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Abstract: This research examines the effects of moving loads on viscously damped axial force 
Rayleigh beam. The authors especially tried to find the effect of the moving mass and moving force in 
connection with the length of the span of a Rayleigh beam. The authors also examined the effect of the 
lengths of the beam and of the load. It was observed that as mass of the moving load increases the 
deflection along the length of the beam also increases. It was further observed that the deflection of the 
moving mass is greater than that of the moving force. 
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INTRODUCTION 

 
 From historical viewpoint, the problem of moving 
load back to the beginning of the nineteenth century, 
the time of erection of the early railway bridges. A lot 
of work has been done during the past years on the 
dynamic response of railway bridges and later of 
highway bridges under the influence of moving masses. 
A comprehensive review of work done, as a matter of 
fact, can be found in Fryba [6], book. 
 The problems of moving loads are being studied in 
technically advanced countries world over especially 
Czechoslovakia, USA, Germany, Switzerland, France 
and Japan to mention but a few. Both the theoretical 
and experimental information on the effect of moving 
on structures were made available. (Stokes,[18]; 
Krylov,[13]; Jeffcolt,[10]; Inglis,[8]; Kolousek,[12]; 
Bolotin,4; Steele,[17]; Knowles,[11]; Oni, [16]; Ghorashi 
and Esmailzadeh,[7]; Krylov,[13]; Lee,[14]; Lin,[15]; 
Idowu,[9]; Dada,[5]; Adetunde,[1]; Akinpelu,[3]). 
 The present research is an extension of the earlier 
research of Adetunde [2], in which the axial force is 
taken into consideration (Axial force beams simply 
means beams which do experience compression when 
no external force is applied, i.e., artificial creation of 
stresses in structure before loading. 
 The purpose of this research is therefore to find the 
effects of moving mass and moving load in connection 
with the length of the beam. Find the effect of the 
length of the load on the beam make a comparison 
between the deflections due to the moving mass and 
that of the moving force. 

 Under the assumption that the beam is prismatic 
while rotary and damping are taken into consideration. 
 

MATHEMATICAL FORMULATION 
 
 Consider the simply supported axial force Rayleigh 
beam, shown in Fig. 1, of length L having a uniform 
cross-section with constant mass per unit length m and 
flexural stiffness EI. The beam is traversed by a 
constant load P having mass M moving at a constant 
velocity V, which assumed to strike a finite axial force 
Rayleigh  beam   from   the left end of the beam at time 
t = 0 (where t is measured from the time the load enters 
the beam) and advancing uniformly along the beam. 
Before the instant, the deflection throughout the length 
of the beam is assumed to be zero. 
 The governing differential equation of motion for 
axial force Rayleigh beam when rotatory and damping 
are considered is given as: 
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Fig 1:  Mathematical Model of the problem 
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where, a1 is the stiffness proportionality facto (damping 
complex or radius of gyration), W(x,t) is the transverse 
displacement response, X is the spatial coordinate, c(x) 
is the external damping force per unit length, N(x) is 
the axial force and P(x,t) is the transverse loading 
inertia. 
 The transverse load inertia takes the form described 
as: 
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where, g is the gravitational force, H is the heavyside 
unit function of the beam, ε is the fixed length of the 
load and ξ is a particular distance along the length of 
the beam. We employ the Dirac delta function 
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 The mass M of the load P is not negligible but of 
comparable magnitude with the mass of the total beam 
mL. As a result of this, we consider the effect of 
Coriolis force (Complementary acceleration) and of 
centripetal force (Acceleration related to curvature R of 
the deflection curve) associated with the mass M of the 
moving load P = Mg. 
Substituting Eq. (4) into Eq. (2) we have 
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OPERATIONAL SIMPLIFICATION OF THE 

GOVERNING EQUATION 
 
A series solution in terms of normal modes can be 
sought in the form. 
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Where, φi(x)’s are the shape function for the nth mode of 
the freely Vibrating prismatic beam while Yi(t) is the 
corresponding modal amplitude that has to be 
determined. Introducing Eq. 7 into Eq. 1 and 6, we have 
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 Multiply Eq. (8) by φn(x) and integrate along the length of the beam and applying the two orthogonality 
relationships, to the Eq. (8) 
 

L L L 2 2
i

i i ii n i n n 12 2
i 1 i 1 i 10 0 0

L L 2 2
i i

in n 2 2
i 1 i 10 0

d d (x)
m Y (t) (x) (x)dx C(x) Y (t) (x) (x)dx (x) a EI(x) Y (t) dx

dx dx

d d (x) d d (x)
(x) N Y (t) dx (x) EI(x)

dx dx dx dx

∞ ∞ ∞•• • •

= = =

∞ ∞•

= =

�� � �φφ φ + φ φ + φ +�� � �
� � � �

� �� �φ φ� �φ + φ �� �� �
� �� � � �

� � �� � �

� �� �
L

ii n i
i 10

2
2i i

i i 2
i 1 i 1

1
Y (t) dx (x) Mg M Y (t) (x)

d (x) d (x)
2MV Y (t) MV Y (t) H H d

dx dx 2 2

∞ ••

=

∞ ∞•

= =

�� ��= φ − − φ −�� � ��∈� �� �

�� � �φ φ ∈ ∈� � � �− φ − ξ + − φ − ξ − θ�� � � � �� �
	 
 	 
� �� �

��

� �

 (9) 



Am. J. Applied Sci., 5 (9): 1110-1116, 2008 
 

 1112 

Note 
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 Putting Eq. (9a-g) into Eq. (9), we have. 
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Remarks: Clearly all terms in the series in the third term of Eq. (9) go to zero except for i = n the modes are 
obviously uncoupled as far as the stiffness proportional damping is concerned. Coupling will be present, however, 
due to c(x), unless it takes on a form allowing only the term with i = n to remain in the series. This is indeed the case 
for mass-proportional damping, that is, if we let c(x) = a0m (x) = a0m, in which the proportionality constant a0 has a 
dimension of t−1

, then we have 
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Introducing the damping ratio for the nth mode, we have 
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 Hence Eq. (11) now becomes 
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SIMULATIONS 

 
Simply supported beam: We shall now consider a simply supported beam configuration whose normalized 
deflection curve is given as 
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 By putting Eq. (14) into the r.h.s. of Eq. (13), after a lot of simplification had been done, we finally have 
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 The above Eq. (15) is the exact governing equation 
of a simply supported viscously damped Rayleigh 
beam. We now use the finite difference method to solve 
the above Eq. (15) numerically. To obtain the results, 
we make use of central difference formula, which 
finally resulted into a system of equations which was in 
turn solved by a Visual Basic program. 
 

NUMERICAL RESULTS AND DISCUSSION 
 
 In this section, numerical results in both tabular 
and graphical forms are presented. The numerical 

analysis is in two folds. The first one concerns a 
viscously damped axial force Rayleigh beam moving 
mass whilst the second concerns a viscously damped 
axial force Rayleigh beam moving force.  
 The mathematical model discussed herein is related 
to the work done by Adetunde[2] in which the following 
data were used. 
 
m (Mass per unit length of beam) = 70 Kg m−1, M(Mass 
of the load) = 7.04, 8,10 Kg m−1, g = 9.81 m/s2 
π = 22/7, L = 10 m, ξ = vt+ �/2, ε = 0.001 m, 0.01 m, 
0.1 m, v = 3.33 m/s, t = 0.5s, t = 1.0 s and t = 1.5 s 
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h = 0.01, I = 1.04x10−6m4, E = 2.07 X 1011N/m2, N = 

0.5, 2 2
n n4

n

EI
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M L
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. 

 Hence, we have the followings. 
 Tables 1-4 and Fig. 2-5 show the variation of 
deflection of the beam acted upon by a moving mass 
and moving force. 
 It is observed from Fig. 2 above that as the mass of 
the moving load increases the deflection along the 
length of the beam increases. 
 
Table 1: Effect of mass of load on deflection of the beam under 

moving mass 
 Deflection 
 ------------------------------------------------------------------- 
x m = 10 m = 8 m = 7 
0 0 0 0 
1 -1.93E-06 -1.54E-06 -1.35E-06 
2 -3.45E-07 -2.76E-07 -2.42E-07 
3 4.11E-06 3.29E-06 2.87E-06 
4 9.78E-06 7.82E-06 6.84E-06 
5 1.47E-05 1.18E-05 1.03E-05 
6 1.74E-05 1.39E-05 1.22E-05 
7 1.71E-05 1.37E-05 1.20E-05 
8 1.36E-05 1.08E-05 9.49E-06 
9 7.47E-06 5.98E-06 5.23E-06 
10 -3.11E-08 -2.49E-08 -2.18E-08 

 
Table 2: Effect of load length on deflection of the beam under 

moving mass 
 Deflection 
 ------------------------------------------------------------------ 
 x Eps = 1 Eps = 2 Eps = 3 
0 0 0 0 
1 -1.93E-06 -1.92E-06 -1.88E-06 
2 -3.45E-07 -3.49E-07 -3.38E-07 
3 4.11E-06 4.07E-06 4.00E-06 
4 9.78E-06 9.69E-06 9.53E-06 
5 1.47E-05 1.46E-05 1.43E-05 
6 1.74E-05 1.73E-05 1.70E-05 
7 1.71E-05 1.69E-05 1.66E-05 
8 1.36E-05 1.34E-05 1.32E-05 
9 7.47E-06 7.39E-06 7.25E-06 
10 -3.11E-08 -3.08E-08 -3.02E-08 

 
Table 3: Effect of mass of load on deflection of beam under moving 

force 
 Deflection 
 ------------------------------------------------------------------- 
x m = 10 m = 8 m = 7 
0 0 0 0 
1 -1.90E-06 -1.50E-06 -1.30E-06 
2 -3.40E-07 -2.70E-07 -2.40E-07 
3 4.10E-06 3.28E-06 2.87E-06 
4 9.76E-06 7.81E-06 6.83E-06 
5 1.47E-05 1.17E-05 1.03E-05 
6 1.74E-05 1.39E-05 1.22E-05 
7 1.71E-05 1.36E-05 1.19E-05 
8 1.35E-05 1.08E-05 9.48E-06 
9 7.47E-06 5.97E-06 5.23E-06 
10 -3.10E-08 -2.50E-08 -2.20E-08 

Table 4: 
 Deflection 
 ------------------------------------------------------------------ 
 x Eps = 1 Eps = 2 Eps = 3 
0 0 0 0 
1 -1.90E-06 -1.90E-06 -1.90E-06 
2 -3.40E-07 -3.40E-07 -3.30E-07 
3 4.10E-06 4.05E-06 3.97E-06 
4 9.76E-06 9.64E-06 9.44E-06 
5 1.47E-05 1.45E-05 1.42E-05 
6 1.74E-05 1.72E-05 1.68E-05 
7 1.71E-05 1.68E-05 1.65E-05 
8 1.35E-05 1.34E-05 1.31E-05 
9 7.47E-06 7.37E-06 7.22E-06 
10 -3.10E-08 -3.10E-08 -3.00E-08 
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Fig. 2: Deflection of beam under moving mass for 

different masses of load 
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Fig. 3: Deflection of beam under moving mass for 

different load lengths 
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Fig. 4: Deflection of beam under moving force for 

different masses of load 
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Deflection of beam under moving force
for diffeent lengths of the load
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Fig. 5: Deflection of beam under moving force for 

different lengths of the load 
 
 It is observed from Fig. 3 above that as the length 
(Eps) of the moving load increases the deflection along 
the length of the beam increases. 
 It is observed from Fig. 4 above that as the mass of 
the moving force increases the deflection along the 
length of the beam increases. 
 It is observed from Fig. 5 above that as the length 
(Eps) of the moving load increases the deflection along 
the length of the beam increases. 
 

SUMMARY OF RESULTS 
 
 The dynamic response of loads on viscously 
damped axial force Rayleigh beam was carried out. 
The results obtained can be summarized as follows. 
 
• The deflection of a viscously damped axial force 

Rayleigh beam under a moving mass or moving 
force increases with increasing mass of load 

• The deflection of a viscously damped axial force 
Rayleigh beam under a moving mass or moving 
force increases with increasing span of load 

• The deflection of beam due to moving mass is 
greater than the deflection due to moving force 

 
CONCLUSION 

 
 The dynamic response of loads on viscously 
damped axial force Rayleigh beam is studied. The 
theory is based on orthogonal functions and the results 
indicate that the governing differential equation can be 
transformed into a series of coupled ordinary 

differential equations which is the solution for the 
corresponding moving distributed force. The resulting 
governing differential equation is solved by numerical 
approach (Finite central difference method). 
 In conclusion, the deflection due to moving mass is 
greater than that due to moving force. 
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