
American Journal of Applied Sciences 3 (2): 1706-1710, 2006
ISSN 1546-9239
© 2006 Science Publications

Corresponding Author: Amer Abu Ali, Faculty of Information Technology, Philadelphia University, Jordan
1706

On Optimistic Concurrency Control for Real-Time Database Systems

Amer Abu Ali

Faculty of Information Technology, Philadelphia University, Jordan

Abstract: The performance of database transaction processing system can be profoundly affected by
the concurrency control method employed since it is necessary to preserve database integrity in a
multi-user environment. In addition to satisfying the consistency requirement as in traditional database
system, real-time database systems must also satisfy timing constraints. In this study we present a
virtual run policy for the restarted first run optimistic transactions and compare its performance with
optimistic concurrency control in firm real-time database system.

Key words: Database transaction system, real-time database system, optimistic concurrency control

INTRODUCTION

 The problem of concurrency in database systems
has been considered by many researchers and several
concurrency control mechanisms have been
introduced[1-4]. Concurrency means that different users
have access to the database at the same time. In such a
system each user must be protected against others. We
must avoid the situation in which one user is altering an
object in the database, while another user is reading
it[1]. The task of a concurrency control mechanism is to
ensure the consistency of the database while allowing a
set of transactions (i.e., user’s programs) to execute
concurrently.
 During the last few years the interest in the study
of real time database system (RTDBS) has increased
considerably because of their importance in a wide
range of applications. A real time database is a database
system where transactions have explicit timing
constraints such as deadlines[5-7]. Concurrency control is
one of the main issues in the study of real time database
systems. In addition to satisfying consistency
requirements as in traditional database systems, a real
time transaction processing system must also satisfy
timing constraints. To support real time transaction
processing the new criteria and issues to be considered
in design and implementation of real time database
systems are scheduling of CPU and I/O and the
requirement that conflict resolution schemes used
should be time cognizant[7].

Terms and definitions: The database is viewed as a
set of distinct data objects. An object has a name and a
value. Associated with the database is a set of assertions
called integrity constraints. The database is in a correct
state if the set of objects satisfies the integrity
constraints. The state of the database undergoes
changes because of the actions performed by the users.
The sequence of actions of one user is called
Transaction. A transaction is a program that issues

reads and writes to a DBMS and it represents a unit that
preserves integrity of the database. Transaction when
executed alone transforms the database from one
correct state to another correct state, but during
intermediate stages of the execution of a transaction the
integrity constraints may be violated, that is why
concurrency control mechanisms prevent other
transactions from seeing these transient stages. A
transaction is executed atomically even in the face of
failures, the database system either executes all of its
actions or performs none of them[2]. Consistency deals
with the correct processing of concurrent transactions.
The concurrent execution of the transactions T1,......,Tn
must produce the same effect as the execution of some
serial schedule. A serial schedule is a schedule
consisting of a sequence of transactions without any
interleaving between their reads and writes (if Ti
precedes Tj in the serial schedule, then all of Ti's
operations precede all of Tj's operations). Since each
transaction is a correct computation, a serial schedule is
correct. An interleaved schedule (concurrent execution
of transactions) is considered to be correct if its effect
on the database is equivalent to that of a serial schedule
and it is called a serializable schedule. Serializability is
the main correctness criterion for concurrency
control[1]. Serializability requires that the execution of
each transaction must appear to every other transaction
as a single atomic step.
 Two transactions conflict if they access the same
data object and one or both of them does (do) a write
operation or update on that data object. The order in
which operations execute is computationally significant
if and only if the operations conflict.

Characteristics of data and transactions in RTDBS:
Transaction characterization in RTDBS is based on the
manner in which data is used by the transaction, nature
of time constraints and the significance of executing a
transaction by its deadline or more precisely the
consequence of missing specified time constraints. In

Am. J. Appl. Sci., 3 (2): 1706-1710

 1707

hard RTDBS, missing deadlines of transactions may
result in catastrophic consequences, i.e., they are safety
critical transactions. In soft RTDBS, transactions have
time constraints but there may be some value in
completing the transactions even after their deadline
and this value drops to zero at a certain point past the
deadline. When this value drops to zero by missing the
transaction deadline it is referred to as Firm RTDBS but
catastrophic consequence do not result if their deadlines
are missed[8]. In these simulation experiments we
assume firm real time database system model where
transactions that missed their deadlines are aborted and
permanently discarded from the system.

CONCURRENCY CONTROL

Conflict detection: Conflicts between transactions can
be detected in two ways. Pessimistic method detects
conflicts before making access to the data object[2].
When a transaction requests access to some data item,
the concurrency control manager will examine this
request and will determine whether to grant the request
or not (if a conflict will occur or not). The optimistic
method detects conflicts after transactions have
accessed the data object when checking for
serializability is done later at the certification time[4].
 Optimistic schemes are designed to get rid of the
locking overhead. They are optimistic in the sense that
they take into account the explicit assumption that
conflicts among transactions are rare events. They rely
on the hope that conflicts will not occur. Since locks are
not used in pure optimistic concurrency control they are
deadlock free (one of the disadvantages of lock-based
schemes). The task of concurrency control is deferred
until the end of transaction when some checking for
potential conflicts has to take place and will be resolved
accordingly, taking into consideration the amount of
progress that has been done and the nature of conflict
with transactions

Resolving conflicts among concurrent transactions:
When concurrency control detects a conflict among
some concurrent transactions accessing the same object,
a conflict resolution mechanism needs to be put on.
Concurrency control manager decides which
transaction (victim) to penalize (the lock holder or the
requester) and chooses an appropriate action and
suitable timing. Two possible actions are most used:
Blocking (wait) and abort (restart). In pessimistic
concurrency control either blocking or abort can be
used to resolve the conflict[1]. However, in optimistic
concurrency control only aborting is appropriate since
conflict has been detected after the transaction has
accessed the data object and performed some
computation[4]. As for timing of action, it is immediate
for blocking but it can be immediate or deferred
(delayed) for aborting.

OPTIMISTIC CONCURRENCY CONTROL

 The basic idea of an optimistic concurrency control
mechanism is that the execution of a transaction
consists of three phases: read, validation and write
phases as in Fig. 1. For all optimistic concurrency
control (OCC) schemes a conflict is detected after the
data object has been accessed. In the OCC, conflict
detection and resolution are both done at the
certification time when a transaction completes its
execution; it requests the concurrency control manager
to validate all its accessed data objects. If it has not yet
been marked for abort, it enters the commit phase
where it writes all its updates to the database.
Backward-oriented OCC (BOCC) checks during the
validation test of Tj whether its readset RS(Tj)
intersects with any of the write sets WS(Ti) of all
concurrently executed transactions Ti having finished
their read phases before Tj. Forward-oriented OCC
(FOCC) checks during the validation phase of Tj
whether its write set WS(Tj) intersects with any of the
read set RS(Ti) of all transactions Ti having not yet
finished their read phases[4, 9,10].

 READ VALIDATION WRITE

 TIME
 Fig. 1: The three phases of an optimistic transaction

Extension of optimistic concurrency control for
RTDBS: Ideally optimistic concurrency control (OCC)
should be non-blocking and deadlock free. These
properties make OCC attractive in real-time transaction
processing. OCC may be in a better position to be
integrated with priority driven CPU scheduling. To
adapt OCC into RTDBS the main issue is how to
incorporate priorities (time constraints) into conflict
resolution[8,11,12]. The key component of optimistic
concurrency control schemes is the validation phase
where a transaction's destiny is decided. Transaction
validation can be performed in one of two ways:
forward validation and backward validation. In
protocols that perform backward validation the
validating transaction either commits or aborts
depending on whether it has conflicts with transactions
that have already committed. So this scheme does not
allow us to take transaction characteristics into account
and it is not suitable for real time database. In forward
validation however, either the validating transaction or
the conflicting ongoing transactions can be aborted to
resolve conflicts. This scheme can be extended to real
time database since the timing characteristics of
transaction can be considered and proper decision can
be taken in aborting, delaying the committing
transaction or aborting the conflicting ongoing
transactions. We explain below the three schemes used
in our simulation experiments.

Am. J. Appl. Sci., 3 (2): 1706-1710

 1708

OCC-forward validation with virtual run policy: In
this scheme (OCC_FV) the transaction that reaches its
validation phase is allowed to commit if it is not a
virtual first run transaction and all the active conflicting
transactions which are in their read phases are
immediately aborted and restarted if they are rerun
transactions. In case some of the conflicting read phase
transactions are in their first run, instead of aborting
them they enter their virtual run and continue their read
phase so as to bring data objects required to buffer,
assuming the system buffer has a high retention effect,
then a transaction in its second run and onward does not
need to access the disk since the data objects are
already in memory. When the virtual run transaction
completes its read phase, it is aborted and resubmitted
to the system to start its real second run. It is clear that
there is no point to allow restarted rerun transaction to
complete its read phase in virtual mode since all its data
items are already in memory. This scheme does not take
the transactions timing constraints into account and
favours the validating one to save the amount of
progress done by the validating transaction since it is
near completion and will definitely complete if it is not
restarted.

OCC-sacrifice with virtual run policy: It is an
optimistic protocol which uses a priority-driven abort
for conflict resolution. In this protocol (OCC_OS) when
a transaction reaches its validation phase, it is aborted if
one or more conflicting transactions have higher
priority than the validating one; otherwise it commits
and all the conflicting read phase transactions are
restarted immediately. This protocol uses transaction
priority (timing constraints) in such a way that the
validating transaction sacrifices itself for the sake of
conflicting ones with higher priority.
 If some of the restarted read phase transactions are
in its first run, it enters the virtual run phase as
explained above to complete its read phase, so its
access pattern will be known and brought to buffer. On
completing its virtual run, it is aborted and restarts its
real second run.

OCC-abort50 with virtual run policy: In this scheme
(OCC_A50) when a transaction reaches its validation
phase, its priority is checked against those conflicting
transactions in the read phase. If more than 50 percent
of the transactions in their read phase have higher
priority than the transaction in its validation phase, the
validating transaction is aborted and all other
transactions are allowed to continue. If the number of
transactions in the read phase having higher priority
than validating transaction is less than or equal to 50
percent, the validating transaction is allowed to commit
and all the other transactions are restarted.
 If some of the restarted read phase transactions are
in its first run, it enter the virtual run phase as explained
above.

SIMULATION MODEL

 Our program to simulate a RTDBS system was
written in C. For each of the following experiments the
simulation was run with the same parameter values for
10 different random number seeds. Each run continued
until 2000 transactions were executed. For each run the
statistics gathered during the first few seconds were
discarded in order to let the system stabilize after initial
transient condition.
 The simulation model for RTDBS is a single-site
disk resident and memory resident database system
operating on shared memory multiprocessors. CPUs
share a single queue and the service discipline used for
the queue is priority scheduling without preemption.
Each disk has its own queue and is also scheduled with
priority scheduling. Figure 2 shows the RTDBS
queuing model.
 In this model, the execution of a transaction
consists of multiple instances of alternating data access
request and data operation steps until all of the data
operations in it complete or it is aborted for some
reason. When a transaction completes its data access
requests, it requests the concurrency control manager to
validate them. if it is validated it enters the commit
phase with raised priority to maximum so it can
complete its write phase as fast as possible; otherwise it
is aborted and enters the deadline test, if it missed its
deadline it is terminated and discarded from the system
since with the firm deadline assumption, transactions
that have missed their deadlines are aborted and
permanently discarded from the system, or it is
restarted if there is a time to complete before missing its
deadline. The data operation consists of disk access and
CPU computation and the transaction passes through
disk queue and CPU queue.
 The database is modeled as a collection of data
objects. A transaction consists of a mixed sequence of
read and writes operations. We assume that a write
operation is always preceded by a read, that is, the write
set of a transaction is always a subset of its read set. A
data item that is read is updated with the probability
Update probability.
 When a transaction attempts to read a data item,
the system determines whether the object is in memory
or disk using the probability DISK ACCESS PROB. If
the data item is determined to be in memory, the
transaction can continue processing without disk
access. Otherwise, an I/O service request is created and
placed in the input queue of the appropriate disk. The
database is partitioned equally over the disks.
 Transactions arrive in a Poisson stream, i.e., their
inter-arrival times are exponentially distributed.
 The assignment of deadlines to transaction is
controlled by the parameters : minimum slack factor
and maximum slack factor which set a lower and upper
bound, respectively , on a transaction’s slack time and it

Am. J. Appl. Sci., 3 (2): 1706-1710

 1709

Computation

Disk queue

CC queue
 Deadline

 Test
commit

discard

restart

Concurrency Control

CPU

CPU

CPU queue

DB
operation

Transactions

arrival

hit or rerun
transactions

Buffer
Access
 DISK

DISK

Disk queue

or first run tran

miss

Fig. 2: RTDBS simulation model

is generated uniformly using the arrival time,
transaction length, CPU time and disk time.
 In this system, the priorities of transactions are
assigned by the Earliest Deadline First policy, which
uses only deadline information to decide transaction
priority, but not any other information about transaction
execution time.

Table 1: System resources and workload parameters
Parameter Value
Number of data objects in database 500
Number of processors 4
Number of disks 8
Mean CPU time for processing a data object 15
Mean disk service time for a data object 25
Disk access probability 0.5
Update probability per accessed object 0.5
Mean transaction length (in accessed objects) 10
Minimum slack factor 2
Maximum slack factor 8

 The important goal of RTDBS is to meet the time
constraints of the transactions, therefore the primary
performance metric used is the percentage of
transactions which miss their deadlines, referred to as
Miss Percentage. Miss Percentage is calculated with
the following equation:
Miss Percentage = 100 * (no. of tardy transactions / no.
of transactions arrived).
 We show also the average number of restarts per
transaction which is referred to as restart count.

RESULTS AND DISCUSSION

 Here we present the performance results of our
experiments for extending the optimistic concurrency
control to real-time database systems and investigate
the performance gain while incorporating its technique
with virtual run policy for aborted first run transaction
assuming sufficient buffer so that data blocks
referenced by aborted transactions continue to be
retained in memory and be available for access during
reruns without I/O by the aborted or restarted rerun
transaction. The optimistic concurrency control scheme
OCC_FV with virtual run policy does better than the
scheme without this policy under low system workload
level up to 20 transactions/sec where system workload
is controlled by the arrival rate of transactions in the
system, but as the number of arriving transactions
increases its performance is somewhat degraded. This is
because the restarted first run transactions under this
policy continue their read phases to bring the required
data objects in memory in virtual run mode, increase
the already high system resources contention since they
compete for system resources and waits in system
queues to complete their read phases in contrast to the
other policy where the aborted first run transactions are
restarted immediately. We get similar results for
OCC_OS and OCC_A50 but are not shown due to
space limitation.

Am. J. Appl. Sci., 3 (2): 1706-1710

 1710

 It is clear that the schemes using virtual run policy
outperform significantly the other schemes for a wide
range of system workload due to the elimination of I/O
operations for rerun transactions since all the required
data blocks are already in memory, brought by the first
run of the restarted transaction in virtual mode. The
virtual run policy helps transactions to complete fast
and reduce the average number of restarts transactions
encounter before completion. Similar results for
OCC_OS and OCC_A50 are obtained.
 At low arrival rate there is no much difference
among the three protocols. However, as the arrival rate
increases, OCC_A50 does better than OCC_OS and
OCC_FV does even better than OCC_A50. The
improvement in performance of OCC-FV can be done
if it avoids wastage of work done by transactions as
every transaction which reaches its validation phase is
allowed to complete, unlike the case of OCC-OS where
a transaction in its validation is aborted for the sake of a
higher priority transaction still in its read phase which
may later be killed. The OCC-A50 gives better
performance than OCC-OS as we are aborting the
transaction in its validation phase only if there are more
than 50 percent of the transactions in the read phase of
higher priority than the validating transaction.
The restart counts of all the three schemes decrease
after a certain workload point when system resources
contention dominates data contention in discarding
deadline missing transactions.

CONCLUSION

 A major difference between conventional database
and real-time database transaction processing is their
approach to resolving data and resource conflicts.
Conventional database attempts either to be fair in data
and resource allocation or to maximize resource
utilization. In real-time databases, timely transaction
execution is more important and both fairness and
maximum resource utilization become secondary goals.
Also, in contrast to conventional databases that use
transaction response time and throughput as
performance measures, real-time databases use the
percentage of transactions that complete within their
deadlines. In this study we presented some features
which can be added to concurrency control, virtual run
policy for restarted first run transaction and we show
that it improves the performance of real-time optimistic
concurrency control schemes especially under moderate
system workload level and in systems with disk resident
databases.

REFERENCES

1. Bernstein, P. and N. Goodman, 1981. Concurrency

control in distributed databasesystems. Comp. Sur.,
13: 185-221.

2. Franaszek, P. and J. Robinson, 1985. Limitation of
concurrency in transaction processing. ACM Trans.
Database Syst., 10: 1-28.

3. Rosenkrantz, D., R. Strearns and P. Lewis II, 1978.
System level concurrency control for distributed
database systems. ACM Trans. Database Syst., 3:
178-198.

4. Kung, H. and J. Robinson, 1981. On optimistic
method for concurrency control. ACM Trans.
Database Syst., 6: 213-226.

5. Song, X. and J. Liu, 1995. Maintaining temporal
consistency: Pessimistic vs. optimistic concurrency
control. IEEE Trans. Knowledge and Data Engg.,
7: 786-796.

6. Ozsoyoglu, G. and R. Snodgrass, 1995. Temporal
and real-time databases. IEEE Trans. on
Knowledge and Data Engg., 7: 513-532.

7. Ramamritham, K., 1993. Real-Time Databases.
Distributed and Parallel Databases I , pp: 199-226.

8. Haung, J., J. Stankovic, D. Towsley and K.
Ramamritham, 1990. Real-time transaction
processing: Design, implementation and
performance evaluation. COINS Technical Report
May 1990. Department of Computer Science,
University of Massachusetts at Amherst.

9. Harder, T., 1984. Observations on optimistic
concurrency control schemes. Information
Systems, 9: 111-120.

10. Lee and S.H. Son, 1993. Using dynamic adjusting
of serialization order for real-time database
systems. Proc. the 14th Real-Time Systems Symp.,
pp: 66-75, Raleigh-Durham, NC.

11. Lee and S.H. Son, 1995. Performance of CC
Algorithms for Real Time Database Systems.
Prentice-Hall.

12. Huang, J., J. Stankovic, D. Towsley and K.
Ramamritham, 1989. Experimental evaluation of
real-time transaction processing. Real-Time
Systems Symp.

