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The Possibility of Cyclical Behavior in a Class of Dynamic Models

Anjan Mukher;ji
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Abstract: The study investigates conditions under which gedous cyclic behavior may be
observed within the context of Predator-Prey (Letadterra) Models. The analysis also establishes
conditions under which such behavior is non-existemd hence establishes conditions for global
convergence to the interior equilibrium, whenevieexists. The results are then applied to two
diverse sets of economic exercises and shows hewctimclusions of those exercises may be
established under a much weaker set of assumpt®ased on these discussions, a numerical
example of robust periodic behavior is provided.

Key words: Predator-prey models, Lotka-Volterra models, romgstodic behavior, Dulac’s criterion,
Poincaré-Bendixson theorem, Goodwin growth moda&t& Island mystery

INTRODUCTION Brander and Taylé¥, who apply the model to analyze
the Easter Island Mystery, Cressnetal.*” who apply
Economic fluctuations are matters of great intdns this model to study the evolutionary dynamics arfner.
interest and there is a rich history of attemptprvide ~ There have been applications in areas other than
an explanation for such behavior of particular iese  economic8”, as well.
are fluctuations which persist. There have been, The Predator-Prey Model may be described thus.
basically, two types of explanation: the first eslion Consider an environment made up of two species of
exogenous shocks, either from the demand sideoor fr life-forms, one of which preys on the other: thedator
the supply side (See, for instance the contributbn and the prey. Let the population of the prey be
Kydland and Prescétt, mentioned in the citation of the designated by x and that of the predator by y. The
Nobel Memorial Prize in Economic Sciences in 2004)simplest formulation in Samuelddnor Goodwitt", for
to explain fluctuations in economic activity; thecend instance, involves the following basic assumption:
approach is to consider whether cyclical behavtald  the absence of the predator, the population ofptey
arise from internal or endogenous sources (Exangdles grows at a constant proportional rate a; and orother
this typeF]may be found in the works of Schumpefer pangin the absence of the prey, the populatiothef
Wicksell™ for example. For Keynesian type models ,oqat0r decays at a constant proportional rataebe(
\k/)vhtere cycllcallt. bl_ehe}wor t?]tems from t.an '%teracgonboth a and b are assumed positive). In the presehce
etween a multiplier from the consumption side and 1,5y, e prey and predator, adjustments to thiscbas

accelerator from the investment side, among theemorstor have to be made and we have the following(Bq
influential have been the contributions by Goodii y :

The present paper belongs to the latter category. Y — v .

Further, we should point out that by cyclical X=x(@-ay) andy= yg x- b @
behavior we shall mean persistent cyclical behavior
behavior of trajectories which spiral in towards an
equilibrium or steady state is not really propeclical
behavior since the extent of these fluctuationsl wil
eventually die out. Finally, we shall be concermath
models of the Predator-Prey (alternatively, Lotka-

Volterra) type. These models have been studied by (x = 0,y = 0) {Trivial Equilibrium or (TE)}

economists since the time Samuel&8nturned his - o
attention on them:; one of the most well known = PB.y=ak){Non-Trivial Equilibrium or (NTE)}

applications of this model is the paper by Goodt\in . . .
Such models continued to be studied and applied€éMo We are mteresteijo N whatAha:\ppeps to th,e golqun
recent contributions include Mukhé¥i which O the system (1),(z°) where "2= %y beginning
examines the robustness of cyclical paths in Goddlwi from an initial configuratio°. In particular, we shall
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where, a, B are assumed to be positive and are to be

interpreted as the effect of the presence of opelption

on the other. We shall refer to (1), as the bagitons.
There are two equilibria for the above system of

equations:
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be interested in finding out whether any periodic o the prey behaves according to a more complicatéd bu

cyclical behavior is possible. still fairly standard rule, the logistic rule:
The paper begins by setting out first, the well-

known dynamics emanating from the basic equatisns a X =xa[1— ﬁj

a benchmark; this is followed by noting the change K

results when there is a perturbation in parameires. . , . .
The sharp differences in results make the nept ste"Vne€re, K is the carrying capacity of the preys:, itee
worthwhile; we set-up a general formulation of the&nvironment cannot sustain a population which is
Predator-Prey Model and establish that under standa9réater than K; in the basic equations, it was mesu
conditions, periodic behavior is non-existent. Thiso that Kis infinite. Thus the environment places a
allows us to deduce what changes need to be irteatiu "eStriction on the growth of population of preysown
into the basic structure to allow for periodic beba ~ 2diusting for the presence of predators, we haviirfy
We study the most general form of the predator-prey = &K > 0) and keeping the behavior of the predato

model; this was investigated by Kolmogo?tdvway population unaltered, we have the following Eq: (2)

back in; a thorough report on these results isainatl
in Freedmat®. We shall show that our results are more
general and our point of focus is different too.

We use the derived results to discuss tw
applications of the Predator-Prey Model; we shoat th
our methods reveal that the specific assumptiorderma
these applications are not really needed for tisalte
each have deduced and, in the light of these ese=y,cive
go on to construct an example of a Predator-Pregielio
where robust periodic behavior is exhibited: thiaraple - - —
also serves as an illustration of how the framevadithe (x=0.y=0(TE) .(x= alg, y= of MPE
Predator-Prey Model needs to be altered to adroi su And:
behavior. A last section contains, by way of cosidn, '

x=x(a-yx—ay)andy= yg x b (2)

Notice that by settingy equal to zero we revert
%ack to the earlier system. Due to the presendheof
termy, it may be noted that:

Claim 2: The system (2) has the following three
equilibria:

some discussion of related literature. (x=b/b, y=dY NTE
The dynamics of the basic equations: We note first of Where:

all, the following local stability properties of @h '

equilibria mentioned above. The details can beinbth aB-by
from Hirsch and Smalfé!, 0= B

Claim 1: For the system (1), TE is a saddle point while

NTE is a center. We assumed to be positive. In other words, we

have yet another restrictiog<gB/b; since we are
Next, we note that, so far as global stabilityinterested in showing what happens for small vahfes

considerations are concerned, we may make thevfaip ~ the parametey , this restriction is not a problem for our
analysis. Finally, in the NTE, although the sizetlod

Claim 2: With any z° = (x°, y°)>(0,0) as initial point, prey is the same as in the earlier case (wher), the
the solution to the system (1) is a closed orhiuad  size of the predator population is reduced.
NTE. We turn next to the stability properties of these
The above claim may be seen from the following equilibria; first, as before, we consider the local
diagram (An analytical proof is provided in Hirsshd ~ Stability of equilibria. Once again, details are lie
Smalé4. found in Mukherjf.
This result has some times been used to explain
why the population of some species constantly keeflaim 3: For the system (2), TE is a saddle point;
chasing one another and never settles down toieey f MPE is a saddle point while NTE is locally
values. We investigate next what happens when wasymptotically stable.
change the basic story a little bit (An investigatinto . , .
the robustness of the periodic behavior exhibitgdhe In addition, we have the following global stalyilit
solution to (1) is carried out in Mukhé¥). result:

A perturbation: Suppose that we say that when left toClaim 4: For any solution to (2) with a strictly positive
itself, in the absence of the predator, the pomradf initial point converges to the NTE.
28



Am. J. Appl. Sci., 2 (13): 27-38, 2005

p1 M(0,0)> 0, 0= N(0,0); M (x,Y)

T<O0 N, (x,y)>0 0 (xy00, x0,

(A subscript will denote a partial derivative).

P2, My (x,y)<O,Ny(x,y) <00(x,y)00.x0, (Non-zero
values of the partials M N, are interpreted as the
existence of ‘social phenomenon’ by Hirsch and

b3 Smalé“. P2 ensures that such phenomenon do not
1 increase the rates of growth of population of prayd
0.5 predators).
A pair of functions M,Nsatisfying the above two
0.5 1 15 2 25 335 4 conditions define a Generalized Lotka-Volterra Syst

(GLVS) given by Eq. (3):
Fig. 1: The predator-prey model (a =243 = 1)

M

X =xM(x,y), ¥=yN(x,y) 3)

As before, the above formulation captures thateth
are two species in a particular environment, onstoth
preys on the other (the predator and the prey). The
predator requires prey in order to subsist white ghey
can live off the environment (this is not taken fap
consideration within the model); using the earlier
notation, the rates of growth of the populationtiod
species are related as follows: for the prey, tbatgr the
population of the predators, the lower is the gregte of
growth other things being equal &0; and since the
environment too is limited in some way, the rate of
growth of the prey, given any fixed level of the
population of predators, is decreasing, if atialits own
population level (M <0). For the predator, on the other
hand, the rate of growth of its population increasgth
below. The difference in results due to the preseofc the populatlon of the prey ar_1d_ decreases with w8 o

. . . population, other things remaining the same. Thitheé
the termy is clear when one compares Fig. 2 with the iionale for P1 and P2. We call the system (3), a
earlier Fig. 1. , _ _General Lotka-Volterra System. Such a system was fi

To sum up: the dynamic conclusions of the basigdied by Kolmogord¥?: however as we shall show
equations are very sensitive to the assumption roade |ater, the restrictions employed were stronger Gks
the rate of growth of population of preys (or prets).  example, apparently Kolmogorov required to impasie x
Details of similar exercises may be found in Mufifér yN,>0; in Freedmdi where a Kolmogrov type result

any general statement can be made about cyclicghngitions as well).

behavics)r in such model; (the statement in Hirscth an We begin by noting that for the system (3) given
Smalé™, the paragraph just before the statement of the1 andp2, the following are the types of equilibria (A
section titled Problem). fourth possibility with only predators, is of coars

A general Lotka-Volterra model: We attempt here to IMPOSSible under our assumptions):
provide a general treatment of Lotka-Volterra Medel | e B

and identify conditions for periodic behavior and No Species E_(OLO) o

convergence. Apart from being of independent istere *© N0 Predator E (%, 0), % >0

such results might be of specific interest to ayver * Both Species £(x,y)>(0,0)

varied set of problems, as we hope to illustrate.

The basic feature of the predator-prey model er th Notice first of all, that these equilibria are
Lotka-Volterra models is a pair of functions. Let M independent of one another. Consider for exampe th
be two functions M,N:0.x00,- 0 be continuously following specifications of the functions M,N Edt)(
differentiable (. denotes the non-negative real line, [0,

]) and satisfy the following: M(x,y) =a-ax-by; N(x,y)= dx-By- ¢ (4)
29

Fig. 2: The predator-prey model (apbB as abovey
= 0.5)

To clarify the situation further, consider the ig
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where, a, b, ¢, d >B,a = 0. Itis immediate to note that. (4) when all the parameters a,bgc8l are positive: this
system satisfieB1 andP3. We note that:

Claim 6: For the above specification of the functions M, .

N, E, E; both exist if and only iti>0;ac<ad. If a = 0, Claim 8: Under P1 and P3, there are at most three

E; exists but Edoes not; whereas df > 0 buta ¢ > a d, equilibria; g, E, always exist; Emay also exist under
E, exists but Edoes not. some conditions (Essentially, the curves M(x,y) = 0
Consider, next, the following forms of the N(x,y) = 0 must intersect in the positive orthant)

functions M,N Eg. (5):

Proof: We have already seen that there are three types

of equilibria possibleP3 ensures that there cannot be
1+ x ) multiple equilibria of any type, since intersecson

1+ dx between the curves M(x,y) = 0, N(x,y) = 0, the Xsax
T lry Py-cl<a<lbp> 0.¢ e the y-axis is unique if at all; since the first has
negative slope while the second has a positiveeslop

M(x,y) = irax_ by and N(x,y)

Note that M(0,0)>0>N(0,0)=1-c; MM,;<0;N,>0,

. dy -M dy -N
MM, <0; N,>0,N, <0. = o =—xe2 =—Xsq
’ ’ dx | Y7 M, dx | MT0ON
Claim 7: For M,N given by (5) there is no o
E - and @> d-c h ) Hence there can be at most three equilibria.
2 8%y B ereisno & Since M(0,0) > 02 M(K,0) there is some
x0(0.K] such that M(x,0)=0= (x,0) is the B

Proof: The first part of the claim is immediate since
M(x,0) = 0 has no positive solution. Notice thabraj
M(x, y) = 0, we have y>a/b.

equilibrium with no predators.

Next by virtue of the restriction placed on the

Similar considerations along N(x, y) = 0 lead as t function N(x,y) we note that there i%(0) such that
conclude that along this curve, y>(3cConsequently N(x(0).0)> 0= N(0,0)  gpg hence there is
the claim follows. X X.0)= _

The above discussion goes to show that theXD[.c.)’x.(O))DN.(X,O) ° - .X>X then an .E'
existence of equilibria Fand E are independent of one equilibrium exists; to see this, note that undes th

another and we need to strengthen P2 in order tgondition MX0)>M(X0)=0=NX0) e
specify existing equilibria. We do so below: N(X,0)> N(X,0)= 0= M(X,0) . thus from continuity,
M (x,y) <O,N,(x,y)<00(x,y)00, x0, ; there has to be somé&>XandX>X and some
ii. There is some positive integer K such that Correspondingy >0 such thaM® ¥ =N, 9) - ihe E
P3. M(x,y) <0 if either x> K or y= K; equilibrium.
iii. For any y= 00x(y)Od N(x(y),y)> 0;
futher foreach e @ K(xJ & K(xx N(x,y¥ C Local stability properties of equilibria: We examine

the local stability of the equilibria;fE, and g in this

To maintain our analogy withx being the section. First of all, we need to compute the Jizobf
population of prey andy being the population of .4 system (3) giveR1 andP2:
predators, the above specifies that first of &l tates '

of growth of population of preys and predators are
decreasing functions of their own population, other [M(X'VHXMX(X'V) XM, (x,y) J
things remaining the samB2 had merely required that YN, (x,y) N(x,y) + YN, (X,y)
these be non-increasing functions. Secondly, Heeit
the population of preys or that of the predatoeslarge  Thus at E: (0,0) the above reduces to:
enough, the rate of growth of population of preys
cannot be positive; and finally, for the growtheratf + 0
the population of predators to be positive, gively a (0 _]
current level of its population, requires an adégua
population of preys; and given any population afys; . ) .
if the population of predators is large enough, the  This establishes that at,Ehe Jacobian has one
growth rate of the predator population will be non-positive and one negative characteristic root agwuta
positive. That these requirements are not tooictiseqr  the equilibrium is a saddle-point. Next ab, Bhe
may be seen by referring to the specification gilkgn Jacobian is given by:

30
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0 N(f(,O))

(

The sign of the ternN(X,0) depends on whether
X >X : the condition for the existence of Eas we had
shown in the proof of Claim 8. Since by definition,
N(X,0)= 0, if E3 exists, k is a saddle point, since then
one characteristic root is positive and the otlegyative;
whereas if there is nosEequilibrium, then Eis locally
asymptotically stable since both characteristidsare
then negative.

Whenever E exists, the Jacobian evaluated at
has the following sign pattern:

)

Consequently, whenevégexists, the Jacobian has
both roots with real parts negative and the equiiih
is locally asymptotically stable.

Finally, consider the system (1); we may conside
this to be a special case of (4) wheree3 =0 . Itis
easy to check that under this restriction, theesyst4)
(or the system (1) (Notice that there has beenaagd
in notation from the one used in (1)) has two ebrid.

E;: (0,0) andE3 :[%%j and at i, the Jacobian has the

)

Thus under (1), the characteristic roots are pur
complex, the real parts being zero. HengésE center.

E

+

following sign pattern:

Global stability properties:
Invariant set: For the system (3) we shall refer to a
solution originating from some point xy°) by the
notationd(x°, y°) and our objective here is to tie down
what happens to this solution as ®. We show that
under our assumptiorigl and P3, there is an invariant
set @O.xO". That is, the solutiom(x°, y°) is defined
for all (x,y)JQ and remains within the set Q for all t
We do this constructively in the following steps.
FromP1 andP3, we concludeM(x,y) = 0, N(x,y)

r

e

Note thatx’ =x(y)=y =¥y . On the other hand,
X =X >x(y) = N(X,y¥) >0 (Since N(.,.) is increasing
in x and N(x(¥),¥) =0). Thus byP3, there isK(X)
such thatN (X, y) < 00 y= K(X) ; hence there is y* such
that N(X,y") =0 as claimed.

Now consider the rectangl® made up with the

points E: (0,0),(0,y®),(x*, y*), (0, x*).
We may now show:

Claim 9: The sefQ defined above is invariant.

Proof: Consider any(x,y)JQ, whereQ, O Q is the

boundary ofQ and consider the solution (trajectory)
di(x,y). We shall show that the trajectory eithe
coincides with the boundary or ent€'s

E; is an equilibrium so any trajectory originating
there stays put; in casg’ =X, the point(x’,0) is
another equilibrium, Eand once again, any trajectory
originating there stays put; in cagé=x(y) >X, any
trajectory originating from (x*,0) hag =0,x< 0,

Since M(x",0)<M(X,0)=0 and so the trajectory
coincides with the-axis, and is directed insid@ along
the boundary. Notice that any trajectory origingtin
from a point on thex-axis is directed along the axis
towards the equilibrium £and hence stays with@.

Consider, next, any point (0,y) withOgy*; the
trajectory  originating from such a  point
hasx =0,y <0sinceN(0,y)<0 and hence the trajectory
coincides with thg-axis and is directed towards.E
Any trajectory originating from a point of the &p
(x,y¥), 0O<x<x* has x<0,y<0 since M(x,y*)<0,
N(x,y*)<0 and consequently, the trajectory is diegt
inside Q. Similarly, any trajectory originating froa
point of the type (Xx,y*), O<gy* is also directed inside
Q. This completes the demonstration of our claim.

Figure 3A and 3B would clarify the claims made
above (Although the lines M(x,y) = 0, N(x,y) = Ovea
been drawn as straight lines they need not betds; i
their slopes which are of importance).

General conclusion: By appealing to the Poincaré-

= 0 are respectively downward sloping and upwardBendixson Theorem, the following conclusions may be

rising curves. Also, note that M(0,0) >2 M(0,K);
hence,OyO (0, K such thai(o,y) = 0. Note that k&
exists; denote this Kk, 0).

Giveny noted aboveP3 guarantees that there is
X(y) such thatN(x(y),y) =0.

Define x* = Max[X ,x(¥)]; next consider, y* such
that N(x*, y*) = 0; that this is well defined magtseen

as follows.
31

noted (The investigations of Kolmogof\ as reported
in Freedmah®, lead to Remarks 1-3 but it should be
pointed out that the conditiof and P2, which are the
basic conditions employed in this study are wedhean
the conditions employed in Kolmogorov's discussion
and the proof provided iRreedmalt®).

Remark 1: For any (x,y)J.x [0, the trajectoryp,(x,y)
must enter Q and either approaches equilibriunheret
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is a limit cycle in Q. Any limit cycle, if there isne,
must surround an equilibrium. Y v

Remark 2: Further, when there is nosEas in Fig.

3A, the triangular region bounded by the axes and
the curve M(x,y) = 0 is an invariant subset of Q:
once entered, it cannot be left. In such a situmtio A
there can be no limit cycle and hence any trajgctor
must approach the equilibrium,.EConsequently,
ultimately, all predators disappear.

N(x.y)=0

Remark 3: On the other hand, when we have an
equilibrium such as £as in Fig. 3B, there appear to be
only two possibilities for any trajectory: begingifrom
a strictly positive configuration: either we have
convergence to For a limit cycle around £ Neither  Fig. 3A: The Invariant Set When there is no E3
E;nor Excan be approached.

However, giverP3, we can go further. Recall that
under this restriction, we have first of all that <@, y*
N,<O over the domain of discussion. Then consider the

A

E1 E2 x*

A

. 1 . .. M(x,y)=0
function 6(x,y)=— in the positive quadrant and N(x.y)=0 T
X.y

consider the expression: l

3(80x, Y)-XM(x,Y)) , 9(B(X,y).yN(x,y)) N
0x oy

= 1M, xy) + 2N, (x,y) <O
y X

El E2(x*)

Over the entire positive quadrant: Hence by
Dulac's criterion (Dulac’s Criterion: If there etdsa
function O(x,y) continuously differentiable on the Claim 10: A necessary conditions for the existence of
region S such that the expression: periodic or cyclical trajectories to (3) is that xM yN,
0(B8(x.y)-XxM(x,y)) , 9(B(x,y).yN(X,y)) is not change signs on the positive orthant.

ox oy It should also be clear from our discussion that t
identically zero on S, and is of constant signnttieere ~ restriction P3 is not really essential in its eetyjr for
can be no closed orbits of the system in S. Ndtie¢ ~ Our conclusions to follow: The only use madeP8f{ii),
the requirement is that the above expressiogoig0  (iii) was to demonstrate that trajectories remaithin
but not 0 everywhere.), there can be no cycleshén t SOme bounded region. We may note this for future
positive quadrant. reference thus:

S T.hu,s when tthelzet IS nto 'equmbrlum w;th‘[;tioth Claim 11: Under P1 and P3(i) if the solutions to (3)
Ppec(jn?s ’prese.?t; a .ra!fec orle.?bc.onverg_etho ‘Both remain bounded and if either,Mr N, is not identically
redator: equiibrium, It equiibrium - wi 0 zero, then there can be no cyclical or periodigttary.

tsh?sezezilig:ﬁfnint_rgxfts'l Wsugg!shg\ﬁir%%nﬁ?rg;mge t A final appeal to the Poincaré-Bendixson Theorem,
q ' pply A allows us to note the following set of sufficient

recalled that we do not need the strict sighs @& th o . 2 S
: L ) ; . conditions for the existence of cyclical behavior:
partial derivatives M N,; the weak signs admitted

under the restriction P2 are sufficient togethetvé  ¢|5im 12 |f any solution to (3) remain bounded, ‘Both
proviso that they are not identically zero. Consgily, Species’ present Equilibrium SE exists and

if we are interested in exhibiting cyclical behaviaf s 5 oaN L n 5w

any kind, we must have some variation in the sifn o xMx(x,y)+yNy(x,y)20 . Wwhere all terms are
My, N,. In particular, we may state (There is thus noevaluated at £ then the solution to (3) would exhibit
possibility of cyclic orbits under the (Kolmogof¥ or  cyclical behavior i.e., either the solution is ased
Freedmali¥ assumptions): orbit or there is a limit cycle.

32

Fig. 3B: The Invariant Set when there is E3
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We shall use the above claims to provide an, . 1-u
example of a Predator-Prey Model with robust cydlic (VJ _| M o —(o+B} )
behavior later on. First we show how our method\u
allows us to obtain results which are a lot moreegal u{y+a) +pv}

than the existing ones. ) ,
These equations constitute a Lotka Volterra

system of the type we analyzed above. Consequently,
for any arbitrary initial point (¥, u°%)>(0,0), the
above system of equations generates a closed orbit
around the NTE. The situation depicted in Fig. 1
gpplies and so does the analysis.

Applications

Stability in a Goodwin-type growth model

The Goodwin growth model: The Goodwiff
contribution was perhaps one of the more influéntia
studies on growth theory. The model is based on th

following assumptions: A modification: Before passing on to other matters, it

should be pointed out that possibilities of con

* Steady disembodied technical progress in Goodwin type models have been noted (MukFerji
+  Steady growth in labor force contains a detailed analysis of perturbation ezegci
«  Only two factors of production, labor and “capital' within this model). An exercise due to Flaséflemay

e All quantities are real and net be reported to indicate the benefits obtained fitbmm

+ All wages are consumed and all profits are saved approach adopted in the present paper.

« A constant capital output ratio Flaschel considers the following variation to the

« A real wage rate which rises in the neighborhoodG0oodwin basic model:
of full employment .

W o nm=f(v),f(v) >0

The following notation is used: ‘q" denotes output w

‘K’ is capital; ‘W’ is the wage ratea = age™ is labor

productivity growth,a is a constant as specified by (i);

the constant capital-output ratio @s; u, the share of

workers in total product = w/a; naturally the shafe

the capitalists' is 1-w/a; investment is given by

k=(1-w/a)q; ¢, employment is then g/a; labor n at

time t is given by g™ where B is constant. The

employment ratio is given by v &n. Finally (vii) is

captured by the equation Eq. (6): Thus, in contrast to what we have described as the
original Goodwin formulation, the Phillips curve)(6

W has been adjusted for “money illusion” so that when

W fw=-y+pv (6) n>0(<0) workers receive a lower (respectively, higjhe
real wage than they bargained for; and the investme

) ) ) ) ] accumulation equation is a straightforward geneatitin
~ Goodwin pointed out, in this set-up, that, firsed,  fom the constant savings rate assumption. Compinin
¢/¢=@A-w/a)/o-aso that Eq. (7): these, we have the following system Eg. (10):

(v] _ [v{s(u) lo—(a +[3)}J
u) (uff(v) —a-ng(u)}

where,t= g(u), g'(u)>0, g(0) = 0 to denote that the rate
of inflation /7is estimated, as a constant mark-up over
labor unit-costsu; in addition, assuming a constant

output-capital ratio as before, we have:

E:s(u)YlK=S(U)/0,é(U)< (

V=2l _(a+p) (7) (10)

And further using the assumption contained in (6),  The difference between (9) and the above is easy t
we have Eq. (8): spot: in fact if we were to replace the functio($, &(.) by
linear affine approximations, then (10) could bersas a
u_ perturbation of the system (9) for non-zero valiesg; in
u “(yra)+pv ) this sense, the relationship is similar to the lneteveen (1)
and (2) except that in the present case, it isrdte of
It should be clear that the system of equationgrowth of the ‘predators’ which have been perturbed
made up of (7) and (8) may be written as Eq. (9): hence we expect convergence once again (In th&sen
33
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the Flasch&f! enquiry is similar to the one carried out in This has the same sign (non-zero) on the positive
Mukherjt®; however, the results obtained are different). quadrant: hence by Dulac’s Criterion, there cambe
For the system (10), the following result is clatn  cycles in the positive orthant.

by Flaschét®: Thus for convergence to equilibrium from any
Assume that the Jacobian J 5)(&f the system initial positive configuration, one may note that
(10) satisfies the following: additionally we need to show that the solution is
bounded and one may use the Poincaré-Bendixson
e TraceJ<O, Theorem to complete the demonstration. It may be
e DetJ>0and recalled that the variables u,v are, by definition,
o Jo 20 fractions and cannot exceed unity; consequently the

bounded nature of the solution should follow frame t
Everywhere or(1?, then the equilibrium u*,v* is model itself. Notice too that it is the parametewhich
asymptotically stable in the large. eliminates cycles as possible trajectories.
Now J is given by the following matrix: i i L
The Easter Island mystery: An interesting application
s(u)/o-@+a) Vvé(u)lo of the 9Predator Prey Model is the paper by Brarahel
( o) f) ~(a +n)] Taylof®. The problem they seek to analyze is the
mystery of the island in the Pacific called Easstand.
BrieflygﬁThe interested reader is referred to Bremaind

It should be easy to see that at the equilibrium ; . .
all the conditions mentioned above are satisfiedTaylo'{ and references mentioned therein for details),

notice too that the only condition which is easily "€ Mystery is the following: when contact with
seen to hold all over the non-negative orthantes t E“fopear.‘ Civilization was established n the eighta
requirement on the off-diagonal terms, given thgnsi gentury,tlt V\llas.ariso l;ezt;\hzled that the |s:and 'nhaate
restrictions on the derivatives of the functions2E€N Notonly richerbut also moreé populous Inpthet.
f(),s(.); it is not at all clear how the other two This inference was based on the existence of huge
requirements on the trace and the determinant ar%tatuesr(]:_a;]ved frlgrr:)volcanlcdstonef], zome of m?ﬂa 80
going to be met on the entire non-negative orthanPN€S Which couid beé moved weigned as much as
and hence these are demanding restrictions. ons while the largest, lying unfinished in a qyarr

However without imposing any of the above weighed as much as 270 tons. The puzzling aspext wa

requirements (Notice too that the conclusions db nothat the Stone Age civilization found in the islamd
q 1722 did not have the skills required for either

depend upon the form of the functions f(v), s(w)g( ; -

. ) P producing these statues or moving them over any
the crucial aSE]eCt is the fact that g'(u) IS of stant substantial distances. And the population seemdatto
sign. FIa;chéll proceeds some what differently by haqequate for moving the larger statues from ihgles
transforming variables x = Inu, y = Inv; on p. 65, quarry where they must have been mined: thus they
middle of the page, the Jacobian for the transfdrme|acked the brute force as well. The people of Easte
equations are considered and it is noted that fulfills Island, at that point of time, had no clue how stetues
the same conditions as were postulated with regard had been moved. The island has been extensively
J.” The ‘postulated’ conditions are redundant efeme  studied and analyzed and while there were no trees
since the transformed Jacobian has the sign pattesapable of making tools in 1722, subsequent gecabgi
(_ +} which satisfies all the requirements of olech’sStudies established that the island must have been
-0 inhabited by Polynesians as early as 400 AD when
theorem.), notice that one may claim: there were large palm trees and extensive forestrco

. . These must have been cut down at the time of iinitia
Claim 13: For the system (10), there can be no cyclicalseiement to build boats and catch fish and this h
orbits in the positive orthant, given the signrietions  peqp supported by the archaeological finding offi fis
on the derivatives of the functiogs bones. The population thrived, and may have found
time for leisure activities which may have involved

Proof: Consider the functior®(v,u) =1/v.u and then carving and moving statues.

consider: Based on this hypothesis, a model is developed
where the populace is treated as the predator laand t

o{8(v, u).v(s(u) /o - @ +B))} resource base as the prey. Initially, the poputatias
ov small and the resource base was plentiful and
+5{3V,U)U(f(v)—0(—ﬂ9(u))}:_ng,(u) consequently, the population thrived; over time the

ou resource base got depleted to the point that itdcoot
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regenerate itself and that led to the decline ia th

population. More specifically, by 900 AD a subsiaint
reduction in forests had taken place; the statuesew

The assumptions relating to Ricardo or Malthus are
not crucial for any of the conclusion drawn. Undery
general conditionsR1 and P2 hold and solutions be

carved between 1100 and 1500; by about 1400, theounded are sufficient for the purpose), it may be

forest cover was almost
Apparently with the rapid depletion of the resoubese,
the diet had also changed (less fish) with lowetgin

completely  depleted shown that our conclusions hold viz., that eitihere is

convergence to a no-predator equilibriumifthere is
no equilibrium with both species present or these i

intake; soil erosion had taken place due to theesamtonvergence tfo the equilibrium with both species

reason and this had contributed to a reductionate
retention which in turn had led to reducing produitt
of land. Population peaked at around 1400 AD aed th

started to decline. The Europeans came in some thr

hundred years later and found the island impovedsh
and the population scarce.

These preliminary comments are insufficient to
provide a complete picture but our purpose is mucri:
more limited: we wish to analyze the equations

developed to explain this phenomenon. The followin
two equations are derived Eq. (11 and 12):

S= S{r(l—%)—aﬁ L} (11)
And:
L=L{b -d +qupS} (12)

e

v Ppresent, E whenever it exists. In any case, there can be

no periodic or cyclical behavior.

If the initial position is one where the predatars
small in number and the prey population is smaig t
passage to eithernBr B type equilibrium, may involve
first rapid growth in the population of the predato
during which the prey population shrinks and thdalla
in the population of predators. In fact as a refeeeto
ig. 3B will indicate, & is a saddle point wheneveg E
exists; note also that the predators L are measalozdy

Y%he vertical axis while the prey S is measured glthe

horizontal axis. So if the initial point is close the
horizontal axes, with Gless than at £hen the path will
veer away from the horizontal axis, given the doim
and whose only line of approach is along the hotio
axes. In other words, there would be growth in the
population of L and S too initially, as documeniedhe
case of Easter Island (The problem, if any, witk th
Brander and Tayl&% contribution lies in their statement

In these equations, S(t) stands for the resourcef proposition 4 (iii) and (iv); the statement seeto

stock at t and it grows at a natural logistic eratinus

indicate that whenever the characteristic roots are

the amount harvested H(t); assuming a Ricardiafmaginary (condition (14) holds), the trajectory llwi

production set-up, this is seen todo@ L(t)S(t) where
L(t) stands for the population at time t; the p@piain
growth rate is determined through the net birtle fad
plus an allowance made for the fertility variatidue to
consumption per-capita of the resourpd(t)/L(t) =
@aBS(t): this is the Malthusian component.

The system made up of (11) and (12) is of course
Lotka Volterra system, with L as the predator andsS
the prey; it is a special case of the system (3) Wi =
{r (1-x/K) a By}, N ={b-d +gaf3 x} where we have
used x for the prey, here the resource stock (8)yan
for the predator which is the population L; givdmatt
assumption$1 andP2, hold, (it is given that b-d < O:
that is, if there is no forest resource, the paahawill
decline over time. Recall also thBB was not really
necessary and in this case, apart from the fatiNha
0 all other restrictions iR3 do in fact hold.

necessarily be as in their Fig. 2 (p. 126); thi it one
among the many possible alternatives may be noboeal f
their paragraph just preceding proposition 5 043Y).

In fact, the solution will cross the M(x,y) = O &irand it

is possible that along the solution, a level ofydation is
reached which is greater than the maximum assdciate
fith E;, which is the ‘overshooting’ that Brander and
Taylot refer to. Notice that this is fully captured ireth
general formulation.

The special nature of the resource in Easter dslan
is responsible for the other element of the mystery
why this pattern of development was recorded indtas
Island only and not in the other islands of theifac
Apparently the palm trees of Easter Island weresone
with much slower rates of growth than elsewhere.
Positive growth in the horizontal direction will deme

In the circumstances: there can be no cyclicarather sluggish as a result. As a result, one mage
behavior; the only cyclical behavior which may bethe M(x, y) = 0 line to shift inwards and the eduium

exhibited in this set-up is during the approactanok
equilibrium, the spiral around the equilibrium wite
fluctuations dying out over time. It turns out thair

Fig. 2 shows precisely this kind of behavior. This

however is not actual cyclic or periodic behavidhat

would involve lower value for both the variablesr f
instance, this is what happens for the functionaif
assumed in Brander and Tayibr

The authors seem to reject the simple explanation
for the “mystery” of Easter Island: the populatien

then may we conclude from this very interestingdegraded the resource base that it became unable to

exercise? We note as follows:
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with, very small, reached a height of between 100 denoting populations of prey and predator respelstiv
15,000 about 1400 AD and the period 1400-1500 ADNow the factor of proportionality does not increase
saw falling food consumption accompanied withwjthout bounds with the population of the preyrénis
decreasing statue bU|Id|“ng activity. "|,'hIS fall ihet 5 clear upper bound, since the factor x/(x + hyagghes
population is seen as “overshooting” what was thgniry as the population of preys become infinite.
sustainable population. This “overshooting” is hoee The population of the predators now takes into
during a passage to some equilibrium. Wheneveether, ...t the birth-rate, b being the natural bieter
is convergence, as in the present set-up, a toect \ i plentiful prey and d is the death-rate amohg t
bepomes |'nd|st|ngwshable from the limit after ataia predators; but the birth rate is affected when fisayot
point of time (Hirsch and Smald p. 275, second plentiful; in fact, the same type of argument wasdiin

paragraph after the diagram). Finally, as a refe#€o o grander-Tayld¥ formulation; however the effect is
Fig. 3B would make clear, the line M(x, y) = 0 is through a decline in the net birth-rate.
downward sloping in the x-y plane with the preymnx o Rewriting the system (13) as:

the x-axes. Consequently, the sustainable popolatio )

preys at B, is Iessqthan ){he sustainable pgpglation of ¥ =XM(x,¥),y =yN(x,y) we note that now M(xyy) =
preys when there is no predator at Eow the initial  r(1-/k)By/(x + h) and N(N,y) = bx/(x + h)-d so that,M
point of the entire process is likely to be somenghia  <O,N,>0; however M could be either positive or
between, with a low population of predators:negative. This is how2 has been modified (For the
consequently the line M(x, y) = 0 is breached dml t system (3), M<O and hence allowed the use of Dulac’s
population of predators increase; this increaseldcou criterion for ruling out the presence of cycles iahi
take them beyond the level ats Bonly to crash  aqmitting “social phenomenon”). The non-trivial

eventually since the preys are unable to keep tip itgi T ; e i .
rate of depletion. As we have argued above, th@lsim equilibrium for this system is given by:

explanation together with the special feature o th dh X
resource base in Easter Island, even within théexon X' =——y = r(l—] (X +h)/B
of a general predator-prey model, appears to babdep b-d K

of explaining ‘observed’ facts. . - _—
Thus for a meaningful non-trivial equilibrium, we

An example of robust cyclical behavior: We provide —must have b > d and in addition, we must have K(b -
a numerical example where the result<Ctdim 12 are  d)> (b + d)h and we take it that this is so. Atsthi
satisfied. As will become apparent, we use ourequilibrium the Jacobian of the system is given by:
experience from the exercises of the last sections
construct such an example. XM (X,Y) XM,(X,y)

We consider a variation in our assumptidp3 VN (X.Y) 0
which allows us to consider the rates of growthheaf e

prey and predators as follows Eq. (13): Notice that given the signs indicated earlier, the

o X y o bx determinant is positive while the trace is of anoioigs
X=X =) ~B L Fandy =y~ ~d} (13) sign. Notice too that the trace is given by:
where, r, Kf3,h and d are all positive constants. R _ KBy —=(x" +hy

It may be noted that there is a similarity witte th X Mx()=x K(x' +hy

Brander-Taylof! formulation: the growth of the prey in
isolation follows a logistic rule. In the presenuiethe After some simplification, it may be shown tha¢ th
predator, the former has to be adjusted by the amousign of the trace depends on the sign of K-tehd
harvested or killed, which is assumed to be progeat  hence at the nontrivial equilibrium, either boththé
to the population of the predators. The differele®in  characteristic roots have their real parts positive
this factor of proportionality. both have their real parts negative. Consider what
In the Brander-Tayl¥ formulation, this rate was happens when the trace happens to be positivecaloti
also proportional to the population of the predatout  that x is independent of the paramekeso, keeping all
the factor was increasing without bounds with thethe other parameters fixed, we need to choosege lar
population of the prey: it may be recalled thasf&rm  enough value foK for this to happen. Clearly then, the
wasa B L S; Where L represented the predator and Son-trivial equilibrium is a source.
the prey populations, respectively. On the othardha Consider then, the case when Kzhih other words,
K(b-d)>(b + d)h. The Poincaré-Bendixson Theorem, if
applicable, would imply the existence of a closegito
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10 x - -0 and for all t > T, sayx <-6 for some>0.
This contradicts the fact tha, (z°)>00t. Thus the

g solution¢, (z°) remains within a bounded region of the
positive quadrant. Thus the-limit set is non-empty

6 and does not contain any equilibrium when K(b-d) >
(b+d) h; an appeal to Poincaré-Bendixson Theorem
4 establishes that there must be a limit cycle.

- —— That this is an example of robust cyclical behavio
may be gauged from the fact that small perturbaition
parameter values would maintain the local propgitie
the three equilibria (Notice too that the boundatlre
of trajectories follow regardless of parameter eall
and also maintain the crucial inequality K(b-d)b>+d)
Fig. 4: Robust cyclic behavior h. Hence the limiting periodic behavior would alse

o maintained. In fact, the diagram constructed shibhas
We need to check whether any equilibrium can besven with initial points being different, the satut
approached and then check whether trajectories awgttles down into a closed orbit (the limit cycle).
bounded for this purpose. Notice that the only iothe
equilibria for the system (13) are given by (0,6)da CONCLUSION

(K,0); computation of characteristic roots of the .
Jacobian of the system at these equilibria impthex The Predator-Prey Models thus provide a framework,
(0,0) is a saddle-point and if b + d > 1, thens6K,0). where a wide variety of results are possible: mby one

Tr;e following may be checked: ' ' may get convergence as in the set-up described by

If the initial point (2. yo)> (0, 0) none of these assumptionsP1-P3, but also one may obtain periodic
equilibria can be gpproefcheé?)Trza(jecto)ries remaimbed. behavior if the equations of motion are described1

Consequently the only possibility is a limit cycle 8&%’5‘13232{]35?]332 avs\',r;[gf %nflségé égetlc()’jls;:teimgroper
around the non-trivial equilibrium. Notice also tisanall

: ; : eriodic or persistent cyclic behavior. First of al
perturbation of the system is unable to dislodge thP . ; : .
cyclical behavior of trajectories. Thus to clinctatters Predator-Prey model with two species by definition

we need to establish the validity of the items datbove. Wc())ullj(;latrig?]ug? J]Zat r'%kg 2%% N?e%;gggieéye;rie the

For the first, it is best to consult the followifigure, ,F\>/I(p) N() respe ctivF:ery define t%eir rates of Srhwﬁ'mhwe
where we have considered the phase plane of the 'BYS differences in conclusions arise from what we agsum
(13), for appropriate values of th_e various paranset = about M, N, i.e., how the rates of population growth are
10, =20, b =4, d =2, h =4 with appropriate uni ( LY

but the last are measured in number per year.adtés|a affected by their own population levels, other gsin
stock and is measured in humbers, say millions}icBlo bhe|ng Iheldf Cr? nstant. |||n(§a,Ct' vyel hﬁve shown pqw&gu
that K has been left unspecified. the role of the so-called ‘social phenomenon’ is

. . . - dynamic conclusions. To distinguish our conclusions
The case we are interested in, consists of requitin 12 y g

. o L = from the conclusions in Kolmogord® or as reported
(this would make the interior equilibrium unstab{g) =, Freedmalt®!, our method allows us to conclude that

12/is a point of bifurcation at which point, thenFinivial it js this aspect which is crucial. In addition,should

equilibrium loses stability and an attracting ctbswbit  pe pointed out that the fact global stability résubr

emerges); the situation for K = 16 is captured\elo special forms of predator-prey models have been
While the above is a computer generated figure andppearing even recerff}, suggest that there are still

cannot be taken for an analytical proof, we not the  matters to be investigated.

axes x = 0, y = 0 are trajectories and cannot bssed,; To remind readers: the simple model (1) ensures

and the only trajectories which approach the saddlethat M, = N, = 0; it may be shown that this is enough to

point equilibria are these trajectories. The navigk  generate the closed orbit in the original Pred®t@y

equilibrium being a source cannot be approachedviodel i.e., the linearity assumed in the rates rofagh

Hence no trajectory, with a strictly positive initpoint,  in (1) are really not required. If we allow thesartpal

can approach equilibrium, as claimed. derivatives viz., M, N, to be negative (This forces
To show that any trajectory beginning from an“social phenomenon” to be always negative. As we

initial positive configuration remains bounded, ioet have discussed above, to rule out periodic behaitiisr

the following: denoting the solution to (13) fronm a enough if these partial derivatives have the samakw

arbitrary z° = (x°,y°)>(0,0) by, (z°) = @« (z°)9y  signs and be not identically zero.), we are in the

(z°)); note thapy (z°)<KOt>0sincedy (z°) = K=x = sjtuation described by assumptio®$ and P2 and the

¢ (z°)<0; thus unbounded behavior, if possible, mayearlier closed orbits disappear. This result isaivied

arise only if¢y (z°)—oo; if this were to be the case, under general conditions.
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If one allows for changes in the signs of theseKolkata, December 2004. The author is gratefulhi® t

particular partial derivatives to vary in sign overe

organizers, Uday Bhanu Sinha and Manipushpak Mitra

domain under consideration only then, may one hope for their invitation. The author is indebted to thar

obtain a description of persistent cyclic behavioshould
be noted that this is not sufficient, since everhwi
variation in the sign of these partial derivativese may
get conver%ence under some conditions, as notédsby 1

and HuanB". They study the following system:
2.
x=xfa00-poo Y} andy f3-pY}
X X
The functions g(x),p(x) satisfy: 3.
9(1)=0,g (x)< 00 x> 0,p(0F Op(xr @ % 4

The above assumptions serve to keep the solution
in a bounded region: 0<x<1, 0<§&B; the claim is that
if, in addition, one has:

(x—x*){xs((xx))—y*}<0,o< X< 1,X# X 6.

Then the equilibrium (x y') is globally stable.
Notice that in this case, while our crucial holds,

P2 does not, and if the additional requirement stated’-
above is met, then global stability of the interior
equilibrium is claimed.

Our example provides a description of a situationd:
where we allow social phenomenon but do not restric
that social interaction to be always negative; this
establishes a robust cyclical behavior.

Important implications of our results are exhitite
by the considered applications: in the case of thé.
Goodwin type models analyzed by Flas€fiellt is the
money illusion term which destroys periodic behayvio
none of the other assumptions made in that paper is
really required; similarly for the Brander-Tayfbr
contribution, the specificities imposed through the
Ricardo-Malthus assumptions are not necessary ks we

The simple setting for the Easter Island, with thell.

resource base as prey and the population as predato
and ‘social phenomenon’ exhibited in the growtle rait
the prey, together with the fact that the resolrase in
Easter Island had special characteristics, prodde
explanation for the Easter Island Mystery.

13.
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