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Abstract: This paper introduces detail design of semi-custom CMOS Fast Fourier Transform (FFT) 
architecture for computing 16-point radix-4 FFT. FFT is one of the most widely used algorithms in 
digital signal processing. It is used in many signal processing and communication application as an 
important block for various multi-carrier systems such as for WLAN (Wireless local area network). 
This paper describes the design of an ASIC (Application Specific Integrated Circuit) CMOS FFT 
processor for 16-point radix-4 complex FFT computation, realized utilizing 0.18µm standard CMOS 
technology. Fixed point data format is preferred in comparison of floating point data format for a 
shorter dynamic range and reduced hardware utilization; thus, catering to the needs of portability. 
Furthermore, computations results at particular stage are rounded to avoid overflow issue and to be 
stored in register. The computation speed of the design is observed to be 50MHz after the synthesis 
process. Compared to traditional radix-4 algorithm the architecture proposed for 16-point FFT results 
in 1.73% of power saving and 5.5% of area reduction.  
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INTRODUCTION 

 
  
 The Discrete Fourier Transform (DFT) plays a 
significantly important role in many applications of 
digital signal processing. Basically, it has been applied 
in a wide range of fields such as linear filtering, 
spectrum analysis, digital video broadcasting and 
orthogonal frequency demodulation multiplexing 
(OFDM). The rapidly increasing demand of OFDM-
based applications, including modern wireless 
telecommunication such as LAN, needs real-time high 
speed computation in Fast Fourier Transform 
algorithm. This has made the design of FFT processor a 
critical requirement for the up coming wireless 
technology[1]. With the advent of this requirement, the 
study of high performance VLSI FFT architecture is 
likewise of increasing importance. Many different 
hardware architectures have been proposed for the 
implementation of FFT algorithms.  The main concern 
of the design approach will be power and architectural 
size. 
 Among various FFT algorithms, radix-2 FFT with 
Cooley-Turkey algorithm, is very popular because it 
makes efficient use of symmetry and periodicity 
properties of the twiddle factor/coefficient 

n
N

2 jnexp
NW π− =  

 
 which reduce the computational 

complexity from 0(N2) to 0(Nlog2N)[2]. Several 
architectures have been proposed based on Cooley-
Turkey algorithm to further reduce the computation 
complexity, including radix-4, radix-2, and split-radix. 
Basically, this Fast Fourier Transform algorithm use 
Divide-and-Conquer approach to divide the 
computation recursively and then extract as many 
common twiddle factors as possible.  
 The number of required real additions and 
multiplications is usually used to compare the 
efficiency of different FFT algorithms. In terms of the 
multiplicative comparison, the split-radix FFT is 
computationally better to all the other algorithms 
because it has most trivial multiplications[3]. Eventually, 
this algorithm has a drawback because of irregular 
structure that leads this algorithm not suitable for 
implementation on digital signal processors. Structural 
regularity is also important in implementation of FFT 
algorithms on dedicated chips such as in ASIC 
(Application Specific Integrated Chip). Hence, radix-2 
and radix-4 FFT algorithm are preferable in terms of 
speed and accuracy.  
 This paper presents an area and power efficient 16-
point radix-4 Fast Fourier Transform. The approach in 
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re-utilizing the stored identical component enhances the 
physical finger print of the architecture. An improved 
complex multiplication is introduced in FFT butterfly 
computation to realize a cost efficient hardware. 16-
point FFT radix-4 architecture is implemented utilizing 
0.18µm technology from Artisan.  The 16 bit imaginary 
and 16 bit real input-output is realized at 1.8V with 
operating frequency of 50MHz. 

The chip is designed for fixed-point data format. 
Great care had been taken into account to overcome the 
overflow issue in fixed-point data format[4]. During the 
FFT computation, results at a particular stage are 
rounded and stored in the register memory. Since the 
FFT computation is an iterative process, the successive 
rounding errors at each output of butterfly accumulate 
over the FFT stages. The issue is solved by maintaining 
the error at the successive butterfly small. Twiddle 
factor/coefficient value are pre-calculated and stored in 
the register memory as 16-bit two’s complement signed 
fixed-point words. 
 This paper is organized as follows. Conventional 
radix-4 algorithm is described followed by the modified 
radix-2 description. Subsequently, the proposed radix-4 
circuit implementation is presented with butterfly 
architecture and controller. The comparison results 
between conventional radix-4 and modified radix-4 
architecture realized in 0.18µm CMOS technology are 
reported in simulation results. The paper is summarized 
with an elaboration of a conclusion describing 
contribution of this work. 
  
RADIX-4 ALGORITHM:  The N-point Discrete 
Fourier Transform DFT of a sequence x(n) is defined as 
[5]: 
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where, 
0,1,..., ( 1)k N= −                      

The twiddle factor NW  is given by: 

                        (2 / )j N
NW e π−=              (2) 

where x(n) is the time domain discrete input signal and 
X(k) is the DFT. Value n represents the discrete time-
domain index, while k is the normalized frequency 
domain index. 

Divide-and-Conquer approach is adopted in DFT 
algorithm to make the computation more efficient. The 
basic idea of this approach is to decompose the N-point 
DFT into successively smaller DFTs. This algorithm is 
known as FFT.  Among the entire FFT algorithm, 
radix-4 decimation in time approach is used in this 

paper.  N can be factored as a product of two integers 
that is[3]: 
                                    N LM=                                   (3) 
the sequence x(n), 0 1n N≤ ≤ −  is stored in two-
dimensional by l and m, where 0 1l L≤ ≤ −  and 
0 1m M≤ ≤ − . 

Thus, the sequence x(n) is stored in rectangular 
array by mapping of index n to the indexes (l,m) as 
follow: 
                             n l mL= +                              (4) 
Thus, the stored sequence x(n) is shown in Fig. 1. 
   
  m 

L 0 1 2 … M-1 
0 x(0) x(L) x(2L) … x((M-1)L) 
1 x(1) x(L+1) x(2L+1) … x((M-1)L+1)
2 x(2) x(L+2) x(2L+2) … x((M-1)L+2)
: : : : : 

: : : : 
… 

: 
L-1 x(L-1) x(2L-1) x(3L-1) … x(LM-1) 

 
Fig. 1: Arrangement of x(n) sequence for data array 
 
 A similar arrangement is used to map index k to a 
pair of indices (p,q), where 0 1p L≤ ≤ −  and 
0 1q M≤ ≤ − . 

Thus, the sequence X(k) is stored in rectangular 
array by mapping of index k to the indexes (p,q) as 
follow: 
                             k Mp q= +                           (5) 
 X(k) is mapped into corresponding rectangular 
array X(p,q) and  x(n) is mapped into the rectangular 
array x(l,m) . The DFT can be expressed as a double 
sum over the elements of the x(n) and X(k) multiplied 
by the corresponding phase factors as follow: 
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where, 
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however, 
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and, 

/
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From the simplification, equation 7 can be expressed as 
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For radix-4, the flow graph of a 16-point FFT based on 
the above formulation is shown in Fig.2. The 
corresponding equations are as follows: 
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where, 
0,1, 2,3p =  and  

F(l,q) is given, 
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given that, 

0,1,2,3l =  and 0,1, 2,..., 1
4
Nq = −  

Figure 2 shows a signal flow graph of a radix-4 16-
point FFT. The number inside the circle is the value of 
q (for stage 1) or p (for stage 2) [6]. The number 
outside the circle is the FFT coefficient applied. 
 

 
 

Fig. 2: Signal flow graph of a FFT radix-4 16-point 
 

Modified Radix-4:  Radix-4 for computation 
increases the addition/subtraction count compare to 
radix-2. Thus, to reduce the addition/subtraction of the 
radix-4 design, matrix of the linear transformation is 
used as follows: 

(0, ) 1     0      1      0 1     0      1     0
(1, ) 0     1      0    -j 1     0    -1     0
(2, ) 1     0    -1      0 0     1      0     1
(3, ) 0     1      0     j 0     1    
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   

 

                                                                ……… (10) 
The total number of complex addition/subtraction is 

reduced to Nlog2N, which is identical to the radix-2 
algorithm. This approach saves 33% of adders/subtract 
required. 

A complex multiplication can be reduced to three 
multiplications by the following improved algorithm [1]: 
                      A Bj ( X Yj )( L Mj )+ = + +                 (11) 
Real, 
                A ( L M )Y L( X Y )= − + −                  (12) 
Imaginary,  
                      B ( L M )X L( X Y )= + − −                 (13) 
Value of L M+ , L M−  and L( X Y )−  are calculated 
manually and saved in registers. This algorithm, 
manage to reduce to three constant multiplication and 
three addition/subtraction of the computation.  The 
complex multiplication structure is shown in Fig. 3. 
 

 
 

Fig. 3: Complex multiplier architecture 
 
Circuit Implementation: The radix-4 16-point FFT 
was designed using verilog code and simulated in 
NcVerilog Cadence in order to verify its functionality. 
The design is synthesized utilizing 0.18µm technology 
provided by Artisan Library. Timing constraint is set 
with operating frequency 50MHz.  

FFT architecture is divided into three main 
process blocks. The block diagram of process block is 
shown in Fig. 4.  

 

 
Fig. 4:  Data process block 
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 This block consist of data input, butterfly 
computation and data output. The data is read in every 
rising edge of clock and stored in the memory register. 
Butterfly computation block compute the stored data 
before going to data output process.  The data is kept in 
the register before it is read out. 

The FFT radix-4 processor architecture consist of a 
butterfly architecture, memory register, control circuit, 
serial to parallel and parallel to serial converter.  
Twiddle factor are stored as 16-bit two’s complement 
signed fixed point word. The block diagram 
representation of FFT architecture design is shown in 
Fig. 5. 

 

 
 

Fig. 5: FFT processor architecture 
 
A. Butterfly Architecture: The most important 

element in FFT processor is a butterfly structure. It 

takes two signed fixed-point data from memory register 

and computes the FFT algorithm. The output results are 

written back in same memory location as the previous 

input stored. This method is called in-placement 

memory storage whereby it can reduce the hardware 

utilization. The butterfly architecture is shown in Fig. 6. 

The adder sums the input before being multiplied 

by the twiddle factor. The multiplier forms the partial 

product of the complex multiplication and produce two 

times bigger then input bit. Shift register would shift the 

bits to avoid overflow issue. Output of this butterfly 

would be kept in the register for the subsequent stage. 

 
 

Fig. 6: Butterfly architecture 
 
B. Controller: The FFT processor event is determined 
by the control circuit depending on the feedback it 
receives from the surrounding unit.  Moore machine 
approach is adapted whereby the output signal 
dependant to the value of next state. This design 
functions as a synchronous design which controlled by 
“CLK” signal. The input signal “RST” is used to reset 
the FFT processor including the input buffer which 
holds data for next stage. Input “EN” signal is used to 
control the state transition of the processor. Signal 
“SYNC_OUT” would be enable when the output signal 
is generated. 
 

SIMULATION RESULTS 
 

After the synthesis process, gate-level-simulation 
was performed in order to verify its functionality with 
SDF (standard delay format) back annotation. The 
operating frequency of the design is 50MHz. Table 1 
summarizes the cell area of the conventional radix-4 
and proposed radix-4 as reported from Encounter 
(Cadence) back-end tool. 
 
Table 1: Area comparison between conventional radix-4 and 

proposed radix-4  
Design Area (mm2) 

Conventional Radix-4 0.5625 

Proposed Radix-4 0.5314 

 
In comparison the proposed radix-4 design is 

enhanced in area consumption, than the conventional 
architecture. The fingerprint area for conventional 
radix-4 and proposed radix-4 is shown in Fig. 7. 

The dynamic power consumption of the proposed 
radix-4 is observed to be less than the conventional 
radix-4. Table 2 shows power comparison between the 
proposed radix-4 and conventional radix-4 architecture. 
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Table 2: Power comparison between conventional radix-4 and 

proposed radix-4 
Design Results(mW) 

Conventional Radix-4 22.8 

Proposed Radix-4 22.4 

 
CONCLUSION 

 
Simulation results shows proposed FFT radix-4 

represents a better and efficient architecture for 
computing FFT. This design facilitates the efficient 
computation of long FFT which usually require a huge 
architecture. In this design process, many identical 
components are being reused in which it reduces the 
gate count of the design.  This is due to simplification 
of the mathematic algorithm in FFT structure. The 
comparison shows that the chip can reach low cost and 
low power for OFDM system applications. 
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