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Abstract: We proved a common fixed point theorem for a sequence of self maps satisfying a new 
contraction type condition in Menger spaces, results extended and generalize some known results in 
metric spaces and fuzzy metric spaces. 
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INTRODUCTION 

 
 There have been a number of generalizations of 
metric space. One such generalization is Menger space 
introduced in 1942 by Menger[1] who was use 
distribution functions instead of nonnegative real 
numbers as values of the metric. Schweizer and Sklar[2] 
studied this concept and gave some fundamental results 
on this space. The important development of 
fixed-point theory in Menger spaces was due to Sehgal 
and Bharucha-Reid[3]. The study of common fixed 
points of maps satisfying some contractive type 
condition has been at the centre of vigorous research 
activity. It is observed by many authors[3,4-10] that 
contraction condition in metric space may be translated 
into probabilistic metric space endoved with min norms. 
The purpose of this was to define and investigate a new 
class of self-maps satisfying a new contraction type 
condition in Menger spaces. 
 
Preliminaries: We recall some definitions and known 
results in Menger probabilistic metric space. For more 
details, we refer the readers to[1,4-9,11,12]. 
 
Definition 1: A triangular norm ∗  (shorty t-norm) is a 
binary operation on the unit interval [0,1] such that for 
all a, b, c, d ∈[0,1] the following conditions are 
satisfied: 
(a) a∗ 1 = a, 
(b) a∗ b = b∗ a, 
(c) a∗ b ≤ c∗ d whenever a ≤ c and b ≤ d, 
(d) a∗ (b∗ c) = (a∗ b)∗ c. 
Some examples of t-norms are a∗ b = max{a+b-1,0} 
and a∗ b = min{a,b}. 

Definition 2: A distribution function is a function 
F:[−∞,∞]→[0,1] which is left continuous on ℜ, 
non-decreasing and F(-∞) = 0, F(∞) = 1. If X is a 
nonempty set, F: X×X → ∆ is called a probabilistic 
distance on X and F(x,y) is usually detoned by Fxy. 
 
Definition 3 ([1]): (see also[1-3,9]) The ordered pair 
(X,F) is called a probabilistic semimetric space (shortly 
PSM-space) if X is a nonempty set and F is a 
probabilistic distance satisfying the following 
conditions: for all x, y, z ∈ X and t, s > 0,  
(PM-1) Fxy(t) = H(t) ⇔ x = y, 
(PM-2) Fxy = Fyx.  
If, in addition, the following inequality takes place: 
(PM-3) Fxz(t) = 1, Fzy(s) = 1 ⇒ Fxy(t+s) = 1, then (X,F) 
is called a probabilistic metric space. 
 The ordered triple (X,F, ∗ ) is called Menger 
probabilistic metric space (shortly Menger space) if 
(X,F) is a PM-space, ∗  is a t-norm and the following 
condition is also satisfies: for all x, y, z ∈ X and t, s > 0, 
(PM-4) Fxy(t+s) ≥ Fxz(t)∗Fzy(s). For every PSM-space 
(X,F), we can consider the sets of the form Uε,λ = {(x,y) 
∈ X×X : Fxy(ε) > 1−λ }. 
 The family {Uε,λ}ε>0,λ∈(0,1) generates a semi 
uniformity denoted by UF and a topology τF called the 
F-topology or the strong topology. Namely, A ∈ τF iff 
∀x ∈ A ∃ε > 0 and λ ∈ (0,1) such that Uε,λ(x) ⊂ A. UF 
is also generated by the family {Vδ}δ>0 where Vδ := Uδ,δ 
([2]). 
 In [13], it is proved if supt<0 (t∗ t) = 1, then UF is a 
uniformity, called F-uniformity, which is metrizable. 
The F-topology is generated by the F-uniformity and is 
determined by the F-convergence: xn → x 
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⇔ →)(tF xxn
1, ∀t > 0. 

Definition 4 ([2]): A sequence {xn} in a Menger space 
(X,F,∗ ) is called converge to a point x in X (written as 
xn → x) if for every ε > 0 and λ ∈ (0,1), there is an 
integer n0 = n0(ε,λ) such that )(εxxn

F >1−λ for all n ≥ 

n0. The sequence called Cauchy if for every ε > 0 and λ 
∈ (0,1), there is an integer n0 = n0(ε,λ) such that 

)(ε
mn xxF >1−λ for all n, m ≥ n0. A Menger space 

(X,F, ∗ ) is said to be complete if every Cauchy 
sequence in it converges to a point of it. 
 
Lemma 1 ([9]): Let {xn} be a sequence in a Menger 
space (X,F,∗ ) with continuous t- norm ∗  and t∗ t ≥ t. 
If there exists a constant α ∈ (0,1) such that  

)()(
11

tFtF
nnnn xxxx −+

≥α  for all t > 0 and n = 1,2..., then 

{xn} is a Cauchy sequence in X. 
 
Lemma 2 ([9]): Let (X,F,∗ ) be a Menger space. If there 
exists a constant α ∈ (0,1) such that )()( tFtF xyxy ≥α  

for all x, y ∈ X and t > 0, then x = y. 
 
Remark 1: In a Menger space (X,F,∗ ), if t∗ t ≥ t for 
all t∈ [0,1] then a∗ b = min{a,b} for all a, b ∈ [0,1] 
and it is well known that such t-norm is continuous. 
 

RESULTS 
 
Theorem 1: Let {Tn}, n = 1, 2, ... be a sequence of 
mappings of a complete Menger space (X,F,∗ ) into 
itself with t∗ t ≥ t for all t∈ [0,1] and S : X → X be a 
continuous mapping such that Tn(X) ⊆ S(X) and S is 
commuting with each Tn. If there exists a constant α ∈ 
(0,1) such that for any two mappings Ti and Tj 

min{ )(),()(),( 22 tFtFtFtF ySyTySyTxSxTyxTT jjiji
αααα }+a

)( tF ySyT j
α )2( tF ySxT j

α ≥[p )(tF xSxTi
+q )(tFSxSy ]

)( t2F ySxT j
α  

holds for all x, y ∈ X and 0 < p,q < 1 and 0 ≤ a < 1 such 
that p+q−a = 1, then there exists a unique common 
fixed point for all Tn and S. 
 
Proof: Let x0 be an arbitrary point of X and {xn} be a 
sequence defined by Sxn = Tnxn-1, n = 1,2,… Then for 
each t > 0 and 0 < α < 1, we have  
min{ )(),()(),( tFtFtFtF 2

xTSxxTSxxTSx
2

xTxT 1211210101201
αααα } + 

a )( tF
121 xTSx α )( t2F

120 xTSx α  ≥ 

[p )(tF
010 xTSx +q )(tF

10 SxSx ] )( t2F
120 xTSx α  and 

min{ )(),()(),( tFtFtFtF 2
SxSxSxSxSxSx

2
SxSx 21211021

αααα } + 

a )( tF
21SxSx α )( t2F

20SxSx α ≥ [p )(tF
10SxSx + 

q )(tF
10SxSx ] )( t2F

20SxSx α . 

Thus, it follows that 
min{ )()(),(

211021

2 tFtFtF SxSxSxSxSxSx ααα } + a )(
21

tF SxSx α  

)2(
20

tF SxSx α  ≥ (p+q) )(
10

tF SxSx )2(
20

tF SxSx α  and 

)(
21

tF SxSx α min{ )(),(
1021

tFtF SxSxSxSx αα }+a )(
21

tF SxSx α  

)2(
20

tF SxSx α  ≥ (p+q) )(
10

tF SxSx )2(
20

tF SxSx α . 

Since )2(
20

tF SxSx α ≥ min{ )(),( tFtF
2110 SxSxSxSx αα }, 

we have 
)(

21
tF SxSx α )2(

20
tF SxSx α  +a )(

21
tF SxSx α )2(

20
tF SxSx α  ≥ 

(p+q) )(
10

tF SxSx )2(
20

tF SxSx α  and 

(1+a) )(
21

tF SxSx α )2(
20

tF SxSx α  

≥(p+q) )(
10

tF SxSx )2(
20

tF SxSx α . 

Since p + q − a = 1, we have )(
21

tF SxSx α ≥ )(
10

tF SxSx . 

By induction, )(
1

tF
nn SxSx α
+

≥ ,...2,1),(
1

=
−

ntF
nn SxSx Thus, 

by Lemma 1, {Sxn} is a Cauchy sequence in X. Since X 
is complete, there exists some u∈X such that Sxn → u. 
Since Sxn = Tnxn-1, {Tnxn-1} also converges to u. Since S 
commutes with each Tn, using (3.1), we have  
min{ )(),()(),( tFtFtFtF 2

uSuTuSuTSSxSSx
2

uTSSx kkn1nkn
αααα

−
} + 

a )( tF uSuTk
α )( t2F uTSSx k1n

α
−

 ≥ 

[p )(tF
n1n SSxSSx −

+q )(tF SuSSx 1n−
] )( t2F uTSSx k1n

α
−

. 

Using the continuity of S and taking limits on both 
sides, we have  

min{ )(),()(),( tFtFtFtF 2
uSuTuSuTSuSu

2
uSuT kkk

αααα } + 

a )( tF uSuTk
α )( t2F uSuTk

α  ≥ 

[p )(tFSuSu +q )(tFSuSu ] )( t2F uSuTk
α and so )( tF 2

uSuTk
α + 

a )( tF uSuTk
α )2( tF uSuTk

α  ≥ (p+q) )2( tF uSuTk
α . 

Since )2( tF uSuTk
α  ≥ min{ )(),( tFtF uSuTSuSu k

αα } = 

)( tF uSuTk
α , we have  

(1+a) )( t2F 2
uSuTk

α  = )( t2F 2
uSuTk

α +a )( t2F uSuTk
α  

)( t2F uSuTk
α ≥ (p+q) )( t2F uSuTk

α  

and hence )( t2F uSuTk
α ≥ 1 for all α ∈ (0,1) and t > 0. 

Therefore Su = Tku for any fixed integer k. Moreover, 
min { )(),()(),( tFtFtFtF 2

uSuTuSuTSxSx
2

uTSx kkn1nkn
αααα

−
} + 
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a )( tF uSuTk
α )( t2F uTSx k1n

α
−

≥ 

[p )(tF
n1n SxSx −

+q )(tF SuSx 1n−
] )( t2F uTSx k1n

α
−

. 

Taking the limits on both sides, we have 
min{ )(),()(),( tFtFtFtF 2

SuSuSuSuuu
2

uuTk
αααα } +a )( tFSuSu α  

)( t2F uuTk
α ≥ [p )(tFuu +q )(tFuSu ] )( t2F uuTk

α  

and so  
)( tF 2

uuTk
α +a )( t2F uuTk

α ≥ [p+q )(tFuSu ] )( t2F uuTk
α . 

Thus, it follows that )( t2F uuTk
α ≥ 1 for all α ∈ (0,1) 

and t > 0. Therefore u = Su = Tku for any fixed integer 
k. Thus u is a common fixed point of S and Tn for n = 
1,2,… 
 For uniquenesses, let v be another common fixed 
point of S and Tn for n = 1,2,… Using (3.1), we have  

min{ )(),()(),( tFtFtFtF 2
SvvSvvSuu

2
uv αααα } + 

a )( tFSvv α )( t2FSuv α ≥ 
[p )(tFSuu +q )(tFSuSv ] )( t2FSuv α and 

)( tF 2
uv α + a )( t2Fuv α ≥ [p+q )(tFuv ] )( t2Fuv α . 

So )( t2Fuv α ≥ 1 for all α ∈ (0,1) and t > 0. Hence, by 
Lemma 2, u = v. This completes the proof. If we take a 
= 0 in the main Theorem, we have the following: 
 
Corollary 1: Let {Tn}, n = 1,2, ... be a sequence of 
mappings of a complete Menger space (X,F,∗ ) into 
itself with t∗ t ≥ t for all t∈ [0,1] and S : X → X be a 
continuous mapping such that Tn(X) ⊆ S(X) and S is 
commuting with each Tn. If there exists a constant α ∈ 
(0,1) such that for any two mappings Ti and Tj  

min{ )(),()(),( 22 tFtFtFtF ySyTySyTxSxTyxTT jjiji
αααα } ≥ 

[p )(tF xSxTi
+q )(tFSxSy ] )2( tF ySxT j

α  

holds for all x, y ∈ X and 0 < p,q < 1 such that p+q = 1, 
then there exists a unique common fixed point for all Tn 
and S. 
 
Proof: It is easy to verify from Theorem 1. If we take a 
= 0 and S = IX (the identity map on X) in the main 
Theorem, we have the following: 
 
Corollary 2: Let {Tn}, n = 1,2, ... be a sequence of 
mappings of a complete Menger space (X,F,∗ ) into 
itself with t∗ t ≥ t for all t∈ [0,1]. If there exists a 
constant α ∈ (0,1) such that for any two mappings Ti 
and Tj  

min{ )(),()(),( 22 tFtFtFtF yyTyyTxxTyxTT jjiji
αααα } ≥ 

[p )(tF xxTi
+q )(tFxy ] )2( tF yxT j

α  

holds for all x, y ∈ X and 0 < p,q < 1 such that p+q = 1, 
then for any x0 ∈ X the sequence {xn} = {Tnxn-1}, n = 1, 
2,… converges and its limit is the unique common fixed 
for all Tn. 
 
Proof: Existance and uniquess of common fixed point 
follows from Theorem 1. Convergence of the sequence 
{xn} can be proved as in Theorem 1. 
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