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INTRODUCTION 

 
Recently the first author introduced the notion of 

Lorentzian concircular structure manifolds (briefly 
(LCS)n-manifolds)   by   citing   an  example of 
dimension 4[6].  Then  in[7] the present authors studied 
its several applications to general relativity and physics. 
In this study we extend the study of[7] and investigate 
some other interesting applications to relativity and 
cosmology. After preliminaries, we study perfect fluid 
non-flat (CS)4-spacetimes and proved that if in such a 
spacetime the square of the length of the Ricci-operator 
is (1/3)r2, then the spacetime can not contain pure 
matter and also in such a spacetime the pressure of the 
fluid is  positive for α2>ρ and negative for α2>ρ, α, ρ 
being   non-zero    scalars    associated   with   the 
(CS)4-spacetime.   Section   4   is   concerned  with 
(CS)4-spacetimes whose energy-momentum tensor is a 
Codazzi tensor and it is shown that in such a spacetime 
both the energy density and pressure of the fluid are 
constants over a hypersurface. Among others it is 
proved that if the energy-momentum tensor of a perfect 
fluid (CS)4-spacetime is a Codazzi tensor, then the 
possible local cosmological structure of the spacetime 
is of Petrov type I, D or O and also it is shown that if a 
perfect fluid (CS)4-spacetime with divergence-free 
conformal curvature tensor admits a conformal Killing 
vector field then the spacetime is either conformally flat 
or of Petrov type N. The last section deals with a 
conformally flat  (CS)4-spacetime and proved that such 
a spacetime is infinitesimally spatially isotropic relative 
to the unit timelike vector field ξ. 
 
Preliminaries: An n-dimensional Lorentzian manifold 
M is a smooth connected paracompact Hausdorff 
manifold with a Lorentzian metric g, that is, M admits a 
smooth symmetric tensor field g of type (0, 2) such that 
for each point p �M, the tensor gp : TpM × TpM →R is 
a     non-degenerate     inner    product    of   signature   
(−, +, …., +), where Tp M denotes the tangent vector 
space  of  M  at  p and R is the real number space. A 

non-zero   vector   v ∈ TpM is said to be timelike  
(resp., non-spacelike,   null,   spacelike)  if it satisfies 
gp(v, v) < 0 (resp, � 0, = 0, > 0)[3]. The category to 
which a given vector falls is called its causal character. 

Let Mn be a Lorentzian manifold admitting a unit 
timelike concircular vector field , called the 
characteristic vector field of the manifold. Then we 
have:   

 
                                   g ( , ) =  −1 (1) 
 

Since  is a unit concircular vector field, there 
exists a non-zero 1-form   such that for: 
 
                                  g(X, ) =  (X) (2) 
 
the equation of the following form holds: 
 
       (∇X )(Y)= α{g(X,Y) +  (X)  (Y)} (α ≠ 0) (3) 
 

for all vector fields X,Y where ∇ denotes the 
operator of covariant differentiation  with respect to the 
Lorentzian metric g and α is a non-zero scalar function 
satisfies: 
 
                     ∇x α = (Xα) = α(X) = ρ  (X) (4) 
 
ρ being a certain scalar function. If we put: 

  

                                 X

1
Xφ = ∇ ξ

α
 (5) 

 
then from (3) and (5) we have: 
 
                               φX = X +  (X) , (6) 
 

from which it follows that φ is a symmetric (1,1) 
tensor. Thus the Lorentzian manifold Mn together with 
the unit timelike   concircular   vector  field  ,  its  
associated  1-form  and (1,1) tensor field φ is said to 
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be a Lorentzian concircular structure manifold (briefly 
(LCS)n-manifold)[4]. In a (LCS)n-manifold, the 
following relations hold[4]: 
 
           a)  ( ) =-1,  b) φ  = 0,  c)  (φX) = 0,  
            d) g(φX, φY) = g(X,Y) +  (X)  (Y), (7) 
 
   (R(X,Y)Z) = (ρ-α2 )[g(Y,Z)  (X)-g (X,Z) (Y)] (8) 
 
                  S(X,  ) = (n-1) (ρ-α2 )  (X) (9) 
 
          R(X,Y)  = (ρ-α2 ) [  (Y)X -  (X)Y] (10)  
 

for any vector fields X, Y, Z where R, S denote 
respectively the curvature tensor and the Ricci tensor of 
the manifold. General relativity flows from Einstein’s 
equation given by: 
 
         S (X,Y)-(r/2)g(X,Y) + λg(X,Y)=kT (X,Y) (11) 
 

for all vector fields X, Y where S is the Ricci 
tensor of the type (0,2), r is the scalar curvature, λ is the 
cosmological contant, k is the gravitational constant and 
T is the energy momentum tensor of type (0,2). 
The energy momentum tensor T is said to describe a 
perfect fluid[3] if  
 
            T(X,Y) = (σ+ p)A(X) A (Y) + pg (X,Y) (12)  
 

where σ is the energy density function, p is the 
isotropic pressure function of the fluid, A is a non-zero 
1-form such that g(X,U) = A(X)  for all X, U being the 
flow vector field of the fluid. 
In a (CS)4-spacetime by considering the characteristic 
vector field   of the spacetime as the flow vector 
field of the fluid, the energy momentum tensor takes the 
form: 
 
          T (X,Y) = (σ + p)  (X)  (Y) + pg (X,Y) (13) 
 
The above results will be used in the next sections. 
 
Perfect fluid non-flat (CS)4-spacetimes: In this 
section we consider that the matter distribution of a  
non-flat (CS)4-spacetime be perfect fluid with σ and p 
as its density and pressure respectively and the 
characteristic vector field ξ of the spacetime as the flow 
vector field of the fluid. We take Einstein’s field 
equation without cosmological constant. Then (11) can 
be written as:  
 
                S (X,Y) - (r/2)g(X,Y) =kT (X,Y) (14) 
 
From (13) and (14) we have: 
 
  S(X,Y)-(r/2)g(X,Y)=k[(σ+p)  (X) (Y)+pg(X,Y)] (15) 
 

Taking a frame field and contracting (15) over X and Y 
we obtain: 
 
                             r k( 3p)= σ −  (16)
  
In view of (16), (15) yields: 
 

                   
( p) (X) (Y)

S(X,Y) k 1
( p)g(X, Y)

2

σ + η η� �
� �=
� �+ σ −
� �

 (17) 

 
Let Q be the Ricci operator i.e.,   g(QX,Y)=S(X,Y).  

Then setting X = QX in (17) we get: 
 

              
( p) (QX) (Y)

S(QX, Y) k 1
( p)S(X, Y)

2

σ + η η� �
� �=
� �+ σ −
� �

 (18) 

 
Contracting (18) over X and Y we have:  
 

                   2 1
Q k ( p)S( , ) ( p)r

2
� �= σ + ξ ξ + σ −� �
� �

 (19) 

 
Using (16) and (9) ( for n = 4) in (19) we obtain: 
 

                       

2

2
( p)( 3)(p )

Q k 1
( p)k( 3p)

2

� �σ + − − α
� �=
� �+ σ − σ −
� �� �

 (20) 

 
Again setting  X = Y =   in (17) we get: 
 

                             2 k
3(p ) ( 3p)

2
− − α = σ +  (21) 

 
Since the  (CS)4-spacetime under consideration is 

non-flat, we have (ρ-α2)≠0 and hence, (21) implies that:   
(σ+3p)≠0 as k≠0 By virtue of (21) we obtain from (20) 
that: 
 

                                 2 2 2 2Q k ( 3p )= σ +  (22) 

 
We now suppose that the length of the Ricci 

operator of the perfect fluid non-flat (CS)4-spacetime is 
(1/3)r2, where r is the scalar curvature of the spacetime. 
Then from (22) we have: 

                              2 2 2 21
r k ( 3p )

3
= σ +  

 
which yields by virtue of (16) that k2σ(σ+3p) = 0 

Since σ+3p ≠ 0 and k≠0, it follows that σ=0 which is 
not possible as when the pure matter exists σ is always 
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greater than zero. Hence the spacetime under 
consideration cannot contain pure matter. 

Now we determine the sign of pressure in such a 
spacetime without pure matter. Hence for σ=0,  (16) 
implies that: 

 

                               r
p

3k
= −  (23) 

 

Again for σ= 0, (15) yields r=6(ρ-α2) Therefore 
(23) reduces to 
 

                                 22
p ( )

k
= − ρ − α  

 
This implies that  p>0 if α2>ρ and p<0 if α2<ρ.  

Thus we can state the following: 
 
Theorem 1: If a perfect fluid non-flat (CS)4-spacetime 
obeying Einstein’s equation without cosmological 
constant and the square of the length of the Ricci 
operator is (1/3)r2, then the spacetime can not contain 
pure matter. Moreover in such a spacetime without pure 
matter the pressure of the fluid is positive or negative 
according as: 
 
                                      α2 > ρ or  α2<ρ  
 
(CS)4-spacetimes whose energy-momentum tensor is 
a   codazzi   tensor:  This  section  deals  with  a  
(CS)4-spacetime whose energy-momentum tensor T is a 
Codazzi tensor. Then we have: 
 
                        X Z( T)(Y, Z) ( T)(Y,X)∇ = ∇  (24) 
 

We take Einstein’s equation with cosmological 
constant given by (11). Then differentiating (11) 
covariantly we get: 
 

      X X

1
( S)(Y, Z) dr(X)g(Y, Z) k( T)(Y, Z)

2
∇ − = ∇  (25) 

 
This implies 
 

 
[ ]

X Z

X Z

1
( S)(Y, Z) ( S)(X, Y) dr(X)g(Y, Z)

2
1

dr(Z)g(Y,X) k ( T)(Y, Z) ( T)(Y,X)
2

∇ − ∇ −

+ = ∇ − ∇
 (26) 

 
By virtue of (24) and (26) we get: 
 

X Z( S)(Y, Z) ( S)(X,Y)

1 1
dr(X)g(Y, Z) dr(Z)g(X,Y) 0

2 2

∇ − ∇

− + =
(27) 

Taking a frame field and contracting (27) over Y 
and Z, we obtain: 
 
                               dr(X) 0   for all X=  (28) 
 
Using (28) in (27) we have: 
 
                          X Z( S)(Y, Z) ( S)(X,Y)∇ = ∇  (29) 
 
This leads to the following: 
 
Theorem 2: If a (CS)4-spacetime has a Codazzi type of 
energy-momentum tensor, then its scalar curvature is 
constant and its Ricci tensor is of Codazzi type. 
 

Let  T(X,Y)=g( T� X,Y). Then from (11), it follows 
that:  

 

                        1
QX rX kTX X

2
= + − λ�  (30) 

 
where Q is the Ricci operator. Then (24) can be 

written as: 
 
                             X Y( T)(Y) ( T)(X)∇ = ∇� �  (31) 
 
From (13) we have:  
 
                            TX ( p) (X) pX= σ + η ξ +�  (32) 
 
Differentiating (32) covariantly we get: 
 

             
X

X

X

( T)(Y) (X Xp) (Y)

( p)( )(Y)

                  (Xp)Y ( p) (Y)

∇ = σ + η ξ
+ σ + ∇ η ξ
+ + σ + η ∇ ξ

�

 (33)  

 
In view of (33) we obtain by virtue of (31) that: 
 

                 
(X Xp) (Y) ( p) (Y)X

(Xp)Y (Y Yp) (X)
( p) (X) Y (Yp)X 0

σ + η ξ + α σ + η
+ − σ + η ξ
−α σ + η φ − =

 (34) 

 
where (3) have been used. 
Setting  Y=ξ in (34) and then using (7) we get:  
 
   ( p) X (X ) ( p) (X) ( p)Xα σ + φ = − σ ξ − ξσ + ξ η ξ − ξ  (35) 
 
Contracting (30) we obtain: 
 
                             r 4 ( 3p)k= λ + σ −  (36) 
 
Differentiating (36) covariantly along X we have: 
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                       ( )dr(X) X 3(Xp) k= σ −  (37) 
 

Since the spacetime under consideration has 
Codazzi type energy-momentum tensor, we have the 
relation (28). By virtue of (28) and (37) we get: 
 

                               
1

(Xp) (X )
3

= σ  (38)  

 
Using (38) in (35) we obtain: 
 
      ( p) X 3(Xp) 4( p) (X) ( p)Xα σ + φ = − ξ − ξ η ξ − ξ  (39) 
 

Taking the inner product on both sides of (39) by ξ 
we get by virtue of (7) that: 
 
                              Xp ( p) (X)= − ξ η  (40) 
 
From (38) and (40), it follows that: 
 
                             X ( ) (X)σ = − ξσ η  (41) 
 
Again from (40) and (41) we have: 
 
               grad p ( p) ,  grad ( )= − ξ ξ σ = − ξσ ξ  (42) 
 

 The relations (40) and (41) implies that p and σ 
are constants over a hypersurface. This leads to the 
following: 
  
Theorem 3: If the energy-momentum tensor of a 
perfect fluid (CS)4-spacetime is a Codazzi tensor, then 
both the energy density and pressure of the fluid are 
constants over a hypersurface. 
Again from (2)-(6), it follows that in a (CS)4-spacetime, 
the following relation holds: 
 

          [ ]X

1
( )(Y) div g(X,Y) (X) (Y)

3
∇ η = ξ + η η  (43) 

 
Since the integral curves of  in a (CS)4-spacetime 

are geodesics[7], the Roy-Choudhuri equation[5] for the 
fluid in a (CS)4-spacetime can be written as: 
 

          
[ ]

X( )(Y) (X,Y) (X,Y)

1
div g(X,Y) (X) (Y)

3

∇ η = ω + τ

+ ξ + η η
 (44) 

 
where  is the velocity vector field of the fluid, ω 

is the vorticity tensor and τ is the shear tensor 
respectively. Comparing (43) and (44) we get: 

 
                               (X,Y) (X,Y) 0ω + τ =  (45) 

Again in a (CS)4-spacetime we have[7]  curl  = 0  
i.e.,  is irrotational. Hence the vorticity of the fluid 
vanishes. Therefore ω(X,Y)=0. Consequently (45) 
implies that τ(X,Y)=0. Thus we can state the following: 
 
Theorem 4: In a perfect fluid (CS)4-spacetime,  the 
fluid has vanishing vorticity and vanishing shear. 

According to Petrov[4] classification, a spacetime 
can be divided into six types denoted by I, II, III, D, N 
and O. Again, Barnes[1] has been proved that if a perfect 
fluid   spacetime   is   shear  free  and  vorticity  free  
and the velocity  vector  field  is  hypersurface  
orthogonal  and the energy density is constant over a 
hypersurface orthogonal to the velocity vector field, 
then the possible local cosmological structures of the 
spacetime  are of  Petrov  type I,  D  or  O.   Since  in  a  
perfect fluid (CS)4-spacetime the velocity vector field ξ 
of the fluid is always hypersurface orthogonal[7], by 
virtue  of  Theorem  3  and  Theorem  4, we can state 
the following:  
 
Theorem 5; If the energy-momentum tensor of a 
perfect fluid (CS)4-spacetime is a Codazzi tensor, then 
the possible local cosmological structure of the 
spacetime is of Petrov type I, D or O. 
Again, it can be easily seen that in a (LCS)n- 
manifold(n>3) the divergence of the conformal 
curvature tensor C is given by:   
 

            

X

Y

( S)(Y, Z)n 3
(divC)(X, Z)Z

( S)(X, Z)n 2

dr(X)g(Y, Z)n
                       

dr(Y)g(X, Z)n 2

∇� �−= � �− ∇− � �

� �
+ � �−− � �

 (46) 

 
Hence if a perfect fluid (CS)4-spacetime is 

divergence free conformal curvature tensor, then (46) 
yields: 
 

          X

Y

( S)(Y, Z) dr(X)g(Y, Z)1
2 0

( S)(X, Z) dr(Y)g(X, Z)2

∇� � � �+ =� � � �− ∇ −� �� �
 (47)  

 
Taking an orthonormal frame field and contracting 

(47) over Y and Z we obtain: 
 
                           dr(X) 0,      for all  X=  (48) 
  
Using (48) in (47) we have: 
 
                      X Y( S)(Y, Z) ( S)(X, Z)∇ = ∇  (49) 
  

This implies that the Ricci tensor is a Codazzi 
tensor. Using (48) and (49) in (26) we obtain (24) and 
hence the energy-momentum tensor is a Codazzi tensor. 
This leads to the following: 
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Theorem 6: If a perfect fluid (CS)4-spacetime is of 
divergence free conformal curvature tensor, then its 
energy-momentum tensor is of Codazzi type. 
Consequently by virtue of Theorem5 and Theorem 6, 
we can state the following: 
 
Theorem 7: If a perfect fluid (CS)4-spacetime is of 
divergence free conformal curvature tensor, then the 
possible local cosmological structure of such a 
spacetime is of Petrov type I,  D or O. 

Again, Sharma[8] proved that if a spacetime with 
divergence free conformal curvature tensor admits a 
conformal Killing vector field, then the spacetime is 
either conformally flat or of Petrov  type N. 
This leads to the following: 
 
Theorem 8: If a perfect fluid (CS)4-spacetime with 
divergence free conformal curvature tensor admits a 
conformal Killing vector field, then the spacetime is 
either conformally flat or of Petrov type N. 
 
Conformally flat (CS)4-spacetimes: This section deals 
with a conformally flat (CS)4-spacetime. It can be 
easily seen that in a conformally flat (CS)4-spacetime, 
the Ricci tensor and curvature tensor are given by: 
 

               

2

2

r
S(X,Y) ( ) g(X,Y)

3

r
4( ) (X) (Y)

3

� �= − ρ − α� �
� �

� �+ − ρ − α η η� �
� �

 (50)  

 

2

2

g(Y, Z)Xr
R(X,Y)Z ( )

g(X, Z)Y6

g(Y, Z) (X)
g(X, Z) (Y)1 r

4( )  
2 3 (Y) (Z)X

(X) (Z)Y

� �� �= − ρ − α +	 
� � −� �� �

� η − �� �
ξ	 
� �η� �� � � �− ρ − α� � � �η η� � � �

� �+	 
−η η� �� �� �

(51)  

 
for all X, Y, Z. 

Let ξ⊥ be denote the 3-dimensional distribution in a 
(CS)4-spacetime orthogonal to ξ. Then we have η(X) = 
η(Y) = η(Z)=0 for all X, Y, Z ∈ξ⊥. Thus from (51) we 
have:  
 

               

2 g(Y, Z)Xr
R(X,Y)Z

g(X, Z)Y6 2

for all X, Y, Z  ⊥


 �� �ρ − α= −� �� �−� �� �

∈ ξ

 (52) 

 
 
 
 
 

This implies that: 
 

         
2r

R(X, ) X  for all X  
6 2

⊥
 �ρ − αξ ξ = − − ∈ ξ� �
� �

 (53) 

 
Again, according to Karcher[2], a Lorentzian 

manifold is called infinitesimally spatially isotropic 
relative to a unit timelike vector field U if its Riemann 
curvature tensor R satisfies the relation: 
 
                [ ]R(X,Y)Z g(Y, Z)X g(X, Z)Y= δ −  
 
for  all  X, Y, Z  U  

and R(X,U)U  X  for  X U ,

⊥

⊥

∈
= γ ∈

   

 
where δ, γ are real valued functions on the 

manifold. Hence by virtue of (52) and (53), we can state 
the following: 
 
Theorem 9: A conformally flat (CS)4-spacetime is 
infinitesimally spatially isotropic relative to the unit 
timelike vector field ξ. 
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