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Abstract: A multi-ecosystems carbon flux simulation from energy fluxes is presented. A new
statistical learning technique based on Artificial Neural Network (ANN) back propagation algorithm
and multi-layer perceptron architecture was used in the CO, simulation. Four input layers (net
radiation, soil heat flux, sensible and latent heat flux) were used for training (calibration) and testing
(verification) of model outputs. The 15-days half-hourly (grassland) and hourly (forest and cropland)
micrometeorological data from eddy covariance observations of AmeriFlux towers were divided into
training (5-days) and testing (10-days) sets. Results show that the ANN-based technique predicts CO,
flux with testing R? values of 0.86, 0.75 and 0.94 for forest, grassland and cropland ecosystems,
respectively. The technique is reliable and efficient to estimate regional or global CO, fluxes from

point measurements and understand the spatiotemporal budget of the CO, fluxes.
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INTRODUCTION

Global climate change studies identify the increase of
atmospheric carbon dioxide (CO,) level as one of the
precursors for the shift in climate. Understanding the
complexity of the carbon cycle, the linkages to
physical, biogeochemical, ecological processes and
human influences and quantifying carbon cycle effects
on climate and climate change is a central goal of
current carbon research [1]. Understanding processes
responsible for CO, level rise, knowledge of the
amount of CO, in the atmosphere and identifying
carbon sinks and sources are then crucial for reducing
climate change impacts. Conjoined observations and
modeling of terrestrial CO, are important in
understanding the contribution of the different
ecosystems in the global carbon budget.  This
information will be useful in carbon related climate
change mitigation planning and carbon reduction
policies to avert climate change impacts. Current
strategies involve networks of flux towers (AmeriFlux,
CarboEurope and AsiaFlux) to monitor water, energy
and carbon fluxes using eddy covariance technique.
These flux towers collect micrometeorological data
with only few square kilometers foot-print. The need
for larger area spatial carbon flux information,
limitation of the existing carbon flux simulation models
and the close coupling of energy and carbon fluxes
necessitates the use of new statistical learning
techniques such as Artificial Neural Network (ANN) to
model carbon flux using non-conceptual approach.

The non-linear energy-CO, flux relationship can be
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easily modeled using ANN, a non-conceptual but
effective machine learning technique. A multi-
ecosystem (forest, grassland and cropland) ANN-based
CO; flux simulation is presented with the objective of
presenting ANN as an effective alternative technique to
model CO, flux using energy flux (net radiation, R,,
latent heat, LE, sensible heat, H and soil heat flux, G)
and evaluate the model performance using statistical
indices for the three ecosystems.

MATERIALS AND METHODS

A multilayer perceptron (MLP) ANN technique with an
error back propagation (BP) algorithm was applied to a
CO, flux simulation comparison of three different
ecosystems (forest, grassland and wheat (cropland)).
The ecosystems studied are represented at three
localities in the U.S.; 1) mixed forest-Morgan-Monroe
State Forest, Indiana (39°19’N, 86°25°W); 2)
grassland-Fort Peck Indian Reservation, Montana
(48°18.473°N, 105°6.032°W); and 3) winter wheat
field-16 km north of Ponca City, Oklahoma (36°45°N,
97°5’W). These sites are all part of the AmeriFlux
network of eddy covariance flux towers that quantify
variation in CO, and water vapor exchange between
terrestrial ecosystems and the atmosphere [2]. This
network, in addition to the similar regional networks
CarboEurope, AsiaFlux, OzFlux and Fluxnet Canada,
participates in synthesis activities across large
geographical areas in order to study the underlying
mechanisms responsible for observed fluxes and carbon
pools.
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Artificial neural networks represent new technology
that have proven to be highly effective in modeling
CO, and water fluxes [3, 4]. ANN’s are machine
learning (i.e. self adjustment of internal control
parameters), non-parametric, mathematical structures
that identify complex non-linear relationships between
input and output data sets [S]. A neural network with
MLP architecture is designed to function within non-
linear phenomena and consist of input/output layers
with input/output neurons and one or more hidden
layers with some number of neurons on each. An
artificial neuron in ANN architecture receives a set of
inputs or signals (x), calculates a weighted average of
them (z) using the summation function and then uses
some activation function to produce an output
(Equation 1).

Z=ixiwi 1)

Connections between the input layer and the middle or
hidden layer contain weights, which are determined
through training the system [5, 6]. The hidden layer
sums the weighted inputs (w;) and uses the following
transfer function (Equation 2) to create an output value:

1
f(x)= (1+—e_"—). )

In time series predictions, supervised training is used
where the ANN is trained to minimize the difference
between the network output and the target (observed).
The BP algorithm is widely implemented in all ANN
paradigms and is based on multi-layered feed forward
topology with supervised learning methodology [7].

Hidden Layer Output

ANN Input-output Data Architecture
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In our ANN-MLP architecture, four input parameters
that represent measurements of energy fluxes (R, G, LE
and H) were used to train the ANN and predict the flux
of CO, (Fig. 1). Diurnal hourly flux data from 15 days
of observations at each site were divided into training
(5 days) and testing (10 days) categories. Energy and
carbon flux data are available at Carbon Dioxide
Information Analysis Center [2]. The data used were
from June-July of 1999, 2000 and 2002 for cropland,
forest and grassland ecosystems, respectively.

The performance of the ANN model was evaluated
using statistical comparisons of the predicted and
observed outputs. This comparison used two measures
of error: root mean of squares of errors (RMSE) and
mean absolute percent error (MAPE). RMSE is
sensitive to outliers, but is not scale free, while MAPE
calculates the forecast error as a percentage of the
actual value in order to avoid problems associated with
scaling.
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RESULTS AND DISCUSSION

Average diurnal variation of energy fluxes and CO,
flux for the three ecosystems is shown in Fig. 2. In all
the three ecosystems, it is shown that a close correlation
was found between CO; flux and R, G, LE and H. For
the forest and cropland sites (Fig. 2a and 2c), we found
lower CO, concentrations during the day, probably due
to the dominance of green vegetation in these
ecosystems. On the other hand, the CO, concentration
in the grassland site (Fig. 2b) is higher in the day
peaking around noon. The absence or limited green
vegetative cover (limited photosynthesis) and the CO,
release due to soil respiration are likely responsible for
this increase. The energy fluxes (R,, H, LE and G)
peaked around noon for all sites. Transpiration from
the vegetative cover increases LE losses than the H
losses for the forest and cropland sites. Attributed to
the limited vegetative cover, the grassland site has
higher average H losses than LE losses.
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Table 1: Statistical Indices Showing the ANN Model Performance

Index Training

Testing

Forest Grassland Wheat

Forest Grassland Wheat

RMSE
MAPE
R2

0.32
0.43
0.89

0.002
0.62
0.83

0.004
0.017
0.98

0.45
0.57
0.86

0.003
1.81
0.75

0.019
0.56
0.94
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Fig.4: Predicted vs. Observed CO, Flux (umol
m2 s'l) for the (a) Forest, (b) Grassland and

(c) Cropland

The CO, simulation using an ANN-MLP technique for
the three studied ecosystems (forest, grassland and
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cropland) corresponded well with the observed flux
values (Fig. 3). It is shown that higher R* was observed
for the three ecosystems during data training than the
testing phase of the modeling (Table 1). The ANN
simulations for each ecosystem type successfully
predicted the observed values with R? values between
0.75 and 0.94 (Table 1). In the forest ecosystem, the
10-day hourly predicted carbon flux showed an average
R? of 0.85 for the testing phase of modeling. In the
grassland ecosystem, the average R* value for the
testing phase of the prediction was 0.75. In the
cropland ecosystem, the predicted carbon flux closely
matched the observed values with an average R? of
0.94. Figure 4 shows predicted vs. observed CO, fluxes
in relation to 1:1 trend line. The predicted CO, flux at
the forest site under-predicts the observed values as the
values of observed data increases, on the other hand
predicted values seem to be lower than observed for
grassland and cropland ecosystems at lower observed
values (Fig. 4).

The grassland ecosystem, with less vegetative cover
than either the forest or cropland ecosystems, likely has
less contribution of vegetation to the net carbon
exchange. However, the inclusion of soil moisture
could improve the overall predictions since both soil
moisture and soil temperature likely play an important
role in the amount of soil respiration [8]. We have
shown that our ANN-MLP method is a reliable,
efficient and highly significant to estimate regional or
global CO,; fluxes from point measurements and to the
examination of spatiotemporal budget of the CO,
fluxes.

Surface energy fluxes modeled from remotely-sensed
data can be used to model spatial carbon flux using
ANN covering larger areas. The fact that energy fluxes
and other microclimate variables can be easily mapped
from remote sensing makes this technique easily
applicable to provide carbon information at the spatial
and timescale of interest. We believe future carbon
mitigation strategies and climate change policies will
benefit greatly from similar studies.
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