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Abstract: This paper deals with the analytical computation of the magnetic field of a cylindrical 
permanent magnet linear generator. It offers an alternative solution to the magnetic field problem. A 
new approach to solve Poisson equation using Struve function is introduced and it offers a simple but 
accurate analytical estimation to the calculation of the open circuit flux density and induced voltage. 
The finite element analysis simulation is performed to validate the analytical calculation. 
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INTRODUCTION 
 

A linear generator is a machine that converts linear 
mechanical energy into electrical energy. The machine 
is directly driven by a linear prime mover. It is different 
from its rotary counterpart in a way that the design of a 
linear machine mostly follows the characteristic of the 
prime mover. 

The linear generator provides electrical power as a 
stand alone or as an alternator of a power generation 
system. A wide range of output power can be had from 
linear generators from a few watts for a flashlight to a 
few megawatts from a tidal wave power for normal 
utilities.  

Unlike rotary machines, limited publications on the 
linear generator show that research on linear generators 
has not reached the saturation level and therefore there 
is still a lot of space for research and development.  
This paper presents a calculation of the flux distribution 
of a linear generator. Maxwell and Poisson equations 
are used to compute magnetic field quantities in all 
parts of the machine.  

A comprehensive analysis of the field distribution 
of linear machines is presented in [7]. Treatment of 
linear machines equipped with Halbach and quasi or 
discrete Halbach is outlined as a special case in [5] in 
detail. Several types of winding construction are also 
offered. The analysis can also be adapted from the 
rotary machine studies presented in[14-16]. 

Wang et. al.[5,7] solve the field equations by  
integrating of the permanent magnet geometry. The 
exponential form can also be used to solve the Maxwell 
and Poisson equation in both rotary [12-16] and linear 

machines [2]. In this paper a direct solution involving a 
Struve function is proposed. The direct solution takes 
less time since there is no integral form in the matrix of 
simultaneous equations, and the whole field source is 
taken into calculation instead of its surface only. The 
only requirement needed for the direct solution is just 
some experience in handling differential equations.  

The validity of the direct analytic approach 
presented in this paper is verified by comparing its 
solutions to those of finite element method. The 
calculation of the unknown parameters is made easy by 
taking advantage of the symmetry of the cylindrical 
machine. A 2D axisymmetry model is set up to give a 
simpler machine representation of the real 3D object. 

 
 

MACHINE CONSTRUCTION 
 

The machine is a long-translator type and 
constructed of a stator and a translator as shown in the 
Fig.1. Six windings are located in the stator core. Seven 
pieces of permanent magnets are mounted on a non-
permeable translator shaft to produce the magnetic 
field. Those permanent magnets are arranged in a 
discrete Halbach series, i.e. radially magnetized 
permanent magnets (RMPMs) and axially magnetized 
permanent magnets (AMPMs) are stacked alternately. 

The machine is run in a reciprocating sinusoidal 
motion. The system produces a linear three phase ac 
output. At every translator motion, all windings are 
always active since the translator is longer than the 
stator. The machine prototype and its construction is 
shown in Fig.1. 
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a. Generator Prototype 
 

 
b. Generator Construction 

 
Fig. 1: Linear generator 

 
 

MODELING AND ANALYSIS 
 

Fig. 2 shows the cross section of the upper half of 
the linear generator. As can be seen, the machine can be 
divided into three regions where region 1 includes the 
air gap and the winding; region 2 includes the 
permanent magnet set and region 3 includes the shaft. 
The region number is noted as a subscript in all 
equations. The machine specification is listed in Table 
1. 

 
 
Fig. 2: Cross section of the upper half of the linear generator. 
 

Ro   - shaft radius 
hm   - magnet thickness 
Rm=Ro+hm  - magnet outer radius 
hw  - winding thickness 
Rs=Rm+g+hw - inner stator radius 
 

Table 1: Generator specification 
Speed 3000 rpm 
Stroke 69 mm 
R0 12.5 mm 
hm 12 mm 
hw 102 mm 
AMPM length 12 mm 
RMPM length 22.5 mm 
Br 1.12 T 
µr, shaft 1  
µr, core infinity  

 
In the first step of the analysis, the governing 

equations are developed while ignoring the existence of 
stator teeth. The machine is assumed to be infinitively 
long and has a periodic construction. The permeability 
of the core is assumed to be infinity while the 
permeability of the winding, air gap and permanent 
magnet as well as the shaft is assumed to be one. Next, 
the effect of teeth is represented by the Carter 
coefficient. Some other assumptions are made to 
simplify the calculation. 
 
Flux Distribution: The flux distribution is calculated at 
any point in all zones. The flux density in the air gap, 
the winding and the shaft is given by, 
 

0µ=B H      (1) 
 
where µ0 is permeability of free space and H is the field 
intensity. The flux density in the permanent magnet is 
given by the combination of the remanent 
magnetization of permanent magnet and the external 
field intensity. It can be written as: 
 

0 0rµ µ µ= +B H M     (2) 
 
where µr is the relative recoil permeability of the 
magnets and M is the remanent magnetization vector. It 
is assumed that the permanent magnet has a linear 
demagnetization characteristic; so that the 
magnetization vector is directly related to the field 
density as: 
 

0
rem
µ

=BM     (3) 
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The flux density B can be expressed as the curl of 
the magnetic vector potential A 
 

=∇×B A      (4) 
 

Maxwell’s and Poisson’s equations for the air 
gap/winding, permanent magnets and shaft are 
respectively given as, 
 

2 01∇ =A     (5) 

 
2

2 0µ∇ = − ∇ ×A M    (6) 

 
2 03∇ =A     (7) 

 
The vector potential A has only one nonzero 

component, Aθ, which is independent of θ in the 
cylindrical system. Therefore, Equations (5) until (7) 
can be written as, 
 

( ) ( )1 1
01 1rA rA

z rr z r rθ θ
∂ ∂∂ ∂� � � �+ =� � � �∂ ∂∂ ∂� � � �

 (8) 

 

( ) ( )1 1
2 2 0rA rA

z rr z r r
µθ θ

∂ ∂∂ ∂� � � �+ = − ∇ ×� � � �∂ ∂∂ ∂� � � �
M  

     (9) 
 

( ) ( )1 1
03 3rA rA

z rr z r rθ θ
∂ ∂∂ ∂� � � �+ =� � � �∂ ∂∂ ∂� � � �

 (10) 

 
 

The remanent magnetization vector M can be 
written in the form of its components: 
 

M Mr r z z= +M e e     (11) 
 
 
where Mrer represents the contribution of RMPM and 
Mzez represents the contribution of AMPM. When the 
machine uses only one type of those permanent 
magnets, the remanent magnetization vector will only 
have one component. 

From Equation (4), the flux density B obtained 
from A is given by 
 

( )1
B rAz r r

A
Br z

θ

θ

∂
=

∂
∂

= −
∂

    (12) 

In the series form, from Equations (3) and (11) the 
components of the magnetization vector are 
decomposed into harmonics, 
 

( )

( )

sin ;
1,2,...

cos
1,2,...

M M m zrr

M M m zzz

η η
η

η η
η

∞
�=

=
∞
�=

=

  (13) 

 
where 
 

( )2 1

4
sin sin

2 20

4
sin

20

m
p

m mB p mrremMr mp

mB mzremM z mp

η π
η τ

τ τη η
η µ τ η

τη
η µ τ η

−
=

=

=
  (14) 

 
 
where τp is the permanent magnet pole pitch, τmr and 
τmz are the length of RMPM and AMPM, respectively. 
Using those equations, Equations (8) until (10) can be 
rewritten as 
 

( ) ( )1 1
01 1rA rA

z rr z r rθ θ
∂ ∂∂ ∂� � � �+ =� � � �∂ ∂∂ ∂� � � �  (15) 

 

( ) ( )1 1
2 2

cos
1,2,...

rA rA
z rr z r r

P m z

θ θ

η η
η

∂ ∂∂ ∂� � � �+ =� � � �∂ ∂∂ ∂� � � �

∞
�

=  (16) 
 

( ) ( )1 1
03 3rA rA

z rr z r rθ θ
∂ ∂∂ ∂� � � �+ =� � � �∂ ∂∂ ∂� � � �  (17) 

 
where 
 

4
sin sin

2 2
B prem mrP m m

p

τ τ
η η ητ

= −
 (18) 

 
The boundary conditions of the system exist at the 

interfaces of different zones. A special boundary is 
located on the axis of the shaft where vector potential is 
zero. Six boundary conditions are needed to solve the 
simultaneous field equations.  
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0;1

;1 2

;2 30 0

0;3 0

;1 2

0 02 3

B r Rsz

B Br r R r r Rm m

B Br r R r r R

A r

H Hz r R z r Rm m

H Hr R r Rz z

θ

==

== =

== =

==

== =

== =    (19) 
 

Solving Equations (15) through (18) using 
Equation (19) and rearranging them in terms of vector 
potential yield 

BesselI ( )1 1
cos( )1 BesselK ( )1 11

A m r
A m z

B m r
η η

θ ηη ηη

∞ +� �
�= � �

� �= � �  (20) 
BesselI ( )2 1

cos( ) ( , )2 BesselK ( )2 11

A m r
A m z S r z

B m r
η η

θ η
η ηη

� + �∞ � �
� �= +� �� � �� �= � �� � 

     (21) 
BesselI ( )3 1

cos( )3 BesselK ( )3 11

A m r
A m z

B m r
η η

θ η
η ηη

+∞ � �
= � ��

� �= � �  (22) 
 
where BesselI1 is modified Bessel functions of the first 
kind of order 1 and BesselK1 is modified Bessel 
functions of the second kind of order 1. 

The term S(r,z)can be any function of r and z. In 
this case, the Struve function is introduced to solve the 
equation. Solving Equation (21) for S(r,z) yields 
 

( )StruveL ( ) cos11
( , )

22

m r P m z
S r z

m

π η η η

η

⋅ ⋅ ⋅
=

 (23) 
 
where StruveL1 is the modified Struve function of order 
1. 

It is not necessary to include the physical condition 
of the field source to find the solution. Instead, the 
functions can be solved directly using common 
differential equations. Therefore, the matrix of the 
simultaneous equations will contain simple function 
instead of integral function. 

The flux distributions in all zones are derived from 
Equations (20) until (22) using the relationship in 
Equation (4). It yields: 
 

BesselI ( )1 1
sin( )1 BesselK ( )1 11,2,...

A m r
B m m znr B m r

η η
ηη ηη

∞ +� �
� � �=

� �= � �  
     (24) 

 
BesselI ( )1 0

cos( )1 BesselK ( )1 01,2,...

A m r
B m m znz B m r

η η
η

η ηη

∞ −� �
� � �=

� �= � �  
     (25) 
 

StruveL ( ) sin( )1 1
2

2 BesselI ( )1 11,2,... sin( )
BesselK ( )1 1

m r P m z

m
Br A m r

m m zn B m r

π η η η
η

η ηη
η

η η

⋅� �
+� �

∞ � �
�= � �+� �� �=

� �� �� �� �
� �� � 

     (26) 
 

StruveL ( ) cos( )1 0
2

2 BesselI ( )2 01,2,... cos( )
BesselK ( )2 0

m r P m z

m
Bz A m rnn m m z

B m rn

π η η η
η

η
η η

η

� �
+� �

∞ � �
�= � �−� �= � �

� �� �� �
� �� � 

     (27) 
 

BesselI ( )3 1
sin( )3 BesselK ( )3 11,2,...

A m r
B m m zr B m r

η η
η η

η ηη

+∞ � �
= � ��

� �= � �  
     (28) 
 

BesselI ( )3 0
cos( )3 BesselK ( )3 01,2,...

A m r
B m m zz B m r

η η
η η

η ηη

−∞ � �
= � ��

� �= � �  
     (29) 
 

The last step is to find all coefficients in Equations 
(24) until (29). Solving these equations with all the 
boundary conditions in Equation (19) while considering 
Equations (1), (2) and (22) yields equations as functions 
of r and z only. Those equations represent the field 
distribution in the whole machine. 
 
Induced Voltage: The flux linkage in the winding is 
computed by adding a coefficient, known as the Carter 
coefficient, to represent the existence of the stator teeth 
[5,7]. This coefficient is given by 
 

- '
spKC gsp

τ
τ γ

=     (30) 

 
where τsp  is the stator slot pitch, and g’=g+hm/µr. The 
slotting factor � is given by 
 

24 10 0 0tan ln 1
2 ' 2 ' 2 '
b b b
g g g

γ
π

� 	
� � � �−
 �= − +� � � �
 �� � � �
 �� 


 (31) 
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where b0 is the width of the stator slot openings.  
Instead of the air gap distance g, an effective air-

gap ge is used. This parameter is given by, 
 

( )1 'g g K ge C= + −     (32) 
Therefore, the stator bore radius should also be 

recalculated with the effect of slotting incorporated. 
The equivalent stator bore radius Rse is given by 
R R gie m e= +     (33) 
where Rm is the outer radius of the magnets.  

The flux linkage of a stator winding can be 
obtained by integrating the vector potential in the 
region 1 over the winding pitch. The total flux linkage 
of a phase winding is the sum of the flux linkages in all 
the windings which are connected in series. 

( ) ( )2 2 ,

2

wzN Rw s r A r z drdzw IRR R w iw s i z

τ
π θττ

+
Ψ = ⋅ ⋅ ⋅� �⋅ − −

(34) 

The induced EMF in each phase winding is given by 
( ) ( )

( )
d z d zw we v tw dt dz

Ψ Ψ
=− =−   (35) 

where v(t) is the velocity of the translator, in general, as 
a function of time. 
 

RESULTS 
  

The flux distribution in the air gap is calculated 
using Equations (24) and (25). The radius of location is 
setup to r = Rm+g/2. The radial flux density Br and the 
tangential flux density Bz are plotted in Fig. 3 together 
with the flux density resulted from the finite element 
analysis simulation.  
 

 
a. Br 

 
b. Bz 

Fig. 3: Air gap flux density Br and Bz 
 

The open circuit induced voltage ew calculated 
using Equation (35) and using the finite element 
analysis simulation are shown the Fig. 4. 

 
a. Analytical 

 
 

 
b. Finite Element Analysis 

 
Fig. 4:  Three Phase Induced Voltage 
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DISCUSSION 
 

Fig. 3  shows that the analytical result confirms to 
the simulation except that there is a little difference at 
some points. In the Fig. 4., the analytical results seem to 
agree well with the finite element analysis simulation. 
Consequently, other electrical parameters of the 
machine can be derived deductively from these 
parameters.  
 

CONCLUSIONS 
 

The analytical calculation of the open circuit 
magnetic field of a cylindrical permanent magnet linear 
generator is presented in this paper. The governing 
equation to the field problem is derived from the 
Laplace and Poisson equations. A special function 
known as Struve function is proposed to be used in 
solving the field equations. The solution is obtained 
without considering the geometrical condition of the 
permanent magnet as the field source. 

The flux density in the air gap and open circuit 
induced voltage calculated using the analytical method 
are then compared to the ones produced by the finite 
element simulation. It can be seen that the results from 
the two methods match very well and therefore 
vindicate the validity of the analytical approach. It has 
been shown that the simple analytical method presented 
in this paper can be used as a tool for field estimation 
and design optimization in machine design. 
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