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Abstract: In this study, the half width of the chaotic separatrix has been estimated by chrikov’s 
criterion. Through surface of section method, it has been observed that the magnetic torque parameter, 
the eccentricity of the orbit and the mass distribution parameter play an important in changing the 
regular motion into chaotic one. 
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INRODUCTION 

 
 Bhardwaj[1] has discussed chaos in non-linear 
planar oscillation of a satellite under the influence of 
third-body torque. Sidlichovský[2] has discussed the 
existence of a chaotic region which is formed by 
trajectories crossing a critical curve which corresponds 
to the separatrix of fast pendulum motion. Tiscareno[3] 
carried out extensive numerical orbit integrations to 
probe the long-term chaotic dynamics of the 2:3 
(Plutinos) and 1:2 (Twotinos) mean motion resonances 
with Neptune. Kauprianov and Shevchenko[4] studied 
the problem of observability of chaotic regimes in the 
rotation of planetary satellites. Contopoulos and 
Efstathiou[5] studied Escapes and Recurrence in a 
Simple Hamiltonian System. They studied a simple 
dynamical system with escapes using a suitably 
selected surface of section. Selaru et al.[6] studied Chaos 
in Hill's generalized problem from the solar system to 
black holes. Carruba et al.[7] have discussed Chaos and 
Effects of Planetary Migration for the Saturnian 
Satellite Kiviuq. 
 
Equation of motion: The equation of motion for the 
non-linear motion of a satellite under the influence of 
magnetic torque in an elliptic orbit as obtained as 
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 Estimation of resonance width: As r and v are 

periodic in time and as 
2

v
δθ = + , using Fourier like 

Poisson-Series as discussed in Bhardwaj and Tuli[1], 
Equation (1), becomes 
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The half integers 
2
m

 will be denoted by p . 

Resonances occur whenever one of the arguments of 
the sine or cosine functions is nearly stationary i.e., 

whenever 1
2

d
p

dt
θ − << . Using slowly varying 

resonance variable, pv ptθ= − , holding pv  fixed and 

averaging for small 0w , then, Equation (2) becomes 
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which is a equation of perturbed pendulum perturbed by 

a force 0 1
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When 0≠ε  the Equation.(3) becomes 
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 For the unperturbed part of Equation (4), 
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1pc , 1ε  are arbitrary constants and pl  is an argument. 
Using theory of variation of parameters, since 
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higher order terms 1pdc

dt
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second order of approximation. 
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 Again, we get three types of motion, Type I, II is 

that in which pdx

dt
>0, <0, Type III is that in which 

pdx

dt
=0, at 0 or ,π  

For type-I, our solution is  
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the case of revolution. 
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0andλ λ being arbitrary constants. This is the case of 
liberation. 

Type III occurs when 2
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The solution is 31
04 tan pk t

px eπ α−+ = + , where 0α  is 
an arbitrary constant and the other having a particular 
value. When , ,pt x π→ ±∞ → ± at both places, 
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 and all higher derivatives of px  approach to 

zero. This is the case of infinite period separatrix which 
is asymptotic forward and backward in time to the 
unstable equilibrium. 
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In case of perturbed equation, we get 

1 1 1p p p pk n c k k c= 	 ≅  and 

1
3

1

4
cos sin ( )p p

p
p

dc m p
l t a

dt k b
≅ +  

Now, 1 3
1 1

4
sin sin ( )p p

p p
p p

dl m p
k l t a

dt k c b
≅ − +  

 
2

1
32

1 1

4 4
sin cosp p p

p
p p p

d l pm lp
l a

bk c b ndt

ε� �−
≅ − +� �� �

� �
 

In the first approximation of 0 1 1 0,p p p pn n c c= = , we 
get 
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Fig. 1: Surface of sections for e = 0.0549, ε = 0.001, 1a =0.1153 at n=0.1, 0.3, 0.4, 0.5, 0.7, 0.9 
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Fig. 2: Surface of sections for n=0.1, ε = 0.001, 1a =0.1153 at e=0.001, 0.0549, 0.2, 0.3, 0.4, 0.5 
 
which is again the equation of pendulum. As in 
previous case this equation gives us revolution, 
liberation and infinite period separatrix motion. 
On the other hand, if 1n  is even, then, 
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When pl  is small, the solution of above equation is 

given by 
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The unperturbed solution is 11
04 tan pk t

px eπ α−+ = + , 

where 0α  is an arbitrary constant and the other having 
a specific value. This is the case of infinite period 
separatrix which is asymptotic forward and backward in 
time to the unstable equilibrium.  
 Near the infinite period separatrix broadened by the 
high frequency term into narrow chaotic band[9], for 
small n, the half width of the chaotic separatrix is given 
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Fig. 3: Surface of sections for n=0.347, e=0.0549, 1a =0.1153 at ε =0, 0.01, 0.1, 0.3,  0.5, 0.7 
 
spread chaotic behaviour can be observed is given by 
using the Chrikov’s overlap criterion. This criterion 
states that when the sum of two unperturbed half-widths 
equals the separation of resonance centers, large-scale 
chaos ensues. In the spin-orbit problem the two 
resonances with the largest widths are the p = 1 and p = 
3/2 states. For these two states the resonance overlap 
criterion becomes 

1
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For e = 0.0549 the mean eccentricity of Artificial 
satellite, the critical value of n above which large-scale 
chaotic behaviour is expected is ROn = 0.347. 
 
The spin orbit phase space: Using Poincare surface of 
section by looking at the trajectories stroboscopically 
with period 2π. The section has been drawn with versus 
v  at every periapse passage. Since the orientation 
denoted by θ  is equivalent to the orientation denoted 
by π +θ , we have, therefore, restricted the interval 

from 0 to π. In Fig. 1-3, we have plotted 
d
dv
θ

 versusθ , 

at every periapse passage. It may be observed that the 
chaotic separatrix surrounds each of the resonance 
states and each of these chaotic zones is separated from 
others by non-resonant quasi-periodic rotation 
trajectories. From Fig. 1-3, it is observed that as n, e, ε  
increases, the regular curves disintegrate respectively 
and this disintegration increases with the increase in n, 
e, ε .  
 

CONCLUSION 
 
 It is also observed that the magnetic torque plays a 
very significant role in changing the motion of 
revolution into liberation or infinite period separatrix. 
The half width of the chaotic sepratrices estimated by 
Chirikov’s criterion is not affected by the magnetic 
torque. It is further observed that in the spin-orbit phase 
the regular curves start disintegrating due to magnetic 
torque, the increase in the eccentricity and the irregular 
mass distribution of the satellite and this disintegration 
increases with the increase in �, n and e. It has been 
observed that Artificial satellite’s spin orbit phase space 
is dominated by a chaotic zone which increases further 
due to magnetic torque. 
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