide sufficient levels of elfisation accuracy. In both the cases the
performance is poor. By considering the limitatiangolved in the classifiers we have developed
Linear Combined Distance (LCD) classifier whictthe combination of VQ and VQPCA techniques.
The proposed technique is effective and outperfaaththe other techniques in terms of getting high
classification accuracy at very low data storaggiirement and processing time. This would allow an
object to be accurately classified as quickly assfide using very low data storage capacity.
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INTRODUCTION impossible.
There are two main categories of pattern

Pattern classification/recognition is an area wher classification (i) supervised classification: whettee
we learn how to better familiarize the objects e t state of nature for each pattern is known and (ii)
machine and get actions or decisions based on thensupervised classification: where the state aiineaits
observed categories of the pattern. A pattern cbeld unknown and learning is based on the similarity of
human face, sampled speech, handwritten or printepatternél]. In this study only supervised pattern
digits, any letter, gesture, spoken word, finandafa, classification procedures have been considered. A
biometric data or any statistical data. Humansnadlfu  supervised classification could be subdivided ito
classify/recognize patterns from the environment inmain phases namely training phase and testing plase
everyday life. A five year old kid can adapt tofeient  the training phase the classifier is learned bywkmo
type of objects or patterns and react accordinfhis  categories (classes) of patterns and in the cleatn
adaptation is taken for granted until we come &mhea or the testing phase unknown patterns which wete ou
machine to classify/recognize and provide actions oof the training datasets assign class labels dh tra
decisions on the same patterns. patterns for which the distance from the test patte

The more the patterns available, the better thé¢he prototype(s) is minimized.
decision would be. This gives hope to design a The performance of a classifier depends upon
classifier system. For the last five decades rebemr  several factors. Some of the main factors areuiimer
going on in this field to provide an optimum of training samples available to the classifien) (i
classifier/recognizer. But the classifier performaris  Generalization ability i.e. its performance in sifgng
still far behind the perception of a human brain.test patterns which were not used during the tngini
However, pattern classification/recognition plays astage. (iii) Classification error-some measuredu&al
crucial role in the areas like banking, multimediabased on the incorrect decision of the class latgedf
communication, data synthesis, speech or imageny given pattern. (iv) Complexity - in some cafhse
processing, forensic sciences, computer vision antb classifier design) the number of features aitattes
remote sensing, data mining, robotics and artificia (dimensions) are relatively larger than the numbker
intelligence. It emerged as an essential and iatgmart  training samples usually referred as the curse of
of daily life. The evolving computational demand in dimensionality, (v) speed-processing speed of itrgin
pattern classification makes this field very chadf;mg  and/or testing phase(s) and (vi) storage-amount of
and thus open for research. For example in imagparameters required to store after the training@htor
recognition, several thousands of multidimensionallassification (testing) purpodts
patterns are required for processing which makes th For a given classifier model and a fixed number of
implementation of the classifier system quitetraining samples, the performance may depend on the
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ancsame as that of NN approach except for the

computational demand, which is severe in the former

The number of parameters required to performapproach.

classification task (testing) after the traininggedure,
is referred as ‘total parameters’. For a given sifees
we can associate the total parameters to
implementation cost of the classification systerd e
generalization capability may depend upon the type
parameters (distribution, values etc.) Used. Tluhdri
the total parameters required for classificatiosk tehe
costlier the system would be. Another importantdac
in classifier design is the speed or the processing
required to do the task. It is possible in a cldes in
two different instances the total parameter requinet
is same but the processing time differs. We theeefo
want to reduce the total parameters and procesisiey
but at the same time last sacrifice the classiticat

th

The implementation cost of the classification
system could be reduced by estimating each class by
8ingle prototype, usually a centroid. This wouldphie
decreasing the total parameter requirement for the
classification task but could be at the price of
classification accuracy. This type of classifiekigown
as Minimum Distance Classifier (MDC). The goal of
MDC is to correctly label as many patterns as fbssi
It provides the minimal total parameter requirenemd
computational demand. The MDC method finds
centroid of classes and measures distances between
these centroids and the test pattern. In this noetthe
test pattern belongs to that class whose centeottig

accuracy. In other words, we search for the optimatjosest distance to the test pattern. Taking theesa

classification accuracy or least classificationogrr
involving as minimum total parameters and procegsin
time as possible. This would allow the system to
classify/recognize an object as quickly as possdile
minimum cost.

Nearest neighbor (NN) classifié is the most
simple classifier found up till now. In NN classifino
special procedure is required to do the traininif.th#e
available data (as maximum as possible) are stmred
perform classification, where each test pattern
compared for similarity with all the available maig
data (pattern). The test pattern is assigned thsscl
label of that training pattern, which is the cldsesthe
test pattern. A major drawback of NN approach $s it
large total parameter requirement to perform th

classification task. For example, a dataset with 1d

classes, having 5000 vectors or patterns in eaas$s cl
with 64 attributes or dimensions would require ftota
parameters as follows:

total parameterss  clags NoOf\ec dimens
= 10x 5000x 64= 3.x %0

If the dimension is very high (e.g., in image)knh

above example of 10 classes, the total parameter
requirement for the MDC would be just 640, which is
about 1/5000 as compared to NN approach. Usually
classification accuracy is sacrificed to get this
advantage of extremely low processing time and tota
parameter requirement. MDC is used in many pattern
classification  applicatiofs” including disease
diagnostic¥, classification of digital mammography

.dmage$’ and optical media inspectiof.

The natural extension of single prototype is multi
prototype, where each class is estimated by several
prototypes like in Vector Quantization (V&Y% vQ
based classifiers are also referred as local Glerssi

esince their partition each class into several d@ijo

egions or local regions and estimate each regjoa b
prototype (centroid) usually referred as a codeword
The set of codewords is known as codebook of the
system. The aim of VQ technique is to find the
codebook that minimizes the expected distortion
between patternx and the centroid of" disjoint
region(y,)i.e. D:E[mjin(||x—/1j [Nwhere EJ[-]. denotes

expectation with respect o So the training procedure
is to find the codebook and store it for classtiima

the total parameter requirement for the NN approachasks. Increasing the number of codewords per class

will be even more severe which would restrict the
practical application of such approach. It can dso

would increase the performance up to some exterit bu
would also augment the total parameter requirement

seen that an increase in the total parameter does nand processing time. VQ technique is applied iresgv

always lead to better performance. When train pate

areas of pattern compression and classificBfion

and test patterns are closely matched then accuraeyhich include image classificatibfl speech coding or
obtained by NN approach is good. But when the tesspeech compressiOfl, speaker recognitiéff, high

patterns do not match with train patterns, NN appho
provides poor performance (in terms of accuracy). |

range resolution signature identificaffdh and image
codind™®.

the unmatched pattern case the performance of the Another way of performing classification is by

classifier system does not improve by increasing th
total parameters.

utilizing linear subspace classifiéfs”. Here each
class is represented by its Karhunen-Loéve tramsfor

The classification accuracy of NN approach can béKLT)® or Principal Component Analysis (PCA). The

improved by making the decision of a test pattemn f
class labelling based dnnearest patterns. This method
is known ask-Nearest Neighbor (KNNJ technique.

objective of PCA is to find a global linear transfoof
giving patterns in the feature space and produassel
independent or class-dependent basis vectors. ifdte f

The total parameter requirement for kNN approach idasis vector is in the direction of maximum variamnd
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the given data. The remaining basis vectors arevhere the terntevel is the number of disjoint regions or
mutually orthogonal and in order, maximize thelocal regions per class and h<d. This vyield total
remaining variances subject to the orthogonalityparameter requirement for VQPCA-rec 1.66X1fbr
condition. The principal axes are those orthonormab=64), whereas 768€r h=2) for VQPCA-Euc which

axes onto which the remaining variables underg 1/(¢2) compared to VQPCA-rec. Although the
projection are maximized. These orthonormal axes ar h+d

given by the dominant eigenvectors (i.e. those with ~YQPCA-rec model exhibits slight improvement over
largest associated eigenvalues) of the covariancéQPCA-EUC model, it severely increases the total
matrix. parameter requirement and com_putat|onal demand. T.h|
Class-independent PCA finds those h orthonorma)vould increase the implementation cost and proogssi
axes (subspace dimension) frofdimensional datasets UMe Of the classification system. Considering the
(h<d), where h dominant eigenvectors are from theMPlémentation cost and computational demand we
KLT of the data correlation matrif = E[xx'] which is opted for an economical model (VQPCA-Euc) to train

. ) o 2y the system. Hereafter VQPCA-Euc model will be
in fact a covariance matrix with zero mean Class-  rofarred as VOPCA model. Some modification is

independen_t PCA cannot be used for classificatioqequired in VQPCA model prior to use as a classifie
purposes since all the classes are scattered beer trpe cyrent VQPCA model first partitions the data

feature space with different centroid values ormead o506 into disjoint regions and then performs IR@A
variances for each class making impossible to prese o4t each cluster (referred as a disjoint regibr o

the individual class information by a single KLTr 0 ¢ja56) center. This is ideal for representatiorppses
entire train samples. Therefore dominant eigenvecto p v tor the classification task a minor change in

are taken for each class separately (class-depgnderyigiance measurement is required which shouldatefle
For ac-class problem, covariance matrix will be given 4.« gistance of a test pattern from the centroid an

by: dominant eigenvectors of each disjoint region
concurrently. The VQPCA model as a classifier does
T, =E[(x—p)(x -] forj=12,..c not exhibit very encouraging results but still che

used to perform the classification task. Nonetteelées

where only those, that belong to th§" class have been €an be shown that VQPCA model as a classifier
taken in the expectation function at a time. It basn  behaves satisfactorily in terms of obtaining reasdy
seen that the subspace classification is furthpraned ~ Well percentage accuracy at low total parameter
by its local linear extensié. Here the performance requirements and processing time. -
depends upon the subspace dimension and the number The performance of VQPCA as a classifier could
of local regions. Kambhatla and L&h and be significantly improved by combining the linear
Kambhatl&®! have shown local linear PCA or VQPCA distances of VQ and VQPCA. The normalized
for representation purposes. The goal of VQPC/Aois t feconstruction  distance measjjse-%|| and the
minimize the mean squared reconstruction erronormalized distance between the test pattern aed th
E[||x- X | ] where X is the reconstructed patternsof  center of disjoint regiojix- 4, ||, are combined linearly

Kambhatl&®! showed VQPCA using Euclidean to form a new distance measure for the classiticati
distance (VQPCA-Euc) and VQPCA using This distance measure would minimize the combimatio
reconstruction distance (VQPCA-rec). VQPCA-rec is aof the mean squared reconstruction error (MSE)
better technique than VQPCA-Euc for representationg[||x-%|f] and the expected distorti&f|x- x |[].
purposes in terms of achieving lesser reconstmuctio

error, but this achievement comes with the experise regions in the feature space where it performsbtig.

higher total parameter requirement and computdtionawe have introduced this linear combination of dis&a

demand. For example, taking the same 10 cIasa_CD) techni : : o
. - : L gue and shown in this study that itais
problem, where each class is subdivided into DWi§]  poyer clagssifier with no extra total parameter

regions (local .regions), this would requi_rg §torage. requirement than VQPCA. Classification results
dxd (64x64) eigenvector set for each disjoint régiongptained by LCD exhibit significant improvement ove

together with other parameters (centroid of digjoin MCD, VQ, VQPCA, NN and kNN classifiers in terms
region) i.e.: of achieving higher percentage accuracy or lower
classification error and at the same time maintajrihe

total parameters requirement and processing time as
minimum as possible. Consequently, this would allow

Each distance added together may have its own local

total parameters=  parameters due toreigetors
+ parameters due to centroid

total parameters (VQPCA-rec) classification or recognition of the objects ascllyi as
= (dxd)*class*level+ (& 1)*class*leve possible at minimum cost.

total parameters (VQPCA-Euc) Conventional classifiers: The style of notations is
= (dxh)*class*levelt (ck 1)*class*leve adopted from Duda and H&ft In all the discussions
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o; denotes the state of nature or class labél class in

a c-class problem¥ denotes the set af train samples, @
Q={w:i =1,2,...,c} be the finite set of states of nature

and let @' be the class label of train pattern or prototype
such thatd' 0 Q .The sett can be separated by class

into ¢ subsetst,, %,,..., ¥, with the samples ir¥, o
belonging tow;:

*={X,X5,..., X5}  Where ijRd (d-dimensional
hyperplane):

Fig. 1: Class labelling of a test pattern in a wlass
# 0% andx Ux, U . Ux =x problem

Let n; denote the number of samples in the subsetNN classifier: kNN classifier is a generalized form of
c NN classifier. In this approack nearest train patterns
%, therefore) n, =n. to a test patterrx is collected. The test pattern is

i=1 . . . .
Figure 1 illustrates the class labelling of a testasmgned the class label which has the majoritk of

pattern and the relationship between the labelhef t coIIe(_:t_ed patterns. The ftraining _phase of the kNN
prototype(@) and the label of the clags). The classifier is similar to NN classifier where alleth

tot Id be a trai tt troid L 6 training patterns together with their class label
prototype cou € a train paftérn, a centroid, r information are stored for the later use. The total

a group of centroid and KLT depending upon the typeparameter requirement is also same as NN approach.

of Cl%SSiﬁgr i?] used. Ir:' Ilzig. 1 twq-<t:Ias? ?E’rOblgP The processing speed of KNN classifier is slowanth
considered where each class consists of o protelypeyy cassifier due to the searchinglohearest patterns

Each of the class is assigned a unique label name br each of the test patterns. The classificatiocueacy

@, and «, such thafw, «,)0Q . The class labels of the .y improve with the increase in the valke This

prototypes ared,d,4, and 4.6, .6, such that: improvement is usually observed when the test pate
and the train patterns are closely matched. Howewer

some cases when the test patterns and the traarsat

do not match the classification accuracy is pootithis

case increasing the value may not improve the

The class label of prototype is assigned to a testlassification accuracy of the system.

patternx which is the closest to the prototype based on

some distance measurements or conditional|DC classifier: In MDC classifier each class is

probabilities. Therefore if (x) _denotes the class label of represented by single prototype, which is usudily t

a test pattern then from the figure(x) =§ =« . centroid of the class in the feature space. Itiregua
minimal total parameter requirement and least

NN classifier: The procedure for NN classifier can be computational  demand.  The total parameter

subdivided into two main phases namely, trainingggh requirement for MDC is:

and testing or classification phase. In the trgmhase

all the available patterng with their corresponding

class label information are stored for classifivati

purpose. '_I'he_ total parameter requirement for the NN \vhich is C/ZC: n as compared to NN or kNN
approach is given by: =

@, =6 =6 =6, andw, =6 =€), =6,

total parameters

classifier. This advantage of the lower total pagten
c requirement and fast computation may achieve by
total parameters= ’d; R d 1) sacrificing some classification accuracy.

) VQ classifier: VQ classifier is the further extension of
It can be seen from equation 1 that total pararsete \\pC classifier. Here each class is represented by
depend upon the attribute or dimensinnumber of  myltiple prototypes. VQ partitions a class into e
class and number of training patterns. In manytmalc  disjoint regions in the feature space usually knasn
applications the values dfandn are very large which  voronoi region$?. The center of Voronoi regions
severely affects the storage requirements andprototype) is referred as codeword of the classiind
processing time, increasing the cost and redudireg t a set of codewords is known as codebook of the
speed of the classifier system. classifier system. The aim of VQ is to produce a
144¢
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codebook that minimizes the expected Step 5. StoreW; and g, with their corresponding class
distortionE[||x- 4 |Il. See Lindeet al.*¥ for details. information for classification.

The total parameter requirementds (Qx c) whereQ The total parameter requirement for VQPCA can

is the level of classifier i.e. Number of disjoiegions ~ be given by:

or code words for each of the classes.
total paramters parameters _centreids péessn eigenvectol

PCA classifier: Class dependent PCA is considered for total paramters @ ®d € ® ¢ W) = Qdcth
classification where each class is representedtdy i

KLT. In a d-dimensional feature space lett;and Which is Q times the total parameter requirement
. _ _ _ of PCA classifier.
# denote covariance matrix and centroid, f clgsa a If VQPCA is used for representation purposes then

c-class problem respectivelybe the reconstructed in the decoding step (here classification) firsthe
pattern ofx, then the goal of the training phase of PCAclosest disjoint region to a test patteriis computed.

classifier is to find eigenvectorsy such that the Once the closest region is obtained, the nextistép
following criteria is satisfied: use its corresponding eigenvector and centroid

information to compute reconstructed patternFor
@) classification VQPCA procedure would provide no
better performance than VQ technique since the

) _ decision would lie only on the closest disjointicegto
where, 4 denotes eigenvalues corresponding W0 the test patterrx and the computation of KLT for

which is obtained by minimizing MSE[||x- X |f ]. The disjoint regions may become redundant. Therefore a

;Wi=4w

total parameter requirement for PCA classifier is: procedure for decision making of a test patterrukho
be adopted that uses both the centroid and directio
total paramaters centroid _ paramt (eigenvector) information in parallel.

+eigenvector _ parameters Classification:

total paramaters x € >c (d k) cdth Step 1: Compute reconstruction distanebetween a
_ ) test patterrx and its reconstructed pattekn
where, h < d is the number of eigenvectors used. 5= |[x-X|l
]

— t - \
VQPCA asa classifier: In this approach, firstly, the set (0= WWH =) Il for j=1,.2,...,(Q< ¢,
of train patterns are partitioned into disjointiceg by ~ Step 2: Find the argument for which the reconstruction
applying the VQ technique for each class separatety ~distance is minimized:
then KLT is _performed on each of the disjoint re!gio k =arg r(?r:icné.
or local region cent&f. The aim of VQPCA is to =
minimize MSE E[||x-%|f lin the local regions. To Step3: Assign class labet) =6, to the test patterq,

illustrate training and classification proceduresQ be  where g, 0Q .

the number of disjoint regions or levels per class. Thus, it can be seen that step 1 computes the erro

(KDet%'LS I;E] tf{? Ft;rgg\nng prolceduk;e are %lven_ Mof reconstruction distance by using direction and
ambhatla™. vVQ can also be trained USING conigid information in one single step for the

splitting techniqui®™). classification.

Training LCD classifier: The LCD is a combination of VQ and
Step 1. Take train patterns Ux of class labely; at a  VQPCA techniques. Empirical results show significan
time for consideration, wherie=1,2,.....c. improvement of LCD classifier over previously

discussed classifiers in terms of getting higher

Step 2 Apply VQ technique and partitioff; into Q percentage accuracy with the total parameter

disjoint regionsfor alli=1,2,...,c. requirement no more than VQPCA approach. In our
Step 3. For each disjoint region compute centrgid  approach the training phase of the classifier énfital
and covariance matri wherej=1,2,...,(cx Q). to VQPCA classifier thus the total parameter

, requirement for LCD approach is same as VQPCA
Step 4: Evaluated xhrectangular matrix  of  gh5r0ach. However the classification procedureetiff
eigenvectors W, ={w,:1 =1,2,...h}for each disjoint |, the classification phase the distance used in VQ
region wheréh<d andw; is from equation 2; arrange the classification and the distance used in VQPCA
obtained eigenvectors such that its correspondinglassification is added together with some weightim
eigenvalues are in descending order. Let the ¢ded form a new distance measure. This combination or
of eigenvector set Weg 0Q. addition may reduce expected distortidf|| x—4; ||]
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and MSE or root-MSEE[|| x— X [|], overall producing Bayes method. Similarly several other research work

improved results for the combination. The improvedcombinational classifiers have been reported in the

results achieved could be due to each of the ¢aesti  literature.

distance performing the best in their local regionthe In our approach the training phase parameters

feature space. 3 __(centroid) andW, (eigenvector set) are stored with the
The generalization capability or classification ) . ) )

accuracy of a classifier depends on the type oflass label 0Q information for the use in the

distribution or values used for training and/ortites  classification phase which is same as the traipimase

the classifier. For e.g. If training patterns otlealass of VQPCA approach. Let ineclass problem each

are spherically distributed, dense, well separatitt Class is separately partitioned in@ disjoint regions

each other and test pattern are closely matcheld witthen the classification phase of the LCD approaaf ¢

their train patterns then techniques such as MD@, V be illustrated as follows:

NN and kin may perform better; if outliers are mnets

in the training patterns then techniques such a& & Classification

VQPCA may give poor performance. However for Step 1: Compute the distancéjlbetweenatest pattern

Gaussian data with matching train and test comtio , 5 the centroidz of the disjoint region:

PCA may provide reasonably high classification !

accurac}’ and VQPCA and LCD may provide even 9, = |lx=4 [[for j=1,2,...,(Qx c)

better performance than PCA. In the presence oftep2: Compute the reconstruction distance

outliers and complex distributions (unmatched ti J7between a test patternand its reconstructed pattern

test conditions) LCD may provide better performance

than other techniques. , .
The concept of combination of multiple classifiers 9 = [IX=XII = [[(F WW )04 )| for

has been previously applied by Xet al.® for j=1,2,.. (Qx c)

handv_vrm_ng rec_ognmon. They_ have |_Ilgstrated theStep 3: Normalize distanced*and 32to eliminate the
combination using some basic classifiers such ! !

Bayesian and kNN and shown three categories Ogiﬁerence in their gmplit_uc_zles that-would allow téo
combination which depend upon the levels Ofcontnbut%x?qually in decision rr;?cklng.

information available from the classifiers. Jacadis 3.1:51/max(dl) and 52 =% /max@?)

al.”! suggested supervised learning procedure for AJ JA =
systems[zé:]omposed of many separate expert networkStep 4: Add distancedjiand Jf:

Ho et al."** used multiple classifier system to recognize ¢ _ & 20 . .
degraded machine-printed characters and words fron?—j —.adjl_+(1—a)5j fo_r i=12,....(Q« ), where Tis
large lexicons. Tresp and Taniguéfli presented @ Weighting constant in the rariged].

modular ways for combining estimators. Woods Step 5. Find the argument for which the combined
al.”% and Wood$™ presented a method for combining distance is minimized:

class?ﬁers that use estimates of e_ach individualk = arg rq;:icnﬁ

classifier’s local accuracy in small regions oftiea = !

space surrounding a test pattern. Zhou and fflai Step 6: Assign class labedy, =6, to the test pattern,
showed a cor_nbmaﬂon of VQ and mgltllaye_r perceptro \yhere 6. 0Q.

(MLP) for Chinese syllable recognition. Alimogludn
Alpaydin® used the combination of two MLP neural
networks for handwritten digit recognition. Kittlest

X:

The classification phase of LCD technique is

simple, computationally inexpensive and attainshhig
- classification accuracy or low classification err@he

al.B**¥ developed a common theoretical framework ford, Sin the cl y.f' , hase d g H

combining classifiers which use distinct patternd'Stance);in the classification phase depends on the

representations. Breukelen van and Bffishowed the Wweighting constant. and the two normalized distance
use of combined classifiers for the initializatiai leanddjz_ The weighting constant (in step 4) is a
37 i ifi " . :
ne_ural net_vvork. Alexandret al.”"! combined classifiers positive constant in the rangi®,1]. The appropriate
using weighted average after Turner and &Bsh . .
value for o should be taken since bad selection may

Uedad™ presented linearly combining multiple neural e
o o lead to poor classification accuracy. The two
network classifiers based on statistical pattern . A - o
distances cFJ.ianchj are classification

recognition theory. Seni8? used combination of Normalized
classifiers for fingerprint recognition. Leét al.*y  distance of VQ and VQPCA techniques respectively.
demonstrated a combination of multiple classififens

handwritten Chinese character recognition and ¥ao Choice of a: The optimum or close to optimum
al." used a combination based on fuzzy integral angerformance by LCD classifier can be obtained by
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selecting the appropriate value efempirically. We  Diverting either upwards ¢ =0.6,...,0.§ or
have used speech dithand image dafd“** to select downwards ¢ =0.4,...,0.]) from the center value af
the value ofa. In this study we have takem as a (0.5) will make the distanced, biased for 5jor &7
numerical constant, however, one can also taks a respectively. It can be observed from Fig. 2 arti&d
probabilistic model which would depend on a testdt @ =0.5classificatiothe LCD techniquetained by

pattern and the distribution of train patterns.sThiay .LCD techmqug (in Flg.'Z.and.S denoted by bolqspne

: . . is close to optimum. This implies that when thdatise

increase the computation and storage requiremehés. 5'and 82 contribute equally in the decision making for
J

. . o . ;
discussion about as a probabilistic model is beyond ,'oq¢ pattern in the feature space then the fitetin

the scope of this study. In Fig. 2 and 3 clasdiiica accuracy is close to optimum. Thus we have
accuracy for LCD technique is computed for dimensio tgkeng =0.5.

h and levelQ, where h=1,2...,4and Q=1,2,4,8,1¢t

The values ofu are0.1,0.2,...,0., where choosing Experimentation: For all the experiments two sets of
values close to 0.1 and 0.9 will give performancemachine learning corpuses have been utilized namely

similar to VOPCA approach and VQ approach T!MIT databasé® for speech classification and Sat-
respectively Image dataséf*®! for image classification. From the

TIMIT corpus a set of 10 distinct monothongal vosvel
is extracted, then each vowel is divided into three
segments and each segment is used in getting Mel-
frequency Cepstral coefficients with energy-delta-
acceleration (MFCC_E_D_A) feature vectdf8. A
total of 9357 MFCC_E_D_A vectors of dimension 39
for training sessions and a separate set of 3222
for classification are utilized. The second datés&at-
Image which consists of 6 distinct classes with 36
dimensions. A sum of 4435 feature vectors is used t
train the classifier and a different set of 2000twes is
used for verifying the performance of the classifie

In the first part of the experimentation,
classification accuracy is measured for all thegifgers
given some fixed parameters. Here the accuracy is a
function of dimensiom and levelQ, where Q = 1, 2, 4,

Level 1 Level 2 Level 4 Leval 8 Leval 16

a0

Classification Accuracy %

T AT T s T s s h T T 8, 16and h = 1, 2,..4or all the levels, except for Q = 8,
Dimension where h =1, 2,...,10. Level 8 (Q = 8) is takenaaidom
for dimension h = 1, 2,..,10 to get a general
Fig. 2: Classification accuracy for different vaduef  understanding of how the dimension affects the
o on image data classification accuracy if it is increased continsly.
Level 1 Lewel 2 Lewvel 4 Level 8 Level 16 a0 Level 1 Level 2 Level 4 Level 2 Level 16
851 L 4L L 4 *ﬁi
= 2
< 2 f /_4/*
i B £
3 3 eof 1 1t
I g _ “'\\
= - Moo
2 =[N R
5 st 1 ‘1/\ a It ]
= T2} ® —r
@ & 1y — YQPCA
g @] I N — LCD
TOF ;.'g_*‘ ", W =
hl
BE} FCA
[y TH—— T I IS S I T SR [ I T T T A BN P T B
I 12 3 41 2 3 41 2 3 4 12345678M0 1 2 3 4
BBI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 H H
123 41 234123 41 2341 3234 Dimension
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Fig. 4: Classification accuracy vs. dimensions and
Fig. 3: Classification accuracy for different vaduef levels using MDC, VQ, PCA, VQPCA and
a on speech data LCD on image data sets
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Not all the techniques depend upon both the It can be observed from Fig. 4 (image datasets) th
dimensionh and levelQ; VQ depends upon levels, MDC is giving better classification accuracy thaD/A
PCA depends upon the dimensions, MDC, NN andvQ is producing a higher classification accuracy at
kNN depend neither upon dimensions nor on levelsLevel 2 and Level 4 than VQPCA, but VQPCA is
only VQPCA and LCD depend upon dimensions asshowing improvement over VQ technique at level 8 an

well as levels. Fig. 4 (image dataset) and Figeéch
dataset) illustrates the classification accuracyM®C,

level 16. It is also clear that LCD is performingtter
than MDC, VQ, PCA and VQPCA at all the levels and

VQ, PCA, VQPCA and LCD techniques and Table 1dimensions. Increasing the dimension at any gieeall

depicts classification accuracy for NN and kNN

techniques. Usually the MDC technique is a speci
case of VQ wherQ =1, that’s why it is represented in
the column of Level 1 in Fig. 4 and 5.

Table 1: Classification accuracy for NN and kNNHheiques on
image and speech datasets
Technique Classification accuracy  Classification
using image dataset accuracy using
speech dataset
NN 90.30 74.05
kNN 3 90.45 75.67
5 89.70 76.82
7 90.05 77.56
9 90.05 78.15
11 89.35 78.34
Level 1 Level 2 Lewel 4 Level 8 Level 16

a0 - ] /
-*‘3‘:&1’, ?/./*/t L |
17 f" E
PCA
10 1t 1 L \v

65 1r 1 — va
— VOPCA

Classification Accuracy %

—+ LcD

S AN R R PO
13 3 412341 23 4 123456780 1 2 3 4
Dimension

al

is improving the classification accuracy of LCD
}echnique. At level 8 and dimension 10 the
classification accuracy of an LCD is 89.2% which is
very close to NN and kNN techniques. It should be
noted that NN and kNN techniques produce similar
classification accuracy as LCD technique but their
processing time and total parameter requirement are
severely expensive.

Furthermore, it can be observed from the
experiment on speech data (Fig. 5) And Table 1 that
MDC is giving better classification accuracy thahl N
technique; PCA is improving at dimension 2 over MDC
technique; VQPCA is producing a better classifmati
accuracy over VQ technique at levels 2 and 4 for
dimension 1 but deteriorating at level 8 and lei@l
LCD is exhibiting better performance than all the
techniques including NN and kNN. The classification
accuracy is improving with the increase in dimensat
any given level. The classification accuracy by i
kNN is quite poor for speech data. This may be tue
the testing data not matching with their trainirsged

In the second part of experimentation,
classification accuracy is computed as a functién o
total parameters and processing time. This wowe gi
3D plot wherex andy axes represent total parameters
and processing time armhaxis represents classification
accuracy. For simplicity, a 3D plot is split inted 2D
plots, where one plot shows classification accuracy
versus total parameters and the other plot shows
classification accuracy versus processing timettier

Fig. 5: Classification accuracy vs. dimensions a”dcorresponding values of total parameters.

levels using MDC, VQ, PCA, VQPCA and
LCD on speech dataset

or NN“’?J
KNI (3,5,73,11)
3285 di
&
©
3 WOPCA,
o B0
< 2 f
5 W0
= o
E?s MO
“ -
u PCA
o . . . . . .
2 25 3 34 4 45 3 5.4
Iogm(tutal paramters)
Fig. 6.1: Classification accuracy vs. lgg (total

parameters) on image datasets
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Fig. 6.2: Classification accuracy vs. Processintgton
image datasets
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The level is taken as Q = 1, 2, 4, 8, 16 and dedaisn  respectively and the total parameter requirement fo
h=1,2,..,1Cfor image data set anth=1,2,...,1zfor  both the techniques is 38° which is quite expensive

speech dataset. Figure 6.1 and 6.2 show clasgificat @ compared to LCD and other techniques. Figure 7.1
accuracy versus total parameters in logarithmidesca@nd 7.2 show classification accuracy vs. total
and classification accuracy versus processing tim@arameters on logarithmic scale and classification
respectively, using all the techniques on imagaskdt ~ accuracy vs. Processing time respectively for b t

For LCD technique, as presented on the Fig. 6.f€chniques on speech dataset. The plotting scheme i
and 6.2, the first value of classification accurdsy Similar to that applied for Fig. 6.1 and 6.2.

81.3% at total parameter 48G° (Fig. 6.1) which takes techlriiqizee\i/;de;érfg?rmngigbegelr ?ﬂgn7.§ll t?ﬁé Loct:hDer
processing time of 2.94 units (Fig. 6.2). The next including NN and kNN in terms of

reported value of classification accuracy in Fig. &nd techniques , e
) . . ... achieving higher classification accuracy at lowalot
6.2 is only those which provide better classificati

) parameter requirement and low processing time. The
accuracy than the present value, i.e. Those vateS (|assification accuracy of NN technique is evenrpoo
plotted next in the figures which are given thens, MDC, PCA and VQ techniques; this means that
improvement in classification accuracy compareth®  increasing total parameters does not always help in
previous value. This would help to describe that toimproving the classification accuracy. The maximum
achieve a certain range of classification accurabgt  classification accuracy for LCD technique is 84.i%

is the total parameter requirement and its cormedipg ~ 10°°”° using 8.74 units processing time, whereas the
processing time. A similar strategy is opted forRCA  nearest technique in terms of accuracy is kNN wich
and PCA techniques. For VQ technique there are onlgiving 78.3% (fokk =11) in 10°°%? using 794.08 units
four levels and all of them are given which areated  processing time.

by 2,4,8 and 16 in the Fig. 6.1 and 6.2. MDC and NN
L
A WCOPCA
/ 16

have only one value and kNN has got 5 values for
cD
e

86

k = 357911which is depicted in the same figures.

It can be observed from the Fig. 6.1 and 6.2 that
the MDC has a minimal total parameter requirement
and processing time but the classification accutiacy
quite poorly around 76.6%. The other techniqued wit
the same total parameter requirement but with wdiffe
processing timings are PCA, VQ and LCD (at level 1)
Though the processing time is very low for PCA
(around 2.53 to 2.99 time units), the performarge i

=)
]

o
=]

13 g

Classification Accuracy %
-4
o

-
m

quite poor giving classification accuracy in thega of
69.4% to 73.3% which is even lower than MDC. With
the same total parameter requirement VQ gives much
better performance than PCA in terms of accurady bu
the processing time increases as the levels inereas
towards 16. The classification accuracy of VQPCA is
quite poor at the beginning. As the total parameter
requirement increases it gives reasonably goodtsesu
but at the expense of high processing time. Ivident

that LCD technique gives high classification accyra

at low total parameter requirement and processing,t

for e.g. it gives 85.4% accuracy at *t% total
parameters using only 3.00 units processing time
whereas the maximum accuracy obtained by VQ is
85.1% at 16°* total parameters using 23.41 units
processing time and VQPCA gives 84.9% at®t
using 32.81 units processing time. The maximum
accuracy achieved by the LCD technique (when Q< 16
and h<10) is 90.0% at 18°® using 48.12the NN
techniquessing time which is very close to NN
KNNhnique (90.3%) and close to the maximum of kNN
(fork =3) technique (90.5%). However the processing
time for NN and kNN techniques are 193.37 units and_.
from 196.89 to 220.01 units (f&r=3,5,7,9,1)
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It can be concluded from the experiments on imagé®.
data set and speech dataset that LCD technique
outperforms MDC, PCA, VQ, VQPCA, NN and KNN
techniques in terms of getting reasonably accepted-
classification accuracy and at the same time
maintaining the minimal total parameter requirement
and processing time. This would enable the user t8-
classify a given object accurately and quickly with
minimal implementation cost.

CONCLUSION

A survey on basic classifiers namely MDC, VQ,
PCA, NN and kNN was given. Their classification
procedures were illustrated. Then we looked at VRPC 1
technique which is normally used for representation
purposes. We showed how to use VQPCA for
classification purposes. However, we found that

VQPCA did not give a very encouraging performancer 1,

as a classifier but this gave us initiative to depe
combined classifiers.

Next we presented LCD technique which is the12.

combination of VQ and VQPCA techniques. By
combining the classifiers we found that
performance improved significantly which was not
possible by using either VQ or VQPCA individually.

The performance of LCD technique is found to be14.

better than all the other presented techniquess Thu
can classify a given object more accurately at vewy
implementation cost and processing time, which was
demonstrated using speech and image datasets.

It was found that when the weighting coefficient

a was close to 0.5 the LCD technique gave close td5.

optimum performance, i.e. when VQ and VQPCA
techniques contribute equally in the decision mgloh
a test pattern then the performance is close tonopt.

REFERENCES

17.

1. Jain, AK., R.P.W. Duin and J. Mao, 2000.
Statistical pattern recognition: a review. |IEEE
Trans. Pattern Anal. Machine Intelligence, 22: 4-
37.

2. Fukunaga, K., 1990. Introduction to Statisticall8.

Pattern Recognition. Academic Press Inc.,

Hartcourt Brace Jovanovich, Publishers.

3. Di Maio V. and F. Marciano, 2003. Automatic 19.

classification of neural spike activity: an

application of minimum distance classifiers. 20.

Cybernetics and Systems, 34: 173-192.
4. Paclik, P. and R.P.W. Duin, 2003. Dissimilarity-

based classification of spectra: Computational21.

issues. Real-time Imaging, 9: 237-244.
5. Sahin, F., 2000. A radial basis function apphoac

a color image classification problem in a real timeo2.

industrial  application. PhD  Thesis, State
University, Virginia.

145¢

the 13.

16.

Datta, P. and D. Kibler, 1997. Symbolic nearest
mean classifiers. Proc. of the 14th Natl. Conf. On
Artificial Intelligence, San Mateo, CA, pp: 82-87.
Griguolo, S., 1994. Pixel-by-pixel clusteringr fo
vegetation monitoring. Intl. Conf. on “Alerte
précoce et suivi de I'Environment”, Niamey, Niger.
Lewenstein, K. and M. Chojnacki, 2004. Minimum
distance classifiers in coronary artery disease
diagnosing. Modelling in Mechatronics, Kazimierz
Dolny, Poland.

Lambrou, T., A.D. Linney, R.D. Speller and A.
Todd-Pokropek, 2002. Statistical classification of
digital mammograms using features from the
spatial and wavelet domains. Medical Image
Understanding and Anal., Portsmouth, UK.

. Toth, D., A. Condurache and T. Aach, 2002. A

two-stage-classifier for defect classification in
optical media inspection. 16th Intl. Conf. On
Pattern Recognition (ICPR'02), 4: 373-376.

Linde, Y., A. Buzo and R.M. Gray, 1980. An
algorithm for vector quantization design. IEEE
Trans. On Comm., COM-28, 1: 84-94.
Gray, R.M., 1984. Vector quantization.
ASSP Magazine, pp: 4-29.

Wesel, R.D. and R.M. Gray, 1994. Bayes risk
weighted VQ and learning VQ. Proc. Data
Compression Conf. (DCC’94), UT, USA, pp: 400-409
Potlapalli, H., M.Y. Jaisimha, H. Barad, A.B.
Martinez, M.C. Lohrenz, J. Ryan and J. Pollard,
1989. Classification techniques for digital map
compression. Proc. Of the 21st Southeastern Symp.
On System Theory, Tallahassee, FL, USA, pp:
268-272.

Makhoul, J., S. Roucos and H. Gish, 1985. \fecto
quantization in speech coding. Proc. Of the IEEE,
73:1551-1588.

Soong, F.K., A.E. Rosenberg and B. Juang, 1987.
A vector quantization approach to speaker
recognition. AT&T Technical Jnrl., 66: 14-26.
Dsung, T.P., 1998. Applications of unsupervised
clustering algorithms for aircraft identification
using high range resolution radar. Proc. IEEE
National Aerospace and Electronics Conf., OH,
USA, pp: 228-235.

Arvind, R. and A. Gersho, 1986. Low-rate image
coding with finite-state vector quantization. In
Proc. ICASSP pp: 137-140.

Oja, E., 1983. Subspace Methods of Pattern
Recognition. Research Studies Press, New York.
Oja, E. and J. Parkkinen, 1984. On subspace

IEEE

clustering. Seventh Intl. Conf. On Pattern
Recognition, 2: 692-695.
Oja, E., 1992. Principal components, minor

components and linear neural networks. Neural
Networks, 5: 927-935.

Kambhatla, N., Leen, T.K., 1997. Dimensionality
reduction by local PCA. Neural Computation, 9:
1493-1516.



23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Am. J. Appl. Sci., 2 (10): 2 (10): 1445-1455, 2005

Kambhatla, N., 1995. Local models and Gaussiai6.

mixture models for statistical data processing. PhD

Thesis, Oregon Graduate Inst. Of Sci. and
Technology. 37.
Duda, R.O. and P.E. Hart, 1973. Pattern

Classification and Scene Analysis. John Wiley and
Sons, New York.

Sharma, A., K.K. Paliwal and G.C. Onwubolu,38-

2006. Splitting technique initialization in local
PCA. J. Computer Sci., 2: 53-58 (in print).

Xu, L., A. Krzyak and C.Y. Suen, 1992. Methods
of combining multiple classifiers and their
applications to handwriting recognition. IEEE
Trans. On Systems Man. and Cybernetics, 22:
418-435.

Jacobs, R.A., M.l. Jordan, S.J. Nowlan and G.E40.

Hinton, 1991. Adaptive mixtures of local experts.
Neural Computation, 3: 79-87.

Ho, T.K., J.J. Hull and S.N. Srihari, 1994. Bamn
combination in multiple classifier systems. IEEE
Trans. On Pattern Anal. and Machine Intelligence,
16: 66-75.

Tresp, V. and M. Taniguchi, 1995. Combining

estimators using non-constant weighting functions42,

In G. Tesauro, D.S. Touretzky, T.K. Leen (Eds).
Advances in Neural Info. Processing Systems 7,
MIT press, Cambridge.

Woods, K., K. Bowyer and W.P. Kegelmeyer,
1996. Combination of multiple classifiers using 43
local accuracy estimates. IEEE Comp. Soc. Conf.
Computer Vision and Pattern Recognition CVPR
‘96, pp: 391-396.

Woods, K., 1997. Combination of multiple
classifiers using local accuracy estimates. |IEEE
Trans. Pattern Anal. Machine Intelligence, 19: 405-
410.

Zhou, L. and S. Imai, 1996. Chinese all sy#abl
recognition using a combination of multiple
classifiers. ICASSP, 6: 3494-3497.

Alimoglu, F. and E. Alpaydin, 1997. Combining
multiple representations and classifiers for pen-

based handwritten digit recognition. Intl. Conf. 46.

Document Analysis and Recognition, 2: 637-640.
Kittler, J., M. Hatef, R.P.W. Duin and J. Matas
1996. On combining classifiers. Intl. Conf. Pattern
Recognition, 2: 897-901.

Kittler, J., M. Hatef, R.P.W. Duin and J. Matas
1998. On combining classifiers. IEEE Trans.
Pattern Anal. Machine Intelligence, 20: 226-239.

145¢

41.

44,

Breukelen van, M. and R.P.W. Duin, 1998. Neural
network initialization by combining classifiers.
Intl. Conf. Pattern Recognition, 1: 215-218.
Alexandre, L.A., A.C. Campilho and M. Kamel,
2000. Combining independent and unbiased
classifiers using a weighted average. Intl. Conf.
Pattern Recognition, 2: 495-498.

Turner, K. and J. Gosh, 1999. Linear and order
statistics combiners for pattern classificationAln
Sharkey, (Ed.). Combining Artificial Neural Nets,
Springer-Verlag, pp: 127-161.

39. Ueda, N., 2000. The optimal linear combinatién

neural networks for improving classification

performance. IEEE Trans. Pattern Anal. Machine
Intelligence, 22: 207-215.

Senior, A., 2001. A Combination Fingerprint
Classifier. IEEE Trans. Pattern Anal. and Machine
Intelligence, 23: 1165-1174.

Lei, L., W. Xiao-Long and L. Bing-Quan, 2002.

Combining multiple classifiers based on statistical
methods for handwritten Chinese character
recognition. Intl. Conf. Machine Learning and

Cybernetics, 1: 252-255.

Yao, M., X. Pan, T. He and R. Zhang, 2002. An
improved combination method of multiple

classifiers based on fuzzy integrals. World
Congress on Intelligent Control and Automation, 3:
2445-2447.

. Garofalo, S.G., L.F. Lori, F.M. William, F.G.

Jonathan, P.S. David and D.L. Nancy, 1986. The
DARPA TIMIT acoustic-phonetic continuous
speech corpus CD-ROMs. NIST.

Blake, C.L. and C.J. Merz, 1988. UCI repositofy
machine learning databases.
http://www.ics.uci.edu/~mlearn lIrvine, CA,
University of Calif., Dept. Of Information and
Comp. Science.

45. Michie, D., D.J. Spiegelhalter and C.C. Taylor

(Eds.), 1994. Machine Learning, Neural and
Statistical Classification. Ellis Horwood.

Young, S., G. Evermann, T. Hain, D. Kershaw, G.
Moore, J. Odell, D. Ollason, D. Povey, V. Valtchev
and P. Woodland, 2002. The HTK Book Version

3.2, Cambridge, England, Cambridge University.



