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Abstract:  This study is concerned with the properties of absolute stability independent of the delays of 
time-delay systems, possessing non commensurate internal point delays, for any nonlinearity satisfying 
a Popov’s- type time positivity inequality. That property holds if an associate delay-free system is 
absolutely stable and the size of the delayed dynamics is sufficiently small. The results are obtained for 
nonlinearities belonging to sectors [0, k] and [h, k+h],   k ≥ 0  and are based on a parabola test type. 
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INTRODUCTION  

 
 The absolute stability of dynamic is an interesting 
issue since it refers to the global asymptotic stability of 
a system under any feedback law provided by a wide 
class of nonlinear devices. Such nonlinear devices have 
to satisfy a certain positivity sector-type constraints. 
The problem has been widely studied for the plant 
delay-free case and nonlinear feedback devices within 
linear sectors [k1, K2] and (k1, K2) in (0, ∞) [1-6]. Some 
of those results have been extended to single- delay 
cases provided that the transfer function of the linear 
subsystem is (non critically) stable (i.e., With poles in 
Re s < 0) provided that its   H ∞ -by is upper-bounded 
with a sufficiently small upper-bound and that the 
feedback nonlinear device satisfies certain local 
Liptschitzian [regularity conditions[7] and to systems 
with external delays (i.e., in the input)[8]. In this study, 
such assumptions are removed by allowing 
nonlinearities simply satisfying a (in general non 
symmetric) sector-type positivity constraints, multiple 
non commensurate internal (i.e., in the state) delays and 
either strictly stable (the so-called principal case) or 
critically stable (the so-called simplest particular case) 
linear plants with a single critically stable pole at s=0.  
 
Notation: 
 
* An output- feedback nonlinearity ( )y(t)Φ  in a 

Popov´s sector [ )1 2k , k 0 ,  ⊂ ∞   means that the 

scalar real function Φ: R×[0, t] → R is such that 
( )1 2k y(t) y(t) k y(t)≤ Φ ≤  for all   t ≥ 0  with 

( )y(t) 0Φ =  if and only if y(t)=0. 

* The Hardy space   RH ∞  of the matrices G (s) tions 
or matrices G (s) are proper real rational functions 

with all its poles in Re s < 0 (i.e., Strictly stable) 

and   H ∞ -norm ( )G s ∞  with { }0+ += ∪0R R  

and   λ Max .( ) being the maximum eigenvalue of 

the (.)- symmetric matrix. 
* It  is  said  that  a  transfer   function   G(s) or 

matrix is strictly stable if G(s) RH∞∈  and its 

characteristic polynomial (or quasi-polynomial in 
the presence of internal delays) is strictly 
Hurwitzian. 

* A linear transfer function G(s) is in the principal 
case if it belongs to RH ∞  and its characteristic 

polynomial (or quasi-polynomial in the presence of 
internal delays) is strictly Hurwitzian. It is in the 

simplest particular case if 0G (s)
G(s)

s
=  with 

0G (s) RH∞∈ . 

* An unforced linear system with r finite internal 
point delays   h i of state equation 

( )
r

i i
i 1

x(t) Ax(t) A x t h
=

= + −∑ɺ  has two associated 

systems without delays, namely: 

 

 ( )
r

1 i 1
i 1

z t A A z (t)
=

 
= + 
 

∑ɺ  Which describes the above 

so-called current delay-free system time-delay system 

when  h i = 0 ; i 1 , r= ; and ( ) )t(zAtz 22 =ɺ  Which 

is called the nominal delay-free system which describes 
the above time-delay system when iA 0= , or when 

  h i → ∞ ; i 1 , r= .  

 Both systems have to be stable in order that the 
delay   system   is   a   stable   independent of the 
delays: 
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* The l 2  - norm of a matrix (or vector) M is denoted 

as ( )1/ 2 T
2 MaxM M Mλ= . In vectors such a 

norm coincides with the Euclidean norm. 
 
Descriptions of time-delay systems under sector-type 
nonlinear feedback: Consider the single-input single-
output linear and time-invariant system: 
 

( )
r

i i
i 1

x(t) A x(t) A x t h bu(t)δ
=

= + − +∑ɺ  (1.a) 

 

  y ( t ) = c T x ( t ) + d ξ ( t )  (1.b) 
 
 Under a nonlinear output-feedback law: 
 

  u ( t ) = ξ (t ) = − Φ y (t )( ) (1.c) 

 
Or: 
 

( )u(t) (t) y(t)ξ= = − Φɺ  (1.d) 

 
where, x(t) ∈ nR , u(t)∈ R , y(t) ∈ R  are the state, 

input and output, respectively, and A, 

  A i ; i = 1, r ,are real square n- matrices, b , c∈ nR , 

  d ∈R  and δ  is a real scalar parameter which is 
introduced by convenience to govern the size of the 
delayed dynamics for given matrices   A i ; i = 1, r . 

The initial condition of (1.a) is any absolutely 
continuous function [ ] n: h, 0 Rϕ − →  plus, eventually, a 

function of zero measure of isolated bounded 
discontinuities defined on 

  −h , 0[ ] where 

( )i
1 i r

h Max h
≤ ≤

= . The nonlinear feedback device is 

defined via (1.c) or (1.d) by a nonlinear 
function [ ]: 0 , tΦ × →R R  satisfying  Φ y( )=0 if 

and only if y = 0 and   k 1 y ≤ Φ y( ) ≤k 2 y . The 

feedback configuration (1.a) - (1.c) is called the 
principal case and (1.a) - (1.b) and (1.d) is called the 
simplest particular case, both satisfying that the roots of 

i

r
h s

i
i 1

Det s I A A e 0−

=

 
− − = 

 
∑  implied Re s < 0. In 

the second situation, the linear device adds a critically 
stable simple pole at s =0. The transfer function of (1) 
becomes: 
 

beAAIsc
)s(N

)s(M
)s(G

1
i

r

1i

sh
i

T −














δ−−== ∑

=

−
  

)s(d 0+  (2) 
 
With 0d (s) d= ( Principal case),  

0d (s) d / s=  (Simplest particular case). Direct 

calculations with (2) yield: 

 

( ) ( )
1

1 h sT i

0

r
G(s) c sI A I sI A A eii 1

b d (s)

δ

−
− −

= − − − ∑
=

+

   
      

 (3) 

 
 Note that the identity 

 

I − δ sI − A( ) −1
A i e

− hi s

i =1

r
∑

 
  

 
  

 
  

 
  

 
  

 
  

−1
 

= I + ∆ s , δ( ) sI − A( ) (4) 

 
 Holds provided that the inverse exists for Re s ≥  0 
with   ∆ s ,δ( ) being defined by: 

 

( ) ( ) i

r
h s1

i
i 1

s , s I A A eδ δ −−

=

 
∆ = −  

 
∑   

sI − A −δ A i e
− h is

i=1

r

∑
 

 
 

 

 
 −1  (5) 

 
 What follows directly since from direct 
calculations: 
 

( )( )( )I s, sI Aδ+ ∆ −  

 ( ) i

r
h s1

i
i 1

I s I A A e Iδ −−

=

  
− − =   

  
∑  

 
 The substitution of (4) into (3) yields: 
 
G(s) = G 0 (s)+c T ∆ s,δ( )b  (6) 
 

where, ( ) 1T
0 0G (s) c s I A b d (s)

−= − +  is the transfer 

function of the nominal delay-free system. The 
following  result  holds  trivially  for  the existence of 
the inverse in (4) for Re s ≥  0 if   G 0 ∈ R H ∞ , 
namely, if the nominal delay-free system is ( non 
critically) stable. 
 
Proposition 1: The linear forward loop of system (1) is 
(non critically) stable independent of the delays if A is a 
stability matrix (or, equivalently, if  G 0 ∈R H ∞ ) and 

δ < δ 0
−1  with ( ) i

r
h s1

0 i
i 1

s I A A eδ −−
∞

=

 
= −  

 
∑  

what is guaranteed if δ < ε 0
− 1 , with 

r

0 1 i 2 0
i 1

Aε ε δ
=

 
= ≥ 

 
∑ ,and ( ) 1

1 s I Aε −
∞= − . 

Furthermore: 
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( )0 2 2G G c b ε δ∞ ∞≤ +  

( )0 2 2G c b ε δ∞≤ +  (7) 

 
the first inequality holding if δ < δ 0

−1  and both 

inequalities holding if δ < ε 0
−1  where: 

 

ε (δ ) =
δ δ 0 ε 1

1 − δ δ 0 0

10

1
)(

εδ−
εεδ=δε≤  (8)  

 
 Note that (1.a) may be equivalently rewritten as: 
 

( )( ) )t(ub)t(xihtx
r

1i iA)t(x
'

A)t(x +−−∑
=

+=ɺ  (9) 

 

where, 

  
A ' = A + A

i
i = 1

r

∑  is the matrix of dynamics 

associated with the current delay-free system describing 
(1.a) for h(.) = 0 so that it should be a stability matrix in 
order that (1) be stable independent of the delays. Thus, 
(6) may be rewritten equivalently as: 

 

G ( s) = c
T

I + ∆ '
s,δ( ) sI − A'( )( )

−1
sI− A

'( )
−1

b + d 0 (s ) 

= G 0 (s)+ c T ∆ ' s,δ( )b  (10) 

 

where ( ) 1T '
0 0G (s) c s I A b d (s)

−
= − + , and: 

 

( ) ( ) ( )i

r
h s' ' 1

i
i 1

s , s I A A e 1δ δ −−

=

 
∆ = − − 

 
∑  

sI − A ' −δ A i e − h i s − 1( )
i=1

r

∑
 

 
 

 

 
 − 1 (11) 

 
 Thus, one gets a subsequent parallel result of 
Proposition 1 since '

0G R H∞∈  implies, and it is 

implied since   G 0
'  is properly, that both A'  and A are 

stability matrices and ( )ij h
Sup e 1

ω

ω

−

∈
−

R
 = 2. 

 

Proposition 2: Assume that '
0G R H∞∈ . The linear 

forward loop of system (1) is (non critically) stable 

independent of the delays if A'  is a stability matrix and 

δ <1 / δ 0
'  with: 

 

( ) ( )i

0

r
h s' ' 1

i
i 1

s I A A e 1δ −−
∞

=

 
= − − 

 
∑  (12.a) 

what is guaranteed if δ <1 /ε 0
' , with: 

 

0

r
' ' '

1 i 2 0
i 1

2 Aε ε δ
=

 
= ≥ 

 
∑  

( )' 1
1 s I A 'ε −

∞= −  (12.b)  

 
Furthermore:  
 

( )'
0 2 2G G b c ε δ∞ ∞≤ +   

 ( )' '
0 2 2G b c ε δ∞≤ +  (13) 

  
the first inequality holding if δ < δ 0

−1  and both 

inequalities holding if δ < ε 0
−1  where: 

 
' '

' 0 1
'
0

( )
1

δ δ εε δ
δ δ

=
−

 

' '
1' 0
'

0

( )
1

δ ε ε
ε δ

δ ε
≤ =

−
 (14) 

 
Remarks 1: Note that the definition of   H ∞ - norms for 
matrices implies: 
 

( )
r

1
i 2

i 1

sI A A−

= ∞

 
−  

 
∑  

( )
r

1
i 2

i 1

s I A A−
∞

=

 
≤ −  

 
∑  

 
and a similar expression for the replacement of A by 

  A
' . 

 Note that in the simplest particular case, 
Propositions 1-2 do not hold since the delay- free linear 
system has a critically stable pole. However, both 
Propositions hold for nominal and current delay-free 
subsystems described by transfer functions*0G (s) and 

  G 0
*

'
( s )  being strictly stable such that 

*
0 0G (s) s G (s)=  and 

' '*
0 0G (s) sG (s)= . 

 
Popov´s parabola tests of time-delay systems with 
point delays 
Popov´s parabola tests on sectors   0 ,k[ ] for the 
Principal case and   0 , k( ) for the simpleof 
particular case: Note that the results for the linear part 
of the delayed system are analyzed together with the 
nonlinear feedback law (1.c) t, establish the causeabola 
te, ts on sectors [0,k] (principal case) and (0,k) 
(Simplest particular case). It is well known for the 
delay-free case[2,9,10] and for the case of presence on 
external delays only[8], that positive parabola tests 
guarantee absolute stability. In Section 4, the absolute 
stability problem is extended for systems with internal 
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point delays based on parabola tests which are now 
addressed. The amount of tolerance to the delayed 
dynamics is made explicit so that the parabola test is 
positive on a Popov´s sector [0, k] provided that it is 
positive on a sector [0, k0] for the Principal Case. The 
reasoning guidelines are similar fort the simplest 
particular case on the respective sectors (0, k) and (0, 
k0). The decomposition of the whole transfer function 
G(s) as in (6) subject to (5) by using the nominal delay-
free system transfer function  G 0 (s ) or using (10)-(11) 
with that of the current delay-free system '

0G (s) is 
used to obtain the subsequent result. 
 
Proposition 3: Assume that there is a real constant 

0q 0>  such that ( ) ( )0 0
0

1
Re 1 q G j 0

k
ω ω

 
+ + > 

 
 

for some finite real constants q 0  and k0 . Thus, 

( ) ( ) 1
Re 1 q G j 0

k
ω ω

 
+ + > 

 
for any real 

constants q and k satisfying 00 q q< ≤ and 

  0 < k < k 0  provided that: 

 

( ) ( )
( )

0 0

0 0 1 2 2 0 1

1 k k1
Min ,

k k 1 q k b c

ε
δ

ε ε ε
 − −

<   + 
  

 
 With the real constants ε 0 ,1 defined as in 

Proposition 1 and   k 1  being a finite real constant 
satisfying: 
 

( )
( )

0

1

0

s G(s) s G(s) G (s)
k

q G(s) G (s)q G(s)

∞ ∞

∞∞

−
≥ =

−

ɶ

ɶ
 

 
Remark 3: Proposition 3 applies to both the principal 
and simplest particular cases. However, for the principal 
case, closed sectors [0, k0 ] and [0, k] may be 
considered with k 0 being finite or infinity and 0q q≤  
for any real constant   q 0 . The proof is direct from 
previous results for the undelayed case[2,3,9,10].  
 
Popov´s parabola tests on sectors [ ]h, k h+  and 

  h ,k + h( ): The absolute stability on sectors 

  k ,k + h[ ] for the Principal Case and (k, k+h) for the 

Simplest Particular one may be performed equivalently 
via the use of the modified transfer function:  
 

m 0m mG (s) G (s) G (s)= + ɶ ( )
0

0

G (s) G(s)

1 h G (s) G(s)

+
=

+ +

ɶ

ɶ
 

checked for absolute stability on closed or open sectors 
[0, k] or (0,k) with the current nominal delay-free 

transfer function 
  
G 0 m (s ) =

G 0 (s )

1+ h 0 G 0 (s )
 being 

checked on respective nominal sectors [0,  k 0 ] or 

(0,  k 0 ) for   h = h 0 + ∆h  and 

  
˜ G (s )=c T ∆ s ,δ( )b  includes the effects of the 

delayed dynamics. Now, if   G 0 m (s ) is absolutely 

stable for nonlinearities in [0,  k 0 ] (or in (0,  k 0 ) ), 

thus,  G m (s ) is absolutely stable in [0,  k 0 + h] (or in 

(0,  k 0  + h) ) for ∆h=0 and   
˜ G (s )= 0 ; i.e., in the 

absence of delayed dynamics provided that the tested 
Popov´s sector is not modified. Now, the basic idea to 
be developed in the following is summarized as follows. 
Assume that  G 0 m (s ) is absolutely stable in a 

reference nominal sector. Calculate a sector potential 
modification (in terms of a maximum allowable k < k 0  

and   ∆h ≥ 0) and a tolerance to delayed dynamics (in 

terms of maximum allowable δ > 0 to quantify a 

maximum allowable G(s) ∞
ɶ  for give A(.) -matrices) 

such that the current system involving delays remains 
absolutely stable independent of the sizes of the delays. 
The subsequent result is an extension of Proposition 2.  
 
Proposition 4: Assume that there is a real constant 

0q 0>  such that: 

( ) 1
0 0m 0Re 1 q G ( j ) k 0ω ω − + + >   for some finite 

real constant   k 0 > 0 . Thus, 

( ) 1
mRe 1 q G ( j ) k 0ω ω − + + >   independent of 

the delays for any real constants q and k satisfying 

00 q q< ≤  and   0 < k < k 0  provided that δ  and 

h∆  are sufficiently small.  

 The links between the above parabola tests and 
absolute stability of time-delay systems independent of 
the delays are given in the subsequent section. 
 
Absolute stability: In this section, it is proved that the 
parabola tests of Propositions 3-4 of Section 3 and its 
modifications based on the use of the current delay-free 
system (see, for instance, Remark 3) guarantee the 
absolute stability of (1. a) -(1.b) for all nonlinear 
feedback law (1.c) or (1.d) in the corresponding 
Popov´s sector. To address the intended result, it is 
proved that a quality measure of the input-output energy 
time-integral of the linear forward loop is bounded for 
all time under any feedback law of the given class if the 
related parabola test is positive. The output (1.b) may 
be decomposed as the sum of the unforced response 
plus the forced one as follows: 
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y (t ) = y

u f
(t ) + y

f
(t )  (15) 

  
y

u f
(t ) = c T Ψ t( ) x 0 =  

 

( ) ( )
rtT

0 i0
i 1

c (t)x t h dτ ϕ τ τ
=

 
Ψ + Ψ − − 

 
∑∫  (16.a) 

 

( )tT
f 0

y (t) c t b u ( )d d (t)τ τ τ ξ= Ψ − +∫  (16.b) 

 
for all   t ≥ 0 , where: 
 

( )
rt

0 0 i0
i 1

x x h ( )dτ ϕ τ τ
=

= + Ψ −∑∫ , 
  
y

u f
(t )   

 
and   y f

(t )  are the unforced and forced output 

responses of (1) where   x 0 = ϕ (0)  and   Ψ (t )  is the 
fundamental matrix of (1.a) which satisfies: 
 

( )
r

i i
i 1

(t) A (t) A t h
=

Ψ = Ψ + Ψ −∑ɺ  (17)  

 
where,   Ψ (0)= I  and Ψ (t)=0 for t< 0. If Proposition 3 
holds then the stability of (1. a) -(1.b) is guaranteed. 

Thus, ( )2
t 0

Sup (t) kΨ
≥

Ψ ≤ < ∞  and from (15) and 

(16.a): 
 

uf fy(t) y (t) y (t)≤ +  

0 2 2 fk x c y (t)Ψ≤ +  (18) 

 
since   Φ y (τ )( )y (τ) ≥ 0  for Φ (.)  belonging to a 

Popov´s sector like those addressed in Section 3. This 
leads directly to: 

 

( ) ( ) 2t ty u( )d y ( ) y ( ) dt t 0f uf0 0
τ τ τ τ τ τ γ= + ≤∫ ∫   (19) 

 
what implies from (18): 

 
2t ty ( )u( )d k x c u( ) dt t0 0 2 2f0 0

τ τ τ γ τ τψ≤ +∫ ∫  (20) 

 Note that the Fourier transforms of u (t) and y (t) 
(denoted with capital letters) fulfill the frequency 

domain relation ( ) ( ) ( ) ( ) 2jUjGjUjY ωω=ω−ω  

for all frequency ω where G (jω) is the f1. q) ency 
response of (1.a)-(1.b). Define for any scalar or vector 
signal f (t), a related signal   f t (τ )= f (τ) for all real 

  τ ∈ 0, t[ ] and   f t (τ )= 0 otherwise in − ∞ , ∞( ) and 

any t ≥ 0. Its Fourier transform, which always exists for 

all finite t and also as t → ∞  if f (t) is absolutely 

integrable on − ∞ , ∞( ), is denoted by   F t jω( ). 

Since  u (t ) = − Φ (t ) ,  − k ≤ − u (t ) / y (t )( )≤ k  

for all time, what implies from (18) and the use of 
Parseval’ s theorem in (20): 
 

( ) ( ) ωω−∫
∞

∞− ω=ωω∫
∞
∞− ω d)j(UjfYd2)j(UjG  

( )2
0 0 2 2 t2 k x c u ( ) dπ γ τ τ

∞

Ψ −∞
≤ + ∫  (21) 

 

Define ( )Ĝ( j ) 1 j q G( j )ω ω ω= +  and  

  

ˆ U ( jω ) =
1

1+ j ωq
U( j ω ) 2  is the Fourier’ s 

transform of: 
 







∫ τττ−−+
−−−= t

0 d)(
2

u
1q

e)0(ux̂
t1q

e
1

q)t(û   

 
where,   

ˆ x u (0 ) is the initial condition of the first-

order filter 
  

1
1 + q s

. Thus, one gets: 

 

2
t t t 1

1
ˆy ( )u ( )d u ( )d

k
τ τ τ τ τ γ

∞ ∞

− ∞ −∞
≥ − −∫ ∫  (22) 

 
 For some real constant γ 1 > 0  since   ̂  u (t ) is the 
output of a first-order exponentially stable filter of 

inpuand existand since the Fourier transforms tÛ ( j )ω  

and f tŶ ( j )ω exist for any finite t, the substitution of 

(22) and (21) into (20) yields: 

 

( ) 1d)(tû2c20xkk̂2
02 γ+∫

∞
∞− ττΨ+γπ   

( ) ωω+ω≥ ∫
∞

∞−

−

∈ω +
d)j(Ûk)j(ĜReMin t

1
t

R 0

 

 = ( ) ( )
0

2
t1

R

U jˆMin Re G( j ) k d
1 j qω

ω
ω ω

ω+

∞−

− ∞∈
+

+∫  

= ( ) ττ+ωπ ∫
∞

∞−

−

∈ω +
d)(ûk)j(ĜReMin2 2

t
1

R 0

 (23) 

 
since the hodo graph G (jω) is symmetric with respect 
to the real axis of the complex plane, Re G (jω)= Re G 
(-jω) and Im G (jω)= - Im G (-jω) 

( ( )ˆIm G j d 0ω ω
∞

− ∞
⇒ =∫ ) for all frequencies so 

that it suffices to test ˆRe G( j )ω for 0Rω +∈ . By 

taking any sufficiently large t=T in (28), it follows that 

tû ( )τ is uniformly bounded for all [ ]0, tτ ∈ ,   t ≥ T  

and of absolute value which can be equal to or larger 
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than unity only over a subset of [0,t] of finite measure 
since tû (.)  is a continuous function which is the output 

of a stable filter if q>0. By taking  t → ∞ , one 
concludes from (1.c) - (1.d) that the signal u (t), y (t), 

tû (.) , tŷ (.)  cannot diverge on [ )0 , ∞  for the linear 

plant (1.a) - (1.b) being in the principal case provided 
that G (s) has no unstable zero/pole cancellation 
provided that the inequality of Proposition 3 (see also 
the variant of Remark 4) holds. In the simplest 
particular case, the conclusion is identical by extending 
slightly the above reasoning if the inequality of 
Proposition 4 or its subsequent extension hold. Assume 
that   ̂ u t (.) diverges as   t → ∞ . Thus, its squared value 
diverges at a slower rate from (28) except if u (t) is zero 
over a real set of infinite measure. In that case, Φ (.) and 
then y (.) would be zero over a set of infinite measure as 
well. Since y (.) is a continuous function then y(t) 0→  

as   t → ∞  while it is bounded. Thus, u(t) 0→  as 

  t → ∞  while being bounded provided that G(s) has no 
unstable zero/pole cancellation. The final conclusion is 
that the system is globally Lyapunov´s stable for all 
nonlinearity in the appropriate closed (Principal Case) 
or open (Simplest Particular Case) Popov´s sector under 
feedback (1.c) or (1.d). It remains to be proved the 
global Lyapunov´s asymptotic stability of (1. a) -(1.c) 
and (1. a) -(1-b) and (1.d) to conclude the absolute 
stability of those feedback configurations. Since u (t) is 
bounded on 0 ,∞[ ), then tû ( )τ  from its definition is 

absolutely integrable on 0 ,∞[ ). Thus, the first term of 

(23) is bonded so that after comparison with its last 
term, it follows that the input converges asymptotically 
to zero if Proposition 3 or Proposition 4 hold. Thus, the 
absolute stability has been proved what is summarized 
in the subsequent main results under some of the 
following Assumptions: 

 

Assumption 1: The pair ( )A , b  is controllable and 

the pair   A , c( ) is observable. 

 

Assumption 1: The pair ( )'A , b  is controllable and 

the pair ( )'A , c  is observable. 

 

Assumption 2: The pair ( )'A , b  is stabilizable and 

the pair ( )'A , c  is detectable. 

 
Theorem 1: Assume that either Proposition 3 holds or, 
alternatively, the constraint of Remark 4 holds for q>0 
(q≥ 0 for the Principal Case). Thus, any minimal 
realization (1. a) -(1.b) is absolutely stable (i.e. global 
asymptotically Lyapunov´s stable) under feedback (1.c) 
[Principal Case] for all Φ  (.) in (0, k) -or (1.d) 

[Simplest Particular Case] for all Φ  (.) in (0, k). As a 
result, [ )u : 0, R∞ → , [ )y : 0, R∞ →  and 

[ ) R,0R: →∞×Φ  are bonded and converge 

asymptotically to zero. That result also holds for 
nonlinearities Φ (.) in sectors [h, k+h] for the Principal 
Case and (h, k+h) for the Simplest Particular Case if the 
requirement of fulfillment of Proposition 3 is replaced 
for that of Proposition 4.  
 Direct extensions of Theorem 1 concerning the 
kind of state-space realizations (1. a) -(1.b) lead to the 
subsequent results. 
  
Corollary 1:  Proposition 3 (or, alternatively, the 
constraint of Remark 4) guarantee for q>0 that any 
stabilizable and detectable non minimal realization of 
G(s) is absolutely stable for Φ  (.) in [0, k] (Principal 
Case) or (0, k) (Simplest Particular Case). That result 
holds for Φ  (.) in [h, k+h] (Principal Case) or (h, k+h) 
(Simplest Particular Case) if the requirement of 
fulfillment of Proposition 3 is replaced for that of 
Proposition 4.  
 
Corollary 2:  Propositions 3 (or, alternatively, the 
constraint of Remark 4) and Proposition 4 guarantee for 
q>0 that any stable non minimal realization of G(s) 
(even not being stabilizable/ detectable) is absolutely 
stable for the same corresponding Popov´s sectors 
referred to in Theorem 1 and Corollary 1.  
 Concerned with the state-space realizations, 
Theorem 1 applies when no cancellation is present since 
the realizations are non minimal. The plant stability is 
automatically guaranteed from the strict positive 
realness- type inequalities invoked in Propositions 3-4. 
Corollary 1 extends the result of absolute stability to 
stabilizable and detectable realizations which cannot 
possess unstable zero/pole cancellations. Corollary 2 
extends the absolute stability to all stable (cancellation- 
free or not) realizations since any stabilizable and 
detectable realization not being controllable and 
observable has always stable zero/pole cancellations. 
On the other hand, Proposition 3 required in Theorem 1 
needs Assumption 1 as a necessary condition since if 
the delay-free nominal system is not controllable and 
observable then the state-space realization is non 
minimal. Similarly if Proposition 4 is invoked then 
Assumption 1' is required to guarantee the absence of 
unstable cancellations in the current delay-free system. 
However, both assumptions are not made explicit in 
Theorem 1 since they are ensured in terms of 
sufficiency-type constraints by the frequency-type 
inequalities of Proposition 3, or respectively 
Proposition 4. Assumptions 1 and 1' are relaxed to 
Assumptions 2 and 2' as corresponding implicit 
requirements in Corollary 1 since the nominal/current 
delay-free state-space realization is required to posses 
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(at most) stable cancellations, if any, as a necessary 
condition for G(s) to have no unstable zero/pole 
cancellation. The various given Assumptions are useful 
as preliminary tests before checking the fulfillment’s of 
Propositions 3-4. Theorem 1 and Corollaries 1-2 adopt 
simpler versions than those deriving from propositions 
3-4 in the special case when c=Pb with being a positive 
definite symmetric real matrix. The subsequent result 
applies to the Principal Case for k = ∞  follows. 
 

Theorem 2: Assume that c=Pb with  P= P T > 0  and 
the unforced nominal-delay free system is exponentially 
stable satisfying the Lyapunov matrix equality 

  A
T P + P A = − Q = − Q T < 0  with 

( ) i

r
h s1 1

0 i
i 1

s I A A eδ δ −− −
∞

=

  
< = −     

∑  and 

that the transfer function of the nominal delay-free 
system ( )T 1

0G (s) b P s I A b d−= − +  is strictly 

positive real (i.e. Re G0 (s) > 0 for Re s≥  0 and G 

0 (s) is strictly stable). Thus, G(s) is strictly positive 
real and any stabilizable and detectable state-space 
realization of the forward linear system (1. a) -(1.b) 
under nonlinear feedback (1.c) is absolutely stable for 
all nonlinear devices within the sector0 ,∞[ ). The 

result also applies to any realization which is not 
stabilizable-detectable possessing only stable zero/pole 
cancellations in its transfer function. 
 A similar result to Theorem 2 may be obtained for 
the Principal Case by assuming the strict positive 
realness of the transfer function of the current delay-free 
system from Proposition 4 for q=0. Since a Popov´s-
type integral inequality: 
 

( )t 2
00

y( ) y( ) dτ τ τ γΦ ≥ −∫  

 
is satisfied for all time and the transfer function of the 
time-invariant forward loop is strictly positive real then 
the system is, furthermore,asymptotically hyper stable 
independent of the delays (which is a stronger property 
than absolute stability[3,6] what means that Lyapunov´s 
global stability holds even if the nonlinear device (1.c) 
is time-varying. If the forward-loop transfer function is 
positive real, rather than strictly positive real, the 
closed-loop system associated with the Principal Case is 
hyperstable (i.e. globally Lyapunov´s stable for any 
nonlinear device (1.c) satisfying the above Popov´s-. 
type integral inequality).  
 

EXAMPLES  
 
Example 1: Consider (1) with n= 2, r = 1; 

( )Tb 1 , k= − β  ; ( )Tc 1 , 0=  and 

( )
0 1

A
a a

 
=  − β − β + 

 ; 1 1

0 1
A a

a 1

 
=  − − 

 with a > 0, 

0β >  and d > 0. The open-loop forward-loop is 

globally asymptotically stable if 
1

a

a
<δ  and A is a 

stability matrix satisfying TA P PA L+ = − for some 

real n-matrix  P= P T > 0  for any given real n-matrix 

0LL T >= . It is well-known that 
TA A

0
P e L e dτ τ τ

∞
=∫ . A simple calculation yields that 

Proposition 3 holds with 
d

cPb
q

−=  δ 0 is calculated by 

using   α ≤ α 0 a a 1  and 

( ) ( )2

0 2 2

a a
1

a

β β
α

β
 + + +

≤ +   
 

 obtained from the 

calculations of the related   H ∞ - norms. Thus, from 
Theorem 1, the feedback system (1) is absolutely stable 
for any nonlinear device satisfying either in [0,∞ ) 
under feedback (1.c) or in (0,∞ ) for the feedback law 
(1.d). The associate transfer function posses a strictly 
stable zero/pole cancellation at s = - β which has not 
been taken into account in the above calculations. This 
is reasonable when the transfer function numerator and 
denominator are not factored explicitly from the state-
space description especially for higher order systems. If 
such a cancellation is known and removed for a 
minimum state-space realization of (1.a)-(1.b) resulting 
in A=-a, aA 1 −= , b=k, c=1 then 

( )( )
2

0

1

da

a da 2k a 1 a
δ =

+ +
 with P = 1/k,q=0. In this 

simple example, the calculations may also be performed 
from the real part of the transfer function once the 
cancellation, if known, is removed. In this case, this 

leads to d > 0, 
1

0
a

a=δ  wfoundis the weakest found 

constraint. However, obtaining factored transfer 
functions from a state-space realization is not direct for 
high-order systems in the presence of delays. This fact 
justifies the adequacy of the proposed method to 
practical problems. 
 
Example 2: Assume that the transfer function of (1. a) -
(1.b) is first-order and single-delayed given by 

hs
1

cb
G(s) d

s a a e−= +
+ −δ

. If d > 0 and c = pb for any real 

p>0 then the open-loop linear system is Lyapunov´s 
asymptotically stable independent of the size of the 

delay h if a 0>  and [ )0,0δ∈δ  with 0

1

a

a
δ ≤  from 
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Proposition 1. Furthermore, the system (1. a) -(1.c) is 
absolutely stable in [0,∞ ) since Proposition 3 and also 
both Theorems 1-2 hold with q=0. Since the transfer 
function of the time-invariant forward loop is positive 
real then the closed-loop configuration (1. a) -(1.c) is, in 
addition, asymptotically hyperstable [3,6], i.e. The 
nonlinear function may be even time-varying while 
satisfying a Popov´s-type integral inequality 

( )t 2
00

y( ) y( ) dτ τ τ γΦ ≥ −∫  for all time and the 

closed-loop system is globally Lyapunov´s stable 
Assume that in this example c p b≠  but 

0 1

c b
d

a aδ
>

−
. Thus, asymptotic hyperstability 

and then absolute stability in [0,∞ ) still hold. 
 
Example 3: Assume that the transfer function of (1. a) -
(1.b) is a second-order one in the Simplest Particular 
Case and single-delayed given by 

( )hs
1

dcb
G(s)

ss s a eδ −
= +

+ −
. Thus, the closed-loop 

system (1. a) -(1, b), (1.d) is absolutely stable in (0,∞ ) 
from Theorem 1, under Proposition 3, with q > 0 

if )00,δ δ∈   with 0 1a a aδ λ≤ = <  with a > 0 

and 0 ≤ λ <1 (a is an absolute upper-bound of a1) 

provided that 
( )

( ) 22

22

a1

4/aqa1
d

λ+
λ+−λ> . 
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