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Properties of Absolute Stability in the Presence ofime Lags
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Abstract: This study is concerned with the properties obalie stability independent of the delays of
time-delay systems, possessing non commensurataahtpoint delays, for any nonlinearity satisfying
a Popov's- type time positivity inequality. Thatoperty holds if an associate delay-free system is
absolutely stable and the size of the delayed digwai® sufficiently small. The results are obtaitfied
nonlinearities belonging to sectors [0, k] andkh], K = 0 and are based on a parabola test type.
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INTRODUCTION

The absolute stability of dynamic is an interestin
issue since it refers to the global asymptotic ibtalof
a system under any feedback law provided by a wide
class of nonlinear devices. Such nonlinear devices  *
to satisfy a certain positivity sector-type conistis
The problem has been widely studied for the plant
delay-free case and nonlinear feedback devicesnwith
linear sectors [k K] and (k, K,) in (0, ) . Some
of those results have been extended to single-ydel&
cases provided that the transfer function of thedr
subsystem is (non critically) stable (i.e., Withlgmin
Re s < 0) provided that itH , -by is upper-bounded
with a sufficiently small upper-bound and that the
feedback nonlinear device satisfies certain local
Liptschitzian [regularity conditiod$ and to systems
with external delays (i.e., in the inpk) In this study, «
such assumptions are removed by allowing
nonlinearities simply satisfying a (in general non
symmetric) sector-type positivity constraints, npé
non commensurate internal (i.e., in the state)ydedad
either strictly stable (the so-called principal ea®r
critically stable (the so-called simplest particutase)
linear plants with a single critically stable palies=0.

with all its poles in Re s < 0 (i.e., Strictly skap
and H-norm| G(s)|. with R;=R" 0{0}

and A ;. () being the maximum eigenvalue of

the (.)- symmetric matrix.
It is said that a transfer function G(®)
matrix is strictly stable if G(s)J RH, and its

characteristic polynomial (or quasi-polynomial in
the presence of internal delays) is strictly
Hurwitzian.

A linear transfer function G(s) is in the prineip
case if it belongs torRH, and its characteristic

polynomial (or quasi-polynomial in the presence of
internal delays) is strictly Hurwitzian. It is ime

G, (s)

simplest particular case ifG(s)=—"~ with
G,(s)0 RH, .

An unforced linear system with r finite internal
point delays h; of state equation

X(t) = Ax(t) + D A x (t —hi) has two associated
i=1

systems without delays, namely:

Notation:

* An output- feedback nonlinearityd(y(t)) in a
Popov's sector] k;, k,|0[0,=) means that the

scalar real functiond: Rx[0, t] - R is such that
ky®)so(y(t))sk,yt) for all t=0 with

@(y(t)) =0 if and only if y(t)=0.

*  The Hardy spac&kH ., of the matrices G (s) tions delay

zl(t)=(A+iAi]21(t) Which describes the above
i=1

so-calledcurrent delay-free system time-delay system
whenh, = 0; i=1,r; and z,(t)FAz,(t) Which
is called thenominal delay-free system which describes
the above time-delay system whefr, =0, or when
[ o> 0, i=1,r.
Both systems have to be stable in order that the
system is a stable independenthef t

or matrices G (s) are proper real rational function delays:
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* Thel , - norm of a matrix (or vector) M is denoted d,(s)= d/s (Simplest particular case). Direct
as | M|, =4%2 (M ™ ) . In vectors such a calculations with (2) yield:
norm coincides with the Euclidean norm.

Descriptions of time-delay systems under sector-tgp  G(s)= ¢ [(sl— A)( 1-o(sl- A)_l(i Aie'hisjﬂ 3)
nonlinear feedback: Consider the single-input single-

output linear and time-invariant system: b+dy (s)
X(t) - AX(t) + 5ZA i X (t _hi ) + bu(t) (1a) Note that the |dent|ty

i=1

( ( )_J( £ —his)) -1

y(t)=cTx(t)+d&(t) (1.b) olsl=A) g A e

: =1+4(s,5)(s1-A) (4)

Under a nonlinear output-feedback law:
u(t)=§(t)=-o t (1.c) Holds provided that the inverse exists for Re §
(H)=e) (v®)) with A(s ,8) being defined by:

Or:
u=EM=-o( y) (10) A(S’J):‘S(S'_A)l{; Aie_h'SJ
where, x(t)OR", u(t)OR, y(t)OR are the state, (sl—A—éz A ie_h'sj * (5)
input  and  output, respectively, and A, =1
A, ;i =1, r,are real square n- matrices,, cOR",

dOrR and & is a real scalar parameter which is Wh‘?‘t _fOHOWS directly since from  direct
calculations:

introduced by convenience to govern the size of the

delayed dynamics for given matriced ; ;i :m. (I+A(s,5)(s|— A))

The initial condition of (1.a) is any absolutely

continuous functionp :[-h, 0] - R" plus, eventually, a [ I-3(s! _A)—l(iA ie-hisn -
function of zero measure of isolated bounded i=L

discontinuities defined on [—h , 0] where

. _ : The substitution of (4) into (3) yields:
h= Max( h, ) The nonlinear feedback device is

I<isr
defined via (1.c) or (1.d) by a nonlinear G(S):GO(S)+CTA(S’6)b (6)

function ®:Rx[0,t] -~ R satisfying® (y )=0 if
and only if y = 0 andklySCD(y ) <k ,y . The

feedback configuration (1.a) - (1.c) is called the
principal case and (1.a) - (1.b) and (1.d) is chliee
simplest particular case, both satisfying thatrds of

where, G,(s)=c"(sl- A)™ b+ d, (s is the transfer
function of the nominal delay-free system. The
following result holds trivially for the existce of
the inverse in (4) for Re & 0 if Gy ORH,,,
) namely, if the nominal delay-free system is ( non
Det[s I-A-> A e'“s): 0 implied Re s < 0. In  critically) stable.
i=1

Proposition 1: The linear forward loop of system (1) is

the second situation, the linear device adds atly (non critically) stable independent of the deldy& is a

stable simple pole at s =0. The transfer functibifldp

becomes: stability matrix (or, equivalently, iiGo RH ) and
. I5|]<35* with J,= (sI—A)'l(ZAie'hs]w
_M (S) — AT -h;s |7 i=1
GE=—>=c'|sI-A 3) Ae b
N @) in1 what is guaranteed if [3|<egl,  with
+d, (s 2 r -
0 @ gozgl(ZHAi"Z)zdo,and e,=|(s1-A)"]..
With d,(s)= d ( Principal case), Furtherm;‘rle_

1457



Am. J. Appl. i, 2 (10): 1456-1463, 2005

IG]. s” GO||W +|cf,| b ,.&() what is guaranteed |B| <1/g, with:
<|Gef. +[cl] bl (9) o |
£ =251( Z" Al ]250
the first inequality holding if|5|<&," and both =1
inequalities holding i{3 | < € 5* where: € :”(5 ' _A')_luw (12.b)
_ 58 . ¢ S & Furthermore:
tO) = T pols, =" e, © | .
1318, ald A RENERE
< | Gof. +lbl.l o . (2) (13)

Note that (1.a) may be equivalently rewritten as:

the first inequality holding if|5|< &5 and both
inequalities holding i16|< € 51 where:

X(t) = A 'x(t)+i:£1A i (x(t— h, )—x (t))+ bu(t) (9)

30, €, . o€ &

r
where, A’ =A+Z:Ai is the matrix of dynamics £ () = <€ (5)=W (14)
0

i “1-19]a,
associated with the current delay-free system desgr
(1.a) for iy = 0 so that it should be a stability matrix in Remarks 1: Note that the definition oH , - norms for
order that (1) be stable independent of the deflBlyss,  matrices implies:
(6) may be rewritten equivalently as:

-a) (Sl
(5121 Ia .

-1 -1
c(s)=c (1+a (s.8)(si-a)) (s1-A") b+dg(s)
=G,(s)+c"A'(s,8)b (10)

hereG,(s)= ¢ (s - A) " b+ d, (s, and: - .
whereG, (s)= ¢ (S ) ¢ (s, an and a similar expression for the replacement ofyA b

A .
. AR hs Note that in the simplest particular case,
A'(s.0)= 5( sl- A ) 1(2 A ( e - 1)] Propositions 1-2 do not hold since the delay- firsear
) = system has a critically stable pole. However, both
[SI—A' —62 A i(e—h‘s _1)J -1 (11) Propositions hold.for nominal and cur.rer]t delagefre
-— subsystems described by transfer functi@gs) and

G, (s) being strictly stable such that
Thus, one gets a subsequent parallel result ofGO(S)z sG, (s.and G, (s)=sG, (s.
Proposition 1 since G,ORH_ implies, and it is
implied since G is properly, that both A and A are  Popov’s parabola tests of time-delay systems with
. . —jah; point delays
stabilty matrices anggg(‘ ¢ *) =2 Popov’s parabola tests on sectors[O,k] for the
Principal case and (0, k) for the simpleof
N , ) particular case: Note that the results for the linear part
Proposition 2: Assume thatG,URH, . The linear ot the delayed system are analyzed together with th
forward loop of system (1) is (non critically) stab nonlinear feedback law (1.c) t, establish the cabsk
independent of the delays if'AisastabiIity matrix and te, ts on sectors [0,k] (principal case) and (0,k)
|5| <1/ &' with: (Simplest particular case). It is well known foreth
delay-free cade®” and for the case of presence on
external delays onfj}, that positive parabola tests
(12.a) guarantee absolute stability. In Section 4, theolaits
stability problem is extended for systems with iing
1458
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point delays based on parabola tests which are noghecked for absolute stability on closed or opease
addressed. The amount of tolerance to the delayedd: Kl or (0.k) with the current nominal delay-free

dynamics is made explicit so that the parabola isest
positive on a Popov's sector [0, k] provided thati
positive on a sector [0,0kfor the Principal Case. The

reasoning guidelines are similar fort the simplest(oyko)

particular case on the respective sectors (0, &) (an

ko). The decomposition of the whole transfer function

G(s) as in (6) subject to (5) by using the nomielhy-

free system transfer functioB o (S) or using (10)-(11)
with that of the current delay-free syste@, (s) is

used to obtain the subsequent result.

Gy (s)
1+h (G, (s)
checked on respective nominal sectorsk[Q] or
for h=h , +Ah and

é(s):CTA(S,é)b includes the effects of the
delayed dynamics. Now, ifGy, (S) is absolutely

transfer function Gy, (S) = being

stable for nonlinearities in [R,q] (or in (0K o) ),
thus, G , (S) is absolutely stable in [R,q+ h] (or in

0,k  + h) ) for Ah=0 and G(s)=0; i.e., in the

Proposition 3: Assume that there is a real constant@Psence of delayed dynamics provided that thedeste

d,>0 such that Re((1+ ) G ‘w)+ki)> 0
0

for some finite real constants g and k . Thus,
Re((1+ qw) G ( ja))+ki]> Cfor any  real

constants q and Kk
0 <k <k g provided that:

satisfying 0< g< g,and

(1_‘90)(k0_k) ]
kok (1+ak,)| b].] d.¢#.

|o] < Min[i,
SO

With the real constantse; defined as in

Proposition 1 andk ; being a finite real constant
satisfying:

(1366
| Ges)

- _|s(66)» G ©)].
. a|(ce)- G 6)].

Remark 3: Proposition 3 applies to both the principal
and simplest particular cases. However, for thegial
case, closed sectors [0,k and [0, k] may be
considered with kg being finite or infinity andq < q,

for any real constantq . The proof is direct from
previous results for the undelayed ¢a&&'”

Popov’s parabola tests on sectorg h, k+h] and
(h,k +h): The absolute stability on sectors

[k K+ h] for the Principal Case and (k, k+h) for the

Simplest Particular one may be performed equivblent
via the use of the modified transfer function:

G, (s)+ G(s)

G (8)= Gop (S)+ G, (S]=1+ (G, O 6()

Popov’s sector is not modified. Now, the basic itea
be developed in the following is summarized aofetl.
Assume thatGy, (S) is absolutely stable in a

reference nominal sector. Calculate a sector patent
modification (in terms of a maximum allowable k gk

and|Ah |2 0) and a tolerance to delayed dynamics (in
terms of maximum aIIowabId6|> 0 to quantify a

maximum aIIowabIe” G(s)

such that the current system involving delays remai
absolutely stable independent of the sizes of tHayd.
The subsequent result is an extension of Propasttio

. for give A -matrices)

Proposition 4: Assume that there is a real constant
d, >0 such that:

Re[ (1+ qw) Gy, (W)+ K |> C for some finite
real constant ko, >0. Thus,
Re[ (1+ qw) G, (w)+ k‘l] > 0 independent of

the delays for any real constants g and k satigfyin
0<qg<q, and 0<k <k o provided that|6| and

|Ah| are sufficiently small.

The links between the above parabola tests and
absolute stability of time-delay systems indepehadn
the delays are given in the subsequent section.

Absolute stability: In this section, it is proved that the
parabola tests of Propositions 3-4 of Section 3 igd
modifications based on the use of the current cfetey
system (see, for instance, Remark 3) guarantee the
absolute stability of (1. a) -(1.b) for all nonlare
feedback law (1.c) or (1.d) in the corresponding
Popov’'s sector. To address the intended resuls it
proved that a quality measure of the input-outpatrgy
time-integral of the linear forward loop is boundfed

all time under any feedback law of the given cliagise
related parabola test is positive. The output (inby

be decomposed as the sum of the unforced response
plus the forced one as follows:
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yt)=y ,,t)+y () (15) all finite t and also as t— o if f (t) is absolutely
y , (t)=c T qJ(t ); 0= integrable on (—00,00 ) is denoted by F, (joo).
Sinceu (t)=-d(t), -k <-(u@)/y@t))<k
o for all time, what implies from (18) and the use of
cT ( W(t)x, +J‘O Z LP(t— r— hi) ¢(r) dr] (16.a) Parseval’ s theorem in (20):
i=1

120 6 (j0)Uu(iw) | 2do =% Y ¢ (jo)U (i) do

y=cT[ W(t-r)bu@)dr+ dE@®)  (16b) son(ys+ko[Ralulel. [ u@ler) @

forall t = O, where: . . )
Define G(jw) = (1+ jax) G(jw) and

Xo=xg+f; 2 W(h—r)e@dr. v, (©) U(i®) = T 0g
transform of:

and y  (t) are the unforced and forced output o )

responses of (1) wher& o =¢(0) and W(t) isthe  a(t)=q e % ! |:x u (0 e o 2(r)dr:|

fundamental matrix of (1.a) which satisfies:

|U(joo)|2 is the Fourier s

where, X , (0) is the initial condition of the first-

1

qJ(t)=AlIJ(t)+Zr:AiLP(t -h,) 17)
i=1 1+qgs’

order filter Thus, one gets:

where, W (0)=1 andW¥ (t)=0 for t< 0. If Proposition 3 . 1w
holds then the stability of (1. a) -(1.b) is gudesl. I,Wyt(r)ut(r)drz—ﬂw Uf @)ar -y, (22)
Thus, Sup(| ¥ (t),)<k, <= and from (15) and

t=0

(16.a): For some real constant, >0 since U (t) is the
output of a first-order exponentially stable filterf
ly@)] |y ) +y, (t)| mpu:’;md existand since the Fourier transforthgj w)
= andY (, (ja exist for any finite t, the substitution of
<ku| %o lel 2 #]y ) (18) nUe) Y

(22) and (21) into (20) yields:

since CD(y (T))y(T)ZO for ®@(.) belonging to a 2 - B A
Popov's sector like those addressed in SectiorhB T Zn(y0+kk ‘“HX OH 2”C” 2% |ut(r)|dT)+ Y1

leads directly to: ~ ® A
Y >Min(ReS ,(j)+k 1)] 0, (joo)do
R} -0

Eoy(r)umar=1t (yv; Oy ©)drsys  (19) . . U (jw)?

() tO( Oy ©) arsvg = Min (Re G(jw)+ k™) | [u.(iw)* ‘(J,w)| dw
wORY i 1+ jwq

what implies from (18): =2Td\/|in(Ref3(jw)+k _1).[00 y f (1)t 23)
WR )

ity uoydr<y2+k, | %alldl it vl (20
to”f 0 w" O” 2” | 2 t0| | (20) since the hodo graph Guij is symmetric with respect

Note that the Fourier transforms of u (t) and)y (t g the real axis of the complex plane, Re @%jRe G
(denoted with capital letters) fulfill the frequanc (o and Im G @)= - Im G (i

. . . i - . . 2 o R
for all frequencyw where G (§) is the fl. q) ency o .
response of (1.a)-(1.b). Define for any scalar estor  that it suffices to test Re G(jw)for wOR;. By
signal f (t), a related signdl , (T)= f (1) for all real  taking any sufficiently large t=T in (28), it folles that
1 0[0,t ] andf , (1)=0 otherwise in(~«, 0 ) and @, (7) is uniformly bounded for alf 1[0, ], t 2T
any t= 0. Its Fourier transform, which always exists for and of absolute value which can be equal to orelarg
1460
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than unity only over a subset of [0,t] of finite aseire  [Simplest Particular Case] for a (.) in (0, k). As a
sinceli () is a continuous function which is the outputresult, ~u:[ 0,0) - R, y:[0,0)~ R  and
of a stable filter if g>0. By takiny — c, one . RX[O oo) >R
concludes from (1.c) - (1.d) that the signal u ytxt), asymptotically to zero. That result also holds for

0,(), §.() cannot diverge orf 0,e) for the linear o ninearitiesd (.) in sectors [h, k+h] for the Principal
plant (1.a) - (1.b) being in the principal casevided Case and (h, k+h) for the Simplest Particular Gaibe
that G (s) has no unstable zero/pole cancellatiomequirement of fulfilment of Proposition 3 is repked
provided that the inequality of Proposition 3 (s¢g0  for that of Proposition 4.

the variant of Remark 4) holds. In the simplest Direct extensions of Theorem 1 concerning the
particular case, the conclusion is identical byeegiing  kind of state-space realizations (1. a) -(1.b) leathe
slightly the above reasoning if the inequality of subsequent results.

Proposition 4 or its subsequent extension holduses

thatu , (.) diverges a¢ — . Thus, its squared value Corollary 1: Proposition 3 (or, alternatively, the
diverges at a slower rate from (28) except if uS3ero  constraint of Remark 4) guarantee for g>0 that any
over a real set of infinite measure. In that ca¥g) and  stapilizable and detectable non minimal realizatdn
then y(.) would pe zero over a set of infinite sw@a as G(s) is absolutely stable faP (.) in [0, K] (Principal
well. Since y (.) is a continuous function thext) - 0 Case) or (0, k) (Simplest Particular Case). Thatlte
as t — o while it is bounded. Thus,u(t) -~ 0 as  holds for® (.) in [h, k+h] (Principal Case) or (h, k+h)

t — oo while being bounded provided that G(s) has noSimplest Particular Case) if the requirement of
unstable zero/pole cancellation. The final condoss  fulfillment of Proposition 3 is replaced for thaf o
that_the system is gIobaIIy Lyapunov’'s s_,tak_JIe for a Proposition 4.

nonlinearity in the appropriate closed (Princip&@s€)

or open (Simplest Particular Case) Popov’s sectdeu

feedback (1.c) or (1.d). It remains to be proved th Coro”afy 2. Propositions 3 (or, .a_lternatively, the
global Lyapunov's asymptotic stability of (L. al.€) constraint of Remark 4) and Proposition 4 guarafiuee

and (1. a) -(1-b) and (1.d) to conclude the absolut9>0 that any stable non minimal realizat.ion of G(s)

stability of those feedback configurations. Sincg)is ~ (ven not being stabilizable/ detectable) is atisgju

bounded or{O ,oo), then O, (r) from its definition is stable for _the same corresponding Popov’s sectors

) ] referred to in Theorem 1 and Corollary 1.

(23) is bonded so that after comparison with itst la Theorem 1 applies when no cancellation is preseags

term, it follows that the input converges asymptaty  the realizations are non minimal. The plant stgbik

to zero if Proposition 3 or Proposition 4 hold. Shthe  automatically guaranteed from the strict positive

absolute stability has been proved what is summdriz realness- type inequalities invoked in PropositiBas

in the subsequent main results under some of th€orollary 1 extends the result of absolute stapbilit

following Assumptions: stabilizable and detectable realizations which oann

possess unstable zero/pole cancellations. Corolary

extends the absolute stability to all stable (chatien-

free or not) realizations since any stabilizabled an

the pair(A,c) is observable. detectable realization not being controllable and
observable has always stable zero/pole cancelfation
On the other hand, Proposition 3 required in Theote

Assumption 1: The pair( A, b) is controllable and needs Assumption 1 as a necessary condition sfnce i

] , ) the delay-free nominal system is not controllabtel a

the palr( A ,C) is observable. observable then the state-space realization is non

minimal. Similarly if Proposition 4 is invoked then

Assumption 2: The pair( A b) is stabilizable and Assumption 1 is required to guarantee the absence of
unstable cancellations in the current delay-frestesy.

the pair( A',c) is detectable. However, both assumptions are not made explicit in
Theorem 1 since they are ensured in terms of

Theorem 1: Assume that either Proposition 3 holds or, Sufficiency-type - constraints by the frequency-type
inequalities of Proposition 3, or respectively

alternatively, the constraint of Remark 4 holds de ,

(q=0 for the Principal Case). Thus, any minimal Proposition 4. Assump'tions 1 and &re relaxed to

realization (1. a) -(1.b) is absolutely stable.(gbal  Assumptions 2 and 2as corresponding implicit
asymptotically Lyapunov’s stable) under feedback)(1 requirements in Corollary 1 since the nominal/coire
[Principal Case] for all® (.) in (0, k) -or (1.d) delay-free state-space realization is required dsses

are bonded and converge

Assumption 1: The pair ( A, b) is controllable and
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(at most) stable cancellations, if any, as a necgss 0 1 0
condition for G(s) to have no unstable zero/pole A :[—aB -(B+ a)} ; A1:a1|:_
cancellation. The various given Assumptions ardulise )
as preliminary tests before checking the fulfilliierof ~ #>0 and d > 0. The open-loop forward-loop is
Propositions 3-4. Theorem 1 and Corollaries 1-2pado ) ]
simpler versions than those deriving from propoaiti ~ globally asymptotically stable if J| <
3-4 in the special case when c=Pb with being atipesi
definite symmetric real matrix. The subsequent Itesu stability matrix satisfying AT P+ PA=- L for some
applies to the Principal Case for kea follows.

1} with a > 0,
-1

a

a,

and A is a

real n-matrixP=P " >0 for any given real n-matrix

- T .
Theorem 2: Assume that c=Pb witlP=P T >0 and L=L " >0. It IS well-known that

the unforced nominal-delay free system is expoaéwnti P:j T Tl a . A simple calculation yields that
stable satisfying the Lyapunov matrix equality 0

ATP+PA=-Q=-Q "<0 with  proposition 3 holds withq—Pb_C d o is calculated by

|5|<50=( (sl—A)-l[gAie—hisJ Jd

WJ " and using as<agaa and
that the transfer function of the nominal delaefre aos\/1+[('g+a)2 +(:3+a)J obtained from the
systemG,(s)=b" P( sk A™ b+ ¢ is  strictly a’p?

positive real (i.e. Re g(s) > 0 for Re & 0 and G calculations of the relatedH .- norms. Thus, from
o (s) is strictly stable). Thus, G(s) is strictly ite =~ Theorem 1, the feedback system (1) is absolutalylest
real and any stabilizable and detectable stateespador any nonlinear device satisfying either in ¢9)
realization of the forward linear system (1. a).bjl under feedback (1.c) or in (&) for the feedback law
under nonlinear feedback (1.c) is absolutely stdbite (1.d). The associate transfer function posses ietlgtr
all nonlinear devices within the sec[@r,oo). The  stable zero/pole cancellation at s $ which has not
result also app”es to any realization which is notbeen taken into account in the above calculati®hss

stabilizable-detectable possessing only stable/zel® IS reasonable when the transfer function numeraolr
cancellations in its transfer function. denominator are not factored explicitly from thatst

A similar result to Theorem 2 may be obtained forSPace description especially for higher order systdf

the Principal Case by assuming the strict positiveSUCh a cancellation is known and removed for a

minimum state-space realization of (1.a)-(1.b) itexy

realness of the transfer function of the curretaygifree . P _ (1.2)-(1.b)
- . .in A=-a, A;=-a, b=k, c=1 then
system from Proposition 4 for g=0. Since a Popov’s-

type integral inequality: 5, = da’ with P = 1/k,g=0. In this
t ] ° |a1|(da+ 2k a ) 3
IO y(r) @(y(r))dr2-y73 simple example, the calculations may also be pewadr

from the real part of the transfer function once th
is satisfied for all time and the transfer functiohthe ~ cancellation, if known, is removed. In this caseist
. _. . . - -y a X
time mvanan} forward loop is strictly posmvealethen leads to d > 05, = wfoundis the weakest found
the system is, furthermore,asymptotically hypeblsta ‘al‘
independent of the-<.jel]ays (which is a stronger @myp  ;ongtraint.  However, obtaining factored  transfer
than absolute stabilify® what means that Lyapunov’s functions from a state-space realization is natdifor
global stability holds even if the nonlinear devidec)  high-order systems in the presence of delays. fiuis
is time-varying. If the forward-loop transfer fuimrt is justifi_es the adequacy of the proposed method to
positive real, rather than strictly positive reahe  Practical problems.

closed-loop system associated with tr)e PrincipakGa Example 2: Assume that the transfer function of (1. a) -
hyperstable (i.e. globally Lyapunov’s stable fory an (1b) is firstorder and single-delayed given by

nonlinear device (1.c) satisfying the above Popov's ch
type integral inequality). G(S):m +d. Ifd >0 and c = pb for any real
p>0 then the open-loop linear system is Lyapunov’s
EXAMPLES asymptotically stable independent of the size & th
Example 1: Consider (1) with n= 2, r = 1; delay h if a> 0 and |6|D|_0,60) with &, Si from
b"=(-1,8) k ¢'=(1, 0 and |a,|

1462



Am. J. Appl. i, 2 (10): 1456-1463, 2005

Proposition 1. Furthermore, the system (1. a) }(kc

absolutely stable in [0») since Proposition 3 and also
both Theorems 1-2 hold with g=0. Since the transfed.

function of the time-invariant forward loop is ptat
real then the closed-loop configuration (1. a)cX1s, in
addition, asymptotically hyperstabl€®, i.e. The

nonlinear function may be even time-varying while
inequality

satisfying a integral
J‘(:y(r) ®(y(r)) dr = —y? for all time and the

Popov’s-type

closed-loop system is globally Lyapunov’s stable

Assume that in this examplec#pb but

ch
a-d,[a
and then absolute stability in [&) still hold.

d>

Example 3: Assume that the transfer function of (1. a) -
(1.b) is a second-order one in the Simplest Pdaticu

Case and single-delayed given by 7.
G(s)=c—b_h + 9 Thus, the closed-loop
s( sta-od € S) S

system (1. a) -(1, b), (1.d) is absolutely stahl¢0i, o)

from Theorem 1, under Proposition 3, with g > 0

if | 6]0[0,9,) with J,<|a,|=Aa<a with a > 0
and 0 €A <1 (a is an absolute upper-bound @&i)
(A1 )ato) 2a%/4

(1+\ ) 2a®

provided thatd >
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