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Abstract: An efficient and effective special purpose method is proposed for solving a class of one-stage 
single constrained linear programming problems with a finite number of right hand side scenarios and 
bounded variables. We compare our proposed method with a general purpose method using CPLEX 
interactive optimizer. For various m and n, by using elapsed computational time as the criteria, our 
procedure outperformed the general purpose method as the problem size grew. 
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INTRODUCTION 

 
 Consider a class of one-stage linear programming 
(LP) with a single constraint under a finite number of 
right hand sides (RHS) and bounded variables with the 
following formulation. 
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x t a C are decision variable, upper bound of 
item j, weight coefficient of item j, cost coefficient of 
item j, respectively. 
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 , , , ,i i i i iu v b g h  are slack variable, surplus variable, 

capacity of alternative i, per unit cost of having iu , per 

unit cost of having 
i

v , respectively.  
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 In order to easily explain our algorithm, we have 
two assumptions that are following. 
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 The basic problem statement of the previous model 
can be described as follows. Given , ,

j j j
C a t , for 

1, 2, ...,=j n  and , ,
i i i

g h b , for 1, 2, ...,=i m , the 

decision problem is to search for 
j

x , for 1, 2, ...,=j n  

and ,
i i

u v , for 1, 2, ...,=i m , so that the constraints (1.2) 
are satisfied in order to minimize the objective function 
(1.1). 
 
Literature reviews: Dantzig[1] founded the general 
concept of linear programming (LP) including 
introducing LP with uncertain parameters referred to as 
stochastic linear programming (SLP). SLP was 
described by Birge and Louveaux[2]. Two basic 
approaches for solving SLP are chance constraint 
programming and two-stage modeling as presented in 
Wagner[3]. In general, theoretical foundations of 
stochastic linear and nonlinear programming are 
summarized by Wets[4]. The two-stage approach for 
SLP is quite popular among SLP researchers. One of 
the key research questions in this area is to develop an 
efficient algorithm to approximate the whole 
uncertainty population by a discrete set of samples 
leading to a deterministic equivalent LP model with 
manageable size and structure. Infanger[5] proposed an 
important sampling approach to find such 
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representation and to apply Bender decomposition 
technique with statistical confidence intervals to solve 
the resulting dual angular model. In general, 
deterministic equivalent formulations of two-stage 
SLPs lead to a very large LP model with impractical 
sizes to be handled by a usual personal computer. 
Recently, research in parallel processing on large scale 
optimization has been received much attention as found 
in Benyoub and Daoudi[6] for the general constrained 
problem and in Meng, Tan and Zhao[7], for the SLP 
cases with extensions to non-linearity.  
 State-of-the-art LP solvers such as CPLEX, GLPK, 
LINGO SOPLEX and MATLAB can handle large and 
sparse problems. CPLEX[8] employs are primal 
simplex, dual simplex, barrier and network optimizers 
for problems with an extractable network structure. 
GLPK[9] implements the two-phase revised simplex 
method and primal-dual interior point method. 
LINGO[10] uses primal simplex solver, dual simplex 
solver and barrier solver (i.e., interior point algorithm). 
SOPLEX[11] is an object-oriented implementation of the 
primal and dual simplex algorithms. MATLAB[12] uses 
simplex solver and primal-dual interior point method. 
Moreover, there exist other LP solvers based on 
simplex method (i.e., CLP, lp_solve) and based on 
interior point method (i.e., PCx, BPMPD, HOPOM). 
Vanderbei[13] compared the performance of interior 
point method with the simplex method and concluded 
that simplex method is generally faster than interior 
point method for a small to medium scale problem but 
interior point method tends to be superior for large 
scale problem. Anderson[14] proposed a modified Schur-
complement approach for handling dense columns in 
interior point method.  
 The studied problem is a class of one-stage linear 
programming problem in which allocation of the 
decision variable xj is made to meet random RHS with a 
known distribution. The objective function in this 
problem may be a total cost. It can be divided into two 
parts. First part is the cost of selecting the decision 
variable xj and second part is the penalty cost (i.e. 
shortage, storage cost). This kind of problem is a 
deterministic equivalent formulation of a stochastic 
linear programming problem with simple recourse, 
trivial first stage constraints and one constraint in the 
recourse problem. Since SLP problem with simple 
recourse has dual decomposition structure, dual 
decomposition method is another procedure for solving 
it as presented in Kall and Wallace[15]. In the next 
section, a new approach for solving the studied problem 
will be proposed with an optimality proof of validity. 
 

MATERIALS AND METHODS 
 
 As stated previously, the other LP solvers can 
handle large and sparse problems. However, as the 
constraint matrix of the studied problem is dense, those 
LP solvers may not appropriate for large and dense 
problems. However, the proposed method can solve the 
studied problem efficiently. 
 The studied problem can be written as follows: 
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 Objective function can be separated into two parts 
as follows. 
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( )θH is piecewise convex function. 

Since 
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( )H θ is a piecewise-linear convex function and 

2
( )θH  is a piecewise convex function, 

1 2( ) ( )θ + θH H is 
also a piecewise convex function. 
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Let 
1 2

slope of graph ( ) ( )SH H Hθ = θ + θ  

 There are 1m n+ +  extreme points. Therefore, 
there are +m n  corresponding slopes. The optimal 
solution can be found easily by calculating SH θ  from 

left to right. If SH θ  is greater than zero, the optimal 
solution is the starting point of that slope. 
 In this study, the proposed method is developed for 
solving LP with single constraints and bounded 
variables and written in MATLAB software as M-file 
program and compared with a general purpose method 
using CPLEX interactive optimizer. For the proposed 
method, a developed algorithm can be generalized step 
by step as follows. 
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 Experimentally for the general purpose method 
using CPLEX, the simplex based is selected for solving 
the studied problem. For the proposed algorithm, it is 
written as M-file format in MATLAB software. Then, 
an experiment is conducted by varying m and n and the 
elapsed time (excluding parameter generating) and 
solutions obtained are collected and compared. All 
computations are tested on PC notebook with Pentium 
M, 1.6 Ghz and 512 MB RAM. , ,

j j j
C a t , for 
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1, 2, ...,=j n , are generated with uniform[0,10]. 
i

b  for 

1, 2, ...,=i m , are generated with uniform[0,
1=

�
n

j j

j

a t ]. 

,
i i

g h  for 1, 2, ...,=i m , are generated with 
uniform[0,1]. 
 

RESULTS 
 
 The results from the experiment can be 
summarized as shown in Table 1 and 2. 
 
Table 1: The elapsed time (excluding parameter generating)(sec) of 

general purpose method using CPLEX when m and n are 
varied 

m 
n 

100 250 500 750 1000 2500 5000 7500 10000 

100 1.71 1.75 1.93 2.20 2.62 10.40 41.18 95.52 162.98 

250 1.72 1.88 2.31 3.40 4.91 24.31 88.47 200.51 354.14 

500 1.77 2.23 3.50 5.70 8.77 43.99 168.38 372.09 663.15 

750 1.85 2.43 4.80 8.47 13.03 65.92 247.41 552.47 1181.97 

1000 2.15 3.06 6.08 10.67 16.54 86.19 328.44 815.26 1610.47 

2500 3.31 6.37 15.05 27.41 43.14 224.48 1397.91 6468.0
5 N/A 

5000 6.34 15.02 35.52 65.17 100.35 1068.04 N/A N/A N/A 

7500 10.27 27.61 65.22 114.27 189.86 5407.50 N/A N/A N/A 

10000 16.46 44.24 105.45 193.24 322.96 N/A N/A N/A N/A 

N/A means that CPLEX cannot solve the studied problem of size ( , )n m . 

 
Table 2: The elapsed time (excluding parameter generating)(sec) of 

the proposed method when m and n are varied  
m 

n 
100 250 500 750 1000 2500 5000 7500 10000 

100 0.00 0.01 0.01 0.02 0.02 0.11 0.37 0.80 1.42 

250 0.01 0.01 0.02 0.02 0.03 0.12 0.43 0.88 1.49 

500 0.01 0.02 0.03 0.04 0.05 0.15 0.50 0.94 1.58 

750 0.02 0.03 0.04 0.05 0.06 0.18 0.54 1.01 1.67 

1000 0.03 0.04 0.05 0.07 0.08 0.21 0.61 1.11 1.77 

2500 0.14 0.15 0.17 0.21 0.23 0.45 1.19 1.82 2.50 

5000 0.48 0.51 0.56 0.59 0.64 1.04 1.67 2.72 3.78 

7500 1.01 1.07 1.11 1.19 1.25 1.71 2.58 3.67 4.96 

10000 1.73 1.81 1.95 2.03 2.12 2.82 3.82 5.10 6.52 

 
 With both general purpose method using CPLEX 
and the proposed method, for all n, elapsed time will 
increase if m increases. Additionally, the proposed 
method has an average shorter elapsed time than 
general purpose methods using CPLEX and 
significantly shorter when m and n are large. 

CONCLUSION 
 
 A fast special purpose method for solving LP with 
single constraints and bounded variables has been 
developed and tested. The results indicated that the 
proposed method is much faster than general purpose 
methods in the case of large-scale problems. Moreover, 
the proposed method can be a real time efficient 
algorithm for bound computing when additional integer 
decision variable constraints are required. Also, the 
proposed approach can be a foundation for extensive 
studies in case of multiple constraints. 
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