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Abstract: The growing importance of XML and the lack of efficient solutions for managing and 
querying XML data have led to the development of hybrid systems. We present a hybrid system, 
TwigX-Guide; an extension of the well-known DataGuide index and region encoding labeling to 
support twig query processing. With TwigX-Guide, a complex query can be decomposed into a set of 
path queries, which are evaluated individually by retrieving the path or node matches from the 
DataGuide index table and subsequently joining the results using the holistic twig join algorithm 
TwigStack. TwigX-Guide improves the performance of TwigStack for queries with parent-child 
relationships and mixed relationships by reducing the number of joins needed to evaluate a query. 
Experimental results indicate that TwigX-Guide can process path and twig queries on an average 38% 
better than the TwigStack algorithm, 29% better than TwigINLAB and 11% better than TwigStackList 
in terms of execution time. 
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INTRODUCTION 

 
 With the rapid emergence of XML as an enabler 
for data exchange and data transfer over the Web, 
querying XML data has become a major concern. Since 
XML is a semi-structured data, there are typically two 
types of user queries; namely full-text queries 
(keyword-based search) and structural queries (complex 
queries specified in tree-like structure). A keyword 
search is similar to content retrieval in information 
retrieval technology. However, to support structural 
query, we need an effective way to match (i) the query 
node tag and (ii) the query edge which is either Parent-
Child (P-C) or Ancestor-Descendant (A-D) against the 
XML database.  
 There are two main approaches to processing such 
queries, namely: 1) Traversing the XML database 
sequentially to find the matching pattern and 2) Query 
processing using the decomposition-matching-merging 
approach. Using the first approach, many researchers 
have complemented it with indexes to address the 
degradation problem due to excessive traversal. These 
indexes reduce the search scope by creating and 
traversing the path summary of the XML tree instead. 
DataGuide[1] indexes each distinct raw data path to 
facilitate the evaluation   of   simple   path expression. 
T-index[2] selects paths based on specific templates, 
while APEX[3], A(k)-index[4] and D(k)-index[5] select 
the most frequently-used paths in queries by restricting 

the path length to k. Although path indexing greatly 
speeds up the evaluation of path queries with P-C 
edges, it needs expensive join operations for processing 
queries with multiple branches and queries with A-D 
edges. 
 MPMGJN[6], Stack-Tree[7], TwigStack[8] and 
TwigStackList[9] algorithms are examples of the second 
approach. These algorithms are based on region 
encoding <start, end, level> labeling of the XML tree. 
MPMGJN and Stack-Tree algorithms decompose query 
pattern into basic binary relationships between pairs of 
nodes and structurally join pairs of nodes from the two 
lists to produce the matching results.  TwigStack 
evaluates twig query as a whole without decompositing 
it into binary relationships. Hence, memory is not used 
unwisely to store irrelevant nodes. Nevertheless, 
TwigStack is sub-optimal for queries with A-D edges 
only. Lu et al.[9] extend TwigStack by proposing 
TwigStackList, which can support both P-C and A-D 
edges efficiently. Their technique is to look-ahead by 
reading some elements in input data streams and cache 
‘potential’ elements to the main memory.  
 The work presented in this paper is motivated by 
the following observations: 
 
• Although TwigStack[8] is optimal in supporting 

queries with A-D edges, the algorithm is still 
inefficient for queries with P-C and mixed edges. 
This limitation was due to its less selective criteria, 



Am. J. Applied Sci., 5 (9): 1212-1218, 2008 
 

 1213

which pushes all nodes as intermediate results as 
long as it has the matching tag and is in the region 
range (node A is an ancestor of node B iff A.start 
<B.start && A.end> B.end). Thus, this algorithm 
produces large ‘useless’ intermediate results, 
leading to higher processing cost to check for 
possible merge-able paths in the merging phase. In 
addition, this algorithm requires a total of (N-1) 
joins, where N is the number of query nodes in an 
input query. Since join is expensive in query 
processing, a method to reduce it is crucial. 

• Although DataGuide[1] is effective in summarizing 
all path information, it is unable to support twig 
queries and queries with A-D edges because it does 
not preserve the hierarchical relationship among 
individual nodes.  

 
 The contribution of this paper is as follows: 
 
• We propose the TwigX-Guide system architecture, 

which extends the existing DataGuide and 
TwigStack to accelerate twig query processing. 

• We propose two new algorithms: The 
CutMatchMergePath algorithm to process path 
query and the CutMatchMergeTwig algorithm to 
process twig query. We show that using these two 
algorithms require fewer joins and produce smaller 
intermediate results than other approaches, which 
are based solely on region encoding. 

• We implement the TwigX-Guide system and 
experimentally show that TwigX-Guide 
outperforms TwigStack by about 38%, 
TwigINLAB[10] by about 29% and TwigStackList[9] 
by about 11% in terms of execution time on 
Nasa[11] dataset. 

  
MATERIALS AND METHODS 

 
The key idea: A query consists of a sequence of 
alternate edges and tags. As mentioned earlier, the 
edges may be either P-C or A-D relationships. To 
process A-D edges efficiently, region encoding[8, 9] was 
commonly used.  Each node in the data tree is labeled 
with <start, end, level> where start and end attributes 
can be generated by doing a pre-order traversal of the 
tree and sequentially assigning a number at each visit 
and level is the distance of a node from the root of the 
tree. Using this labeling scheme, node1 is the ancestor 
of node2 iff node1.start <node2.start and node1.end> 
node2.end. The key idea of this labeling is to speed up 
query with A-D edges. However, since this labeling 
does not contain hierarchical path information, it is 
insufficient to provide quick determination of query 
with P-C edges. 

Table 1: Summary on characteristics of TwigStack, DataGuide and 
TwigX-Guide 

TwigStack DataGuide TwigX-Guide 
No path information Path index Path index 
Node labeled based Node label based on Node labeled based  
on region encoding nodeID on region encoding 
Support twig query No support for twig Support twig query 
 query 
Support query with No support for query Support query with 
A-D edges with A-D edges A-D edges 
Less efficient to Support query with Support query with 
support query with P-C edges P-Cedges 
P-C edges efficiently efficiently 

 
 On the other hand, DataGuide provides general 
path indexes that summarize all paths in the data tree 
starting from the root. Each label path in DataGuide is 
unique. DataGuide is effective to answer query with P-
C edges by matching the query path against the label 
path directly. Nevertheless, it is unable to answer twig 
query and query with A-D edges since it does not 
preserve the hierarchical relationships among individual 
nodes. Combining the beautiful features of region 
encoding in TwigStack and the path summary of 
DataGuide, we propose to “pre-match” the query nodes 
along the root-to-leaf paths in DataGuide (instead of 
evaluating each node individually) and structurally join 
the results with TwigStack algorithm. As a result, the 
number of joins required is reduced. Eventually, this 
will speed up query evaluation.   
 Table 1 summarizes the pros and cons of 
TwigStack, DataGuide and our proposed system, 
TwigX-Guide. 
 Figure 1 shows our TwigX-Guide system 
architecture, which consists of the Labeling and 
Indexing Generator in the offline processing and the 
Query Engine in the online processing. 
 
Offline processing-label and index generator: In its 
traditional way, each DataGuide node is in the form of 
(nodeID, data path). We observe that the nodeID does 
not provide any information besides annotating a 
particular node. Thus, instead of using nodeID, we 
annotate each node by their region encoding label as 
introduced earlier. On the other hand, we remove the 
level attribute in the region encoding because it is no 
longer needed to check for P-C relationship. All P-C 
relationships can be determined directly from the 
DataGuide.  
 During the offline processing, we pre-process the 
XML tree into a set of streams labeled with <start-
end> for each element and path occurrence. Thus, 
instead of checking for matches against the whole XML 
tree, only the “qualified” streams are presented as input.   
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 <?xml version="1.0"  
encoding="UTF - 8"?> 

 <root> 
   <paper ID = “128”> 

      <author>Haw</author> 
      <author>Radha</author> 
    </paper> 

    <paper> 
     …. 

  </root> 
  

  
    

<0-0:-1> <12-1:0>

<14-2:12> <12-1:0>

publications journal

author journal

publications-journal

journal-author

Intermediate results Final results

publications-journal-author
<0-0:-1 12-1:0 14-2:12>merge

 
Fig. 1: TwigX-Guide system architecture 
 
 
 Figure 2a shows an example of an XML tree for 
the   domain   “Publications”   while Figure 2b depicts 
the fragment of XML streams stored in the DG 
hashtable during the offline processing. 

 

 
Fig. 2a: Example of Publications XML 
 
DG 

//publications <0-25> 
   //book <1-16> <17-24> 

//title <2-3><5–6><18-19> 
//book/title <2-3><18-19> 
//chapter <4-15><20-23> 
//book/chapter <4-15><20-23> 
… … 
//caption <11-12> 
//figure/caption <11-12> 
//section/figure/caption <11-12> 
//chapter/section/figure/caption <11-12> 
//book/chapter/section/figure/caption <11-12> 
… … 

Fig. 2b: Fragment of the DG index table 

Online processing-query evaluation: The input query 
is analyzed in the function evaluateQuery (depicted in 
Algorithm 1) to determine the type of query for 
processing. If it is a path query, the algorithm 
CutMatchMergePath is invoked. Else if the input query 
is a twig query, the algorithm CutMatchMergeTwig 
will be executed. 
 
 
Algorithm 1: to evaluate query based on type of query 
 
1. function processQuery  { 
2.     input : a path or twig query Q 
3.     output : final solutions matches the input query 
4.      Pre-order traversal (Q) { 
5.       for each node q’ in Q 
6.         count number of children 
7.      } 
8.    if (each node except the leaf node have only one child)    
9.       finalSolution = CutMatchMergePath (Q) 
10.  else if (any node has more than one child)    
11.       finalSolution = CutMatchMergeTwig (Q) 
12.  } //end function 
 
 
CutMatchMergePath algorithm: The algorithm 
(depicted in Algorithm 2) decomposes the input path 
query into one or more segments if there are any A-D 
edges such as p//q into p and //q (lines 6-13). The 
segment that contains A-D edges is put into temp_result 
(temporary results). However, the remainder segmented 
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path query with P-C edges is formed in the function 
partitionTwig. Lines 16-22 are the matching and 
merging processes. If the path query only contains P-C 
edges (lines 16-17), the final results can be obtained 
directly from the DG index table. Conversely, if the 
path query only contains A-D edges (lines 18-19), the 
final results can be obtained by joining the temporary 
results with the TwigStack algorithm. However, if the 
path query contains both P-C   and   A-D edges (lines 
20-21), the function connectPQ (lines 25-32) will be 
invoked to match-merge the final results. 
 
 
Algorithm 2: Cut node and its subtree whenever there is A-D 
relationship for a path query 
 
1. function CutMatchMergePath  { 
2. input : a path query, P and data guide table, DG 
3. output : final solution matches the input path query 
4. /*Vector temp_result to store each suffix path expression 
5. Vector vPathQuery to store path query after partition  */ 
6. Pre-order traversal (P) { 
7.  if (current node reached by a // edge)   { 
8.   let P’ = the subtree rooted at the current // edge 
9.     Cut P’ from P 
10.   temp_result.add (cutDescendantPathQuery (P’)) 
11.  } 
12. } 
13. vPathQuery = partitionTwig(P) 
14. t_array[] size = temp_result.size() 
15. p_arrayp[] size = vPathQuery.size() 
16. if ((temp_result.size()==0) && (vPathQuery.size()==1))                   
17. finalSolution = hashDG to get path label 
18. else if ((temp_result.size()>0) && (vPathQuery.size()=0))      
19.   finalSolution = TwigStack(temp_result) 
20. else if ((temp_result.size()>0)&&(vPathQuery.size()==1))      
21.   finalSolution = connectPQ(temp_result, vPathQuery) 
22. return finalSolution 
23. }// end function 
24.    
25. function connectPQ(descendantAxis, vPathQuery) { 
26. input: descendant axis path/node and path query 
27. output: connected path query 
28. for each ti in each descendantAxis             
29.     for each pi in vPathQuery 
30.        if ( ti.start > pi.start && ti.end < pi.end)  
31.         addToSol(ti, pi) 
32. } 
 
 
Example 1: Let Q1: book/chapter//figure/caption. 
Since there is an A-D edge, the path query is split into 
two paths /book/chapter and //figure/caption. As a 
result, only one join is needed to merge the paths. From 
the   DG   index table,   only two nodes, <4-15> and 
<20-23> fulfill the first path and one node <11-12> 

fulfill the second path. Next, the function connectPQ is 
invoked to match and merge the final results. Node 
<11-12> is in the range of <4-15>. As such, a solution 
is formed. However, node <11-12> is out of the range 
of <20-23>. Therefore, there is no solution for this case. 
As a summary, there is only one final answer.  
 
CutMatchMergeTwig algorithm: The 
CutMatchMergeTwig algorithm is presented in 
Algorithm 3. This algorithm takes an input query, do a 
pre-order traversal and cut any nodes and its subtree 
that are reached by the descendant axis (lines 6-11). 
Besides, it decomposes any branch axis of the form 
p[[[/q1]/q2]/…]/r into p/q1, p/q2, …, p/r   as   in lines 
12-19. The remainder segment of path query with only 
P-C edges is formed in the function partitionTwig. In 
contrast to the CutMatchMergePath algorithm, this 
algorithm needs to determine the TopBranchNode in 
order to merge the path queries as in lines 22-23.  
Finally, all these results are joined holistically using the 
TwigStack algorithm. 
 
 
Algorithm 3: Cut node and its subtree whenever there is a   
A-D relationship or branch node 
 
1.  function CutMatchMergeTwig { 
2. input : a twig query, Q and data guide table, DG 
3. output : final solution matches the input query 
4. /* Vector temp_result to store each suffix path expression 
5. Vector vPathQuery to store path query after partition */  
6.  Pre-order traversal (Q) { 
7.   if (current node reached by a // edge)   { 
8.     let Q’ = the subtree rooted at the current // edge 
9.      Cut Q’ from Q 
10.      temp_result.add (cutDescendantAndBranch (Q’)) 
11.   } 
12.   if (current node has more than one child) { 
13.      branchnode = current node tag 
14.      let  Q’ = the child under the branchnode 
15.      Cut Q’ from Q 
16.      for each Q’ { 
17.          let Q’= //Q’ 
18.          temp_result.add(cutDescendantAndBranch(Q’)) 
19.      } 
20.   } 
21. }  
22. vPathQuery = partitionTwig(Q) 
23. TopBranchNode = branchnode nearest to the root of the    

twig  
24. finalSolution = twigStack(temp_result, vPathQuery, 

TopBranchNode) 
25. return finalSolution 
26. }// end function 
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Example 2: Let Q2: 
book/chapter[/title]//figure/caption. Since Q2 contains 
branching nodes and an A-D edge, this input query is 
decomposed into two paths; /book/chapter/title and 
//figure/caption. Note that the title node is not 
segmented because it is a leaf node. Only nodes <5-6> 
and <11-12> fulfill the two paths respectively. The 
TopBranchNode has two nodes, <4-15> and <20-23>. 
The final result is then obtained by holistically joining 
these nodes together as illustrated in Figure 3. 
 
 

RESULTS AND DISCUSSION 
 
 We have implemented TwigX-Guide using Java 
API for XML Processing (JAXP). Experiments have 
been carried out on the Nasa dataset obtained from the 
University of Washington repository[11]. All our 
experiments are performed on 1.7GHz Pentium IV 
processor with 512 MB SDRAM running on Windows 
XP using the queries listed in Table 2.   Fig. 4 shows 
the query execution time of TwigX-Guide with respect 
to TwigStack[8], TwigINLAB[10] and TwigStackList[9].  
 

 

 

 

 

 
 
Fig. 3: TwigX-Guide query processing steps 
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Table 2: Query set 
Query Edges Query Query notation 
P-C only Q1 dataset[/title]/referenes/source/other/ 
  author/lastname 
 Q2 field[/name[/definition/footnote/para]]/ 
  units 
A-D only Q3 datasets//fererence//year 
 Q4 history[//creator]//day 
Mixed edges Q5 reference/source[//title]//reference 
 Q6 datasets[//reference/source/other/title]// 
  descriptions/description/para 
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Fig. 4: Performance evaluation results 
 
 From Fig. 4, we draw several observations and 
conclusions:- 
 
• When the query contains only P-C edges as shown 

in Q1 and Q2, TwigX-Guide performs significantly 
faster; about 66% faster as compared to TwigStack, 
49% faster as compared to TwigINLAB and about 
33% faster as compared to TwigStackList. This is 
because all the other approaches require six joins 
with a lot of disk access, while our approach 
requires only one join.  However, TwigStackList is 
much faster as compared to TwigStack and 
TwigINLAB because it caches ‘potential’ elements 
to the main memory for faster processing. 

• When the query contains A-D edges only as shown 
in Q3 and Q4, the performance of all the 
approaches are comparable.  This is because all 
approaches are based solely on region encoding 
labeling to retrieve “qualified” streams for further 
processing. Besides, all the approaches require the 
same   number of joins.   

• For query with mixed edges (containing both P-C 
and A-D edges) as shown in Q5 and Q6, TwigX-
Guide is 45% faster than TwigStack, 25% faster 
than TwigINLAB and 9% faster than 
TwigStackList approaches. This is because, the 
number of joins required in TwigX-Guide is far 
less. For example, for Q6, our approach requires 
only two joins while the other approaches need 
seven joins. 

  
CONCLUSION 

 
 We have presented TwigX-Guide for efficient 
processing on complex queries. The system extends 
DataGuide and region encoding to accelerate query 
processing. With this extension, DataGuide is able to 
process twig queries and queries with A-D relationships 
efficiently.  Region encoding, on the other hand, 
benefits DataGuide in terms of utilizing the path index 
to annotate the hierarchical relationships among 
individual nodes. With TwigX-Guide, a complex query 
can be decomposed into a set of path queries, which are 
evaluated individually by retrieving the path or node 
matches from the DataGuide index table and 
subsequently joining the results using the holistic twig 
join algorithm TwigStack. TwigX-Guide improves the 
performance of TwigStack for queries with P-C edges 
and mixed edges by reducing the number of joins 
needed to evaluate a query. 
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