
American Journal of Applied Sciences 5 (10): 1358-1368, 2008
ISSN 1546-9239
© 2008 Science Publications

Corresponding Author: Pouria Amirian, Faculty of Geomatics Engineering, K.N. Toosi University of Technology,
 Vali-e-asr St., Mirdamad Cross, 19967-15433 Tehran, Iran. Pouria.Amirian@gmail.com

1358

Publishing Geospatial Data through Geospatial Web Service and XML Database System

Pouria Amirian and Ali A. Alesheikh

Faculty of Geomatics Engineering, K.N. Toosi University of Technology,
Vali-e-asr St., Mirdamad Cross, 19967-15433 Tehran, Iran

Abstract: Technically the spatial non-interoperability problem associated with current geospatial
processing systems can be categorized as data and access non-interoperability. In GIS community,
Open GIS Consortium (OGC) geospatial Web services have been introduced to overcome spatial non-
interoperability problem associated with most geospatial processing systems. At the same time, in
Information Technology (IT) world, the best solution for providing interoperability among
heterogeneous systems is Web services technologies. Geospatial Web services and Web services
technologies differ in the way that latter are composed of particular set of technologies and protocols
but the former are comprised of defined set of interface implementation specifications which can be
implemented with diverse technologies. This research describes and discusses that geospatial Web
services which are developed using Web services technologies can provide access interoperability
among various geospatial and non-geospatial processing systems. In addition to access interoperability,
making use of open and platform independent data standards like Geography Markup Language
(GML), data interoperability can be achieved. Meanwhile, proper management of geospatial data
necessitates use of efficient and optimized data management systems. In this respect, the study also
illustrates the practical evaluation of existing solution for storing and publishing geospatial data as
GML. Based on the practical evaluation of this research, coupling native-XML database systems with
Web services technologies proved to be an open, interoperable and efficient solution for developing
geospatial Web services.

Key words: Geospatial web services, XML database, geography markup language, interoperability

INTRODUCTION

 Majority of geospatial processing systems require
some level of interoperability as a fundamental
capability. Based on OGC Reference Model[1], spatial
interoperability refers to capability to communicate,
execute programs, or transfer geospatial data among
various functional units in a manner that requires the
user to have little or no knowledge of the unique
characteristics of those units. Therefore, non-
interoperability of geospatial processing systems
prevents sharing of geospatial data and services among
software applications. Spatial interoperability faces two
main challenges; syntactic heterogeneity and semantic
heterogeneity[2]. Syntactic heterogeneity which is the
result of differences in storage formats and software
incompatibility is a technical issue and can be
addressed by technical means. Semantic heterogeneity
arises as a result of incompatibility in meanings of data.
Addressing syntactic heterogeneity is the main concern
of this research.

 Syntactic heterogeneity of geospatial information
systems can be categorized in data and access
heterogeneity. In data heterogeneity geospatial
processing systems use various internal proprietary data
formats. To share geospatial data, converters and/or
transfer formats must be developed, which is a resource
and time consuming task. In addition, there are so many
different standards for geospatial data that converting
various data formats can itself become a barrier to
interoperability.
 Access heterogeneity restricts inter-process
communication among various geospatial processing
systems, since different vendors’ geospatial processing
systems use proprietary software access methods with
proprietary software interfaces. In other words,
interface definition languages, communication
protocols, communication ports and even object
transfer mechanisms, varies in each software
development platform. So the software platform which
has been used to develop the geospatial processing
system imposes the use of specific and proprietary

Am. J. Applied Sci., 5 (10): 1358-1368, 2008

 1359

communication methods among various parts of the
system. For this reason, different geospatial processing
systems that have been developed by different software
development platforms, cannot communicate and share
services automatically and in an interoperable manner.
 In GIS community, OGC has introduced specific
kind of online services, to overcome spatial non-
interoperability problem. These services which are
called OGC geospatial Web services (or geospatial
Web services for short) have been developed with the
goal of sharing geospatial data and services among
heterogeneous geospatial processing systems. Web
Feature Service (WFS) and Web Map Service (WMS)
are the most fundamental geospatial Web services
which are introduced by OGC. At the same time, in
Information Technology (IT) world, the best solution
for providing interoperability among heterogeneous
software systems in distributed and decentralized
environments are Web services technologies[3].
 Geospatial Web services and Web services differ in
a way that Web services are composed of particular set
of technologies and protocols but Geospatial Web
services are comprised of defined set of interface
implementation specifications which can be
implemented with diverse technologies[4].
 With respect to above description, it is suggested
that making use of Web services technologies as
enabling infrastructure for implementing geospatial
Web services would significantly facilitate sharing
geospatial data as well as access to processing services
from multiple resources in and out of GIS community.
In other words, geospatial Web services which are
developed using Web services technologies can provide
access interoperability among various geospatial and
non-geospatial processing systems. Furthermore, using
open and platform independent data standards like
GML, data interoperability can also be achieved.
Meanwhile, proper management of geospatial data
necessitates use of efficient and optimized data
management systems. In this context, considering the
nature of GML as an XML-based standard, using XML
database systems is suggested for facilitating and
improving geospatial data management. This research
describes development of a Geospatial Web service
using Web Services Technologies and XML database
systems to achieve spatial interoperability, while having
a proper management on spatial data over the web.
Since there are two technologies for XML data
management, in the context of developed geospatial
Web service, practical evaluation of two technologies
illustrated as well. The study first explains Web
services technologies, geospatial Web services and
XML database systems. Afterwards design and

development of a geospatial Web service is discussed.
Finally practical test and its outcomes illustrated.

WEB SERVICES PLATFORM

 Web services are self-contained, self-describing,
modular applications that can be published, located and
invoked across the Web and perform functions that can
be anything from simple requests to complicated
business processes[5]. Web Services are the basic
components of distributed service-oriented systems.
The World Wide Web Consortium (W3C) defines Web
Services as a software system designed to support
machine-to-machine interaction over the Internet[6,7,8].
 Any Web service has an interface described in a
machine-processable format. Other systems and
services interact with the Web service in a manner
described by its description using messages. Messages
are conveyed typically using Hyper Text Transfer
Protocol (HTTP) with an XML serialization, in
conjunction with other Web-related standards, but any
other communication protocol can be used as well[6].
 Web services are based on open standards, so they
provide interoperability in decentralized and distributed
environments like Web. These new technologies can be
developed by using any software platform, operating
system, programming language and object model. The
basic Web services architecture consists of
specifications of Simple Object Access Protocol
(SOAP), Web Services Description Language (WSDL)
and Universal Description Discovery and Integration
(UDDI). The mentioned core specifications support the
interaction of a Web service requester with a Web
service provider and the potential discovery of the Web
service description.
 SOAP is a lightweight, XML-based protocol for
exchanging information in decentralized, distributed
environments. SOAP is used for messaging among
various components in a Web services platform. SOAP
is platform independent and also it can be used with
virtually any Network Transport protocols such as File
Transfer Protocol (FTP) and HTTP.
 WSDL is XML-based specification for describing
capabilities of a service in a standard and extensible
manner. Technically WSDL defines the software
interface of Web service in platform independent
approach.
 UDDI is a set of specifications and Application
Programming Interfaces (APIs) for registering, finding
and discovering services.
 From middleware point of view, Web service
technologies are one of distributed component
technologies. But the goal of Web services goes beyond

Am. J. Applied Sci., 5 (10): 1358-1368, 2008

 1360

those of classical distributed component technologies
such as Java RMI, .NET Remoting and CORBA: Web
services aim at standardized support for higher level
interactions such as service and process flow
orchestration, enterprise application integration and
provision of middleware of middleware[9]. Instead of
building applications that result in collections of objects
or components that are firmly integrated and
understood just in development time, the service
approach of Web services platform is much more
dynamic and is able to find, retrieve and invoke a
distributed service dynamically[4]. Another key
difference is that with Web Services the industry is
solving problems using technologies and specifications
that are being developed in an open way, via
partnerships and consortia such as the World Wide Web
Consortium (W3C) and the Organization for the
Advancement of Structured Information Standards
(OASIS) and using standards and technologies that are
the basis of the Internet.
 From a technical standpoint, each Web service has
three main parts: Service description, Executable agent
and the mapping layer between the two (Fig. 1).
 The machine-readable service description (that is a
WSDL document) contains network address for the
service, the operation it supports and other necessary
information for consuming the service. The executable
agent is responsible for implementing the functionality
of the service. The description is separated from the
executable agent using a mapping layer. The mapping
layer is implemented using proxies and skeleton in
service requester and service provider respectively[10].
This layer is responsible for accepting the message,
transforming the XML data to and from the native
format of executable agent and finally dispatching the
data to the executable agent. On account of separation
between executable agent and description of service or
separation between semantic and functionality of
services in the Web services world, each service can be
developed by using any software development
platform, operating system, programming language and
object model.

Service Requester's
core application

Service description

Executable agent
Mapping layer

Service provider's
 core application

W
SD

L

Sk
el

et
on

W
SD

L

Pr
ox

y Soap

Fig. 1: Major parts of a web service

GEOSPATIAL WEB SERVICES

 Nowadays, geospatial Web services have been
considered as the promising technology to overcome
the non-interoperability problem associated with
current geospatial processing systems. They are
particular kind of online services which deal with
geospatial information and can provide access to
geospatial information stored in a database, perform
simple and complex geospatial analysis and return
messages that contain geospatial information[11].
 In this context, OGC has defined a comprehensive
framework of geospatial Web services which is known
as OGC Web services framework (OWS). OWS allows
distributed spatial processing systems to interact with
the HTTP technique and provides a framework of
interoperability for the many web-based services, such
as accessing spatial data services, spatial processing
services and data locating services[12]. OWS framework
consists of interface implementation specification and
encodings which are openly available to be
implemented by developers. The interface
implementation specifications are software technology
neutral details about various operations of each
geospatial Web service. The encodings provide the
standard glue among different parts of geospatial Web
services. Each service of this framework can be
implemented using various software technologies and
systems. The most fundamental services and encodings
of the OGC Web service framework are Web Map
Service (WMS), Web Feature Service (WFS),
Geography Markup Language (GML) and Common
Query Language (CQL).
 In short, WMS is an OGC Web service that
provides maps on request. A map is a graphical
visualization of geospatial data. WFS is the main
geospatial Web service for publishing and requesting
vector geospatial data in GML format. When a client
sends a request to an OGC WFS, the service sends a
response message that provides geospatial feature data
in GML. In this case, requests for geospatial data
contain CQL expressions. Using CQL, spatial and non-
spatial query expressions can be created to be sent to
WFS. WMS and WFS and other geospatial Web
services supply standard access to geospatial data thus
provide access interoperability in GIS community.
 According to GML specification[13], GML is an
XML grammar written in XML Schema for modeling,
transporting and storing geospatial information. GML
playing a major role in OGC Web service framework.
Next section briefly introduces GML.
 Geospatial Web service differs from the Web
services. The most important distinction between these

Am. J. Applied Sci., 5 (10): 1358-1368, 2008

 1361

two kinds of services is the fact that Web services are
particular set of technologies and protocols but
geospatial Web services are composed of defined set of
interface implementation specifications which can be
implemented with diverse technologies. Following
items explain the mentioned difference in detail[4]:

• In the OGC Web service framework HTTP is

defined as the sole distributed computing
environment. In contrast, Web services can be
implemented virtually with any standard protocols
such as HTTP, FTP and TCP to name a few

• OGC Web services do not necessarily use the usual
Web services core standards, including SOAP and
WSDL. In other words, in Web services platform,
the main messaging protocol is SOAP and this
protocol can be considered as the main cause of
achieving interoperability among various
applications which are running on heterogeneous
platforms. In OGC Web service framework SOAP
is not the main messaging protocol. In addition in
most geospatial Web services, creation and
publication of WSDL document has not defined yet

• OGC Web services have particular interface for
binding that might leads to interface coupling
problem. In accordance with OGC Web service
framework specifications, each geospatial Web
services have to publish its own capabilities
through a so called capabilities document. This
document (which is an XML document) provides
human and machine-readable information about the
geospatial data and operation supported by a
specific instance of a geospatial Web service. But
this document is not comprehensive enough to play
a same role as WSDL document. In other words,
capabilities document cannot offer enough
information to enable developers and thus software
applications to consume a geospatial Web service
programmatically and automatically, while
according to Newcomer and Lomow[10], ideally the
service requester should be able to use a service
exclusively based on the published service contract

• In OGC Web service framework, CQL is used to
specify which geospatial data have to be sent back
to requester. This language can cause
interoperability problems when considering the
various scenarios in which there is a need for
geospatial Web services to communicate with other
Web services outside geospatial community. This
language has unconventional structure when
compared with other standard query languages
such as Structure Query Language (SQL) and Xml

Query Language (XQuery). The structure of CQL
has the potential of causing interface binding
problem which is the main barrier in front of
making truly loosely coupled services

 In summary, OGC's Web services and Web
services are compatible with each other, but they are
not technically implemented in the same way.
 As mentioned before, geospatial Web services can
be implemented using existing software development
technologies. It is suggested that using Web services
technologies as enabling infrastructure for
implementing geospatial Web services can significantly
facilitate sharing geospatial data as well as access to
processing services from multiple resources in and out
of GIS community. In other words, geospatial Web
services which are developed using Web services
technologies can provide access interoperability among
various geospatial and non-geospatial processing
systems.

GML

 GML is rapidly emerging as a world standard for
the encoding, transport and storage of all forms of
geospatial information. GML provides data
interoperability among heterogeneous geospatial
processing systems. GML is an XML-based markup
language that is used to encode information about real
world objects. In GML these real world objects are
called features and they have geometry and non-
geometry properties.
 GML has three main roles with respect to
geospatial information. First as an encoding for the
transport of geospatial information from one system to
another; second as a modeling language for describing
geospatial information types; and third as storage
format for geospatial information[14].
 GML is well suited for encoding the geospatial
information sent to and from geospatial Web services.
GML is used in both the request and response messages
of the WFS, which is a standard service for accessing
geospatial feature data.
 As a modeling language, GML provides basic
types, construct, units of measure, reference systems
and so on to model all aspects of real world objects and
relationships among them.
 As storage format GML is a plain textual file
format. Since GML is based on XML, the same
technology for managing XML data can be used to
manage geospatial data stored in GML. Management of
geospatial data has a considerable impact on the way
the geospatial Web services (and in particular WFS)

Am. J. Applied Sci., 5 (10): 1358-1368, 2008

 1362

retrieve and publish geospatial data in GML format. In
general there are two technologies for management of
XML data. In this research both XML management
technologies have been evaluated in the context of a
geospatial Web service. This evaluation was intended to
indicate the strengths and weaknesses of each
technology in retrieving and publishing geospatial data.

XML DATABASES

 XML, as a rich set of technologies, is playing an
important and increasing role in share and exchange of
data over the Web. The more XML has been used in
share and exchange of data, the more XML data
management issues have to be considered. So, database
researchers have actively participated in developing
technologies centered on XML data management, in
particular data models and query languages for XML.
As a result of these researches, many XML data
management systems have been implemented. In
general, XML data management systems can be
categorized as XML-enabled databases and native-
XML databases[15].
 Typically, an XML-enabled database is a relational
database which provides storage of hierarchical XML
documents in relational model and provides proprietary
methods for relational to XML data mapping (or
conversion) for retrieving stored data as XML. The
mentioned proprietary methods vary in each software
package from extension to standard SQL language to
implementation of a full featured XML query language.
 On the other hand, a native-XML database has an
XML document as its fundamental unit of logical
storage, just as a relational database has a row in a
relation as its fundamental unit of logical storage. A
native-XML database defines a logical model for its
fundamental unit of storage and stores and retrieves
XML documents according to that model[15]. The
advantage of this native approach is that XML data can
be stored and retrieved in their original formats and no
additional mappings or translations are needed.
Furthermore, most native-XML databases have the
ability to perform sophisticated full-text searches
including full thesaurus support, word stubbing (to
match all forms of a word: run, ran, running) and
proximity searches[16].
 Since there are two technologies for XML data
management, comparative performance analysis have to
be performed to indicate which technology is more
appropriate to manage geospatial data stored as GML.
In order to compare native-XML with XML-enabled
databases, two well known commercial database
systems were selected. Microsoft SQL Server 2000 as a

XML-enabled and Software AG's Tamino 4.4 as native-
XML database employed to store geospatial data as
GML.
 Microsoft SQL Server 2000 takes advantage of an
embedded engine capable of returning data as XML.
This feature is built as an extension to the standard SQL
SELECT command and data is rendered as XML before
being sent back to the client[17]. At the other hand,
Tamino is a software system for storing, managing,
publishing and exchanging XML documents in their
native format. At the heart of Tamino is a powerful
XML engine providing all functionality necessary to
dynamically process, generate and exchange XML
documents[18].
 Although various benchmarks had been developed
for studying the efficiency of XML
databases[19,20,21,22,23,24] most of them concentrate on
defining set of queries and specifications for evaluation
of XML data management technologies. Other related
works consist of evaluation of using various methods
for extracting XML data from relational
databases[16,25,26] and evaluation of XML query
languages[27,28,29]. In this context, no work has been
done on the type of data which should be stored in each
kind of XML management technology and what kind of
queries perform best on each one. In addition geospatial
data which are encoded as GML are huge in volume,
rich in data types and complex in semantics. So a
dedicated evaluation should be performed to indicate
which kind of XML management technologies should
be employed to store GML data. In this research
performance evaluation has been made between the
mentioned two database systems in the context of a
geospatial Web service.

EXPERIMENTAL EVALUATION

Implementing geospatial web service using XML
databases: In order to evaluate native-XML databases
and XML-enabled databases for storing and retrieving
GML data, an OGC WFS service was designed and
developed. In the context of the WFS, evaluations were
made on GML data of various sizes which was stored in
native-XML and XML-enabled database systems. In
this evaluation, set of standard queries for feature data
retrieval was run on both systems and running time of
queries was used as the measure of performance.
Besides, size of GML data and ability to load huge
amount of GML data into databases measured as well.
This section describes the sample data, architecture and
result of the evaluation of the implemented system.

Sample GML data: As sample data, three different
sizes GML documents were created. Three layers of

Am. J. Applied Sci., 5 (10): 1358-1368, 2008

 1363

Fig. 2: GML application schema of Lakes Layer.

Creation, Flavor, Permanence, Name,
Shape_Length and Shape_Area are non-spatial
properties of each lake feature. Geometry of
each lake feature is described using
gml:extentOf element

Fig. 3: Relational schema of Lakes Layer. Each record

in Geometry_Lake table has a LakeId field that
points to a corresponding lake feature in Lakes
table. Points field store space delimited
coordinates of composing points of each lake
feature

1:25000 data of Lakes, Provinces and Cities of Iran
were selected and converted to GML 3.1 documents
and corresponding GML application schemas were
produced. Afterwards corresponding relational schemas
of data tables created. Figure 2 show the GML
application schema and Fig. 3, shows relational schema
of Lakes layer. As illustrated in relational schema of
Lake layer, each record in Geometry_Lake table has a
LakeId field that points to a corresponding lake feature
in Lakes table. Also it was possible to create a single
table for each layer and store geometry of each feature
in the same table, using two or more separate tables is
more general solution. Since there might be some
features which have complex geometries (interior,
exterior boundaries) the single table solution is only
applicable for simple features but it becomes infeasible
if complex features are included. While the mentioned
layers just contain simple features, the solution used in
this research is extensible to include complex features
as well.
 These layers (Lakes, Provinces and Cities) contain
31, 30 and 936 features respectively. For realistic
testing of performance some randomly generated

features have been added to GML documents to
produce large GML datasets. As a result Provinces,
Lakes and Cities layers, contain 1000, 10000 and
100000 features respectively.

Design and implementation of geospatial web
service: On account of integrating XML database
systems and Web services technologies for developing
a Geospatial web service and determining the best
technology for managing geospatial data as GML, an
OGC WFS was designed and developed. According to
WFS Implementation Specification[30], there are three
operations for basic WFS:

GetCapabilities: The purpose of this operation is to
obtain service metadata, which is a machine readable
(and also human-readable) description of the required
technical information for consuming WFS. The most
important part of the service metadata indicates which
feature types the WFS can provide and what operations
are supported on each feature type.

DescribeFeatureType: WFS describes the structure or
schema of any feature type it can provide using
DescribeFeatureType operation. This structure will be
used for retrieving geospatial data.

GetFeature: This operation is used for retrieving
geospatial data. Making use of CQL, spatial and non-
spatial query expressions can be introduced to WFS to
retrieve the appropriate GML data. This operation was
used to compare performance of native-XML and
XML-enabled Database.
 These operations provide the software interface of
the WFS system. In other words, internal details of the
functional units and software components as well as
communications are transparent to consumer
applications; the consumer application just can
communicate with the WFS system through the
operations and defined set of parameters which are
specified in WFS implementation specification.
Software components, communication among them and
physical location of each component are specified in
logical and physical architecture of the WFS system.
 Physical architecture is quite different from a
logical architecture. The physical architecture is about
the number of machines or network hops involved in
running the application. Rather, a logical architecture is
all about separating different types of functionality in
software components[31].
 Traditionally logical architecture of software
applications consists of three tiers; presentation and
user interface tier, business logic tier and data

Am. J. Applied Sci., 5 (10): 1358-1368, 2008

 1364

management tier. With the advent of new technologies
and software design patterns the traditional logical
architecture is rarely efficient for the modern software
applications. Today, the business logic tier is often
physically splits among a client, Web server and
application server. In addition, with new software
design patterns (such as façade, flyweight, adapter and
composite) the business logic breaks up into multiple
parts and components.
 In this research the WFS designed in four logical
tiers: presentation and user interface tier, business logic
tier, data access tier and data management tier.
 As the name implies, the presentation and user
interface tier provides the end user an appropriate and
friendly user interface which hides details of local and
remote computational tasks from user. This tier is
responsible for gathering the user inputs, validating the
user inputs, composing CQL statements based on the
user inputs to make requests, sending requests to WFS
server and displaying the returned geospatial data.
 The business logic tier includes all business rules
for the WFS system. For the implemented WFS theses
rules consist of translating requests to DBMS specific
query language statements and dispatching them to the
next tier.
 Data access tier interacts with the data management
tier to retrieve, update and remove information. The
data access tier doesn't actually manage or store the
data; it merely provides an interface between the
business logic and the database. Logically, defining
data access as a separate tier enforces a separation
between the business logic and how application
interacts with a database (or any other data source).
This separation provides the flexibility to choose later
whether to run the data access code on the same
machine as the business logic, or on a separate
machine. It also makes it much easier to change data
sources technologies without affecting the application.
In addition by isolating the data access code into a
specific layer, the impact of changes in data access
technologies is limited to a smaller part of the
application. This is important because in this research
two distinct database products and access technologies
were utilized to evaluate which solution provide best
performance for storing and retrieving GML data.
 The forth tier handles the physical retrieval, update
and deletion of data. This is different from the data
access tier, which requests the retrieval, update and
deletion of data. These operations are implemented
within the context of a full fledged database
management system.
 The first three tiers of the mentioned logical
architecture have been developed using Microsoft. NET

2.0 framework. In order to implement the client side
application (user interface and presentation tier) a
windows-based application was developed. Web
services infrastructure was utilized in all interactions
between client side application and WFS server. In
other words, WSDL was used to create proxy and
skeleton in client side application and business objects
of WFS server respectively. SOAP was used to
transport every interaction (request and response)
between the proxy and skeleton.
 In client side application CQL statements which
are created by client side application (using various
logical and comparison operators) specify which feature
types and attributes are required. The created CQL
statements then are sent to the WFS server and the
requested geospatial data is sent back to client side
application.
 In the developed system, objects and components
in business logic and data access tiers work together to
prepare an appropriate response message. More
accurately, user supplied parameters are parsed by
business objects to determine which methods have to be
executed. In the case of GetFeature operation, user
supplied CQL statements are translated to DBMS
specific query language (SQL in case of SQL Server
2000 or XQuery in case of Tamino). Then SQL or
XQuery statements are delivered to objects and
components in data access tier to be sent to DBMS.
 In the last tier of the architecture, geospatial data
were stored as GML 3.1 in the back-end XML
databases. For retrieving geospatial data, SQL or
XQuery statements which were sent by data access
components are executed and result are sent back to the
data access component. Data access components
dispatch retrieved geospatial data to business logic
components. Afterwards geospatial data are prepared to
be valid against WFS specifications. Finally, prepared
GML data are sent back to the client using Web
services infrastructure (using SOAP).
 In implemented physical architecture of WFS, two
identical computer machines were employed to evaluate
XML databases, with Intel Pentium IV CPUs clocks at
3.2 GHz, 1024 MB of main memory and 120 GB of
hard disk. The operating system was Windows XP
professional and Microsoft Internet Information
Services 6.0 (IIS 6.0) was utilized as Web server
application. Data access, business logic components
and XML databases (native-XML and XML-enabled
databases) deployed and installed on both machines
separately.
 The cost metrics used in this research is processing
or running time of query (GetFeature Operation) to
measure the overall response time. To choose an

Am. J. Applied Sci., 5 (10): 1358-1368, 2008

 1365

appropriate set of queries for this research, most
commonly types of queries used in retrieving GML data
through WFS were considered.
 It should be noted that, in an environment where
servers and clients communicate through network
infrastructure, processing time would be a measure of
not solely of the database, but of all the software and
hardware comprising the system including the operating
system and the network. This, in turn, makes it hard to
isolate the query processing time of database from other
parameters involved in the whole process. Therefore in
this research all tiers of application were physically
deployed on single machines to get optimal
performance. Performance is the speed at which an
application responds to a user. To get optimal
performance which is the fastest possible response time
for a given user, the ideal solution is to put all tiers of
an application on one computer machine. This means
no network hops, no network latency and no contention
with other users.
 In addition to processing time, disk space required
by each XML database to store same GML data and
ability to load huge amount of GML data to database
were evaluated. Processing times are measured using
performance monitor utility classes which was
developed using core classes in Microsoft .NET
framework. Next sections present outcomes of the
evaluation.

DISK SPACE AND INDEX SIZE EVALUATION

 As shown in Fig. 4, the native-XML database
needs more disk space to store both GML data and
indexes than the XML-enabled database. The result is
more serious as the number of features increases. The
reason for this large size is that the native-XML
database must store verbose GML structure which
contains both data and descriptive tags. In other words,
GML has the same shortcoming in disk space efficiency
as its predecessor (XML). The tradeoff of XML versus
other exchange formats is that the verbosity introduced
by the descriptive tags of data elements improves
readability and semantic exchange at the sacrifice of
increased file size. Between 20 to 60% of an XML
document consists of tag names[32].
 In general, indexing increases the insertion and
update time and decreases the response time in query
processing. Tamino allows two types of indexing on
text fields; Text indexing and standard indexing. Both
can be built on the same field/element. The text
indexing is utilized in pattern matching queries (the
Like operator in SQL). The standard indexing is used
for textual and numeric fields. Indices are created on all

0.304
4.846

43.776

0.088 1.232

7.392

0

10

20

30

40

No. of Features

Si
ze

 (M
B

)

Native XML DB

XML Enabled DB

1000 10000 100000

Fig. 4: Database size (both GML data and Indexes)

211

431

57

588

235

43

0

100

200

300

400

500

600

No. of Features

T
im

e
(M

ill
is

ec
on

ds
)

Native XML DB

XML Enabled DB

1000 10000 100000

Fig. 5: Retrieval of single feature using gml:id attribute

numeric and textual elements in Tamino, since those
are the only fields used with comparison operators. The
only field that has a text index is Name field of all
GML documents (Name of Lakes, Provinces and
Cities). The primary key fields have default indexes in
SQL Server 2000 (unique indexes). In addition to
primary keys, foreign keys and other fields were
indexed as well.

RETRIEVAL OF SINGLE FEATURE
USING GML

ID evaluation: The GetFeature operation for a single
feature using gml:id attribute measures the time to
search for a feature using an index key (id field is the
primary key of Provinces, Lakes and Cities Table). In
this case for 1000 features, the results for both products
are very similar but for 10000 records onward, the
native-XML database outperforms the XML-enabled
database (Fig. 5). The results shows that the native
storage strategy and indexing approach used in native-
XML database are more efficient solution for retrieving
geospatial data. In this test the following CQL
statement were used.

Am. J. Applied Sci., 5 (10): 1358-1368, 2008

 1366

<GetFeature service = "WFS" version = "1.1.0"
outputFormat = "text/xml; subtype = gml/3.1.1">
 <wfs:Query typeName = "PAM:Lake">
 <ogc:Filter>
 <ogc:GmlObjectId gml:id = "L5000" />
 </ogc:Filter>
 </wfs:Query>
</GetFeature>

Code 1: CQL statements for retrieving Lake feature

which has the L5000 attribute as gml:id

Pattern matching query for retrieving features
evaluation: For pattern matching the following CQL
statement was evaluated:

<GetFeature� service = "WFS"� version = "1.1.0"�
outputFormat = "text/xml; subtype = gml/3.1.1">
 <wfs:Query typeName = "PAM:Lake">
 <ogc:Filter>
 <PropertyIsLike wildcard = "*" singleChar =

"#" escapeChar = "!">
 <PropertyName>Name</PropertyName>
 <Literal>*ab*</Literal>
 </PropertyIsLike>
 </ogc:Filter>
 </wfs:Query>
</GetFeature>

Code 2: CQL statements for retrieving lake features

whose names contain the substring "ab"

 The above CQL expression returns all Lake
features whose names contain the substring "ab". As
shown in Fig. 6, native-XML database outperforms
XML-enabled Database in all cases. It is concluded that
using text index which was created for Name fields,
provide this performance improvement.

Retrieval of whole features of a layer evaluation: In
order to retrieve whole features of all layers
(111000 features of Cities, Lakes and Provinces layers)
the following CQL expression was utilized.

<GetFeature service = "WFS" version = "1.1.0"
outputFormat = "text/xml; subtype = gml/3.1.1">
 <wfs:Query typeName = "PAM:Cities">
 <wfs:Query typeName = "PAM:Lakes" />
 <wfs:Query typeName = "PAM:Provinces" />
</GetFeature>

Code 3: CQL statements for retrieving all features of

Provinces, Lakes and Cities Layers

43

87

14

164

98

32

0

100

200

No. of Features

T
im

e
(M

il
li

se
co

nd
s)

Native XML DB

XML Enabled DB

1000 10000 100000

Fig. 6: Retrieval of features using pattern matching

671
4091 3839 292

111751

73150

6462
1079

0

25000

50000

75000

100000

No.of Features

T
im

e
(M

il
li

se
co

nd
s)

Native XML DB

XML Enabled DB

1000 10000 100000 111000

Fig. 7: Retrieval of whole features

 For retrieving whole features of layers the native-
XML database has better performance than the XML-
enabled database as data size becomes larger (Fig. 7).
Since XML-enabled database uses two separate tables
for each layer, retrieving whole features of a layer has
the overhead of joining two large tables. Also this may
be due to the native-XML database's storage strategy
which does not need to reshape data to provide data as
GML format.

GML BULK LOADING EVALUATION

 XML bulk loading technique is optimized to load
huge amount of XML data into database. XML bulk
loading provides necessary tools and utilities for
reading, caching and inserting massive amount of XML
data into database.
 In SQL Server 2000 XML bulk loading component
reads the XML data and identified the database tables
and fields involved. It then executed SQL statements
against SQL Server 2000 to insert whole document into
pertinent tables and fields. At the other hand, Tamino
Mass Loader Facility has been developed for efficient
loading of large size XML documents.

Am. J. Applied Sci., 5 (10): 1358-1368, 2008

 1367

2311

15379

672

5404

593 172
0

4000

8000

12000

16000

No.of Features

T
im

e
(M

il
li

se
co

nd
s)

Native XML DB

XML Enabled DB

1000 10000 100000

Fig. 8: Bulk loading of GML features into databasess

 As the Fig. 8, indicates, bulk loading component of
SQL Server 2000 is as an efficient tool for data loading.
It provides higher performance when loading large
amount of data into database than Tamino’s Mass
Loader Facility.

RESULT OF THE EVALUATIONS

 After analyzing the practical results, it is concluded
that the native-XML database has better performance
than the XML-enabled database for handling GML
documents with larger data sizes. In general XML-
enabled database cannot handle large-sized GML
documents as efficiently due to conversion overhead. In
contrast, the native-XML database engine directly
accesses GML data without conversion. In other words,
native-XML databases enables direct operation on
GML documents, features in document and attributes of
each features as opposed to complicated joins of
relational tables in XML-enabled database. This saves
time on programming, execution and retrieval,
especially for complex features types.
 Although the native-XML database provides high
performance in handling GML documents, data and
index size consumed by the native-XML database is
much larger than in the XML-enabled database. With
this in mind, using native-XML databases for storing
geospatial data (as GML), provides an efficient solution
for storing and accessing high volume geospatial data in
multi-user enterprise environments. In addition, as more
and more data is stored and exchanged using GML
format, by using XML technologies which are easy to
integrate with native-XML databases, more spatial
capabilities can be added to native-XML databases.

CONCLUSION

 In this research design, development and practical
evaluation of a geospatial Web service (basic WFS)

using Web Services platform and XML database
technologies was described.
 Developing geospatial Web service using Web
services technologies provide interoperability among
geospatial and non-geospatial processing systems.
Since Web services technologies are foundation of
direct and open application-to-application
communication, functionality of the implemented WFS
can be simply added to any geospatial or non-geospatial
processing systems which are running on heterogeneous
platforms. Furthermore, logical designing of WFS using
four tier logical architecture, end in a software system
which is flexible to be implemented in various physical
architectures. So the WFS can be configured into an
appropriate physical architecture that will depend on
our performance, scalability, fault-tolerance and
security requirements. Besides, by isolating the data
access code into a specific tier (Data Access tier), the
impact of changes in data access technologies was
limited to a smaller part of the application. This is
important because in this research two distinct database
products and access technologies were utilized.
 Since GML is based on XML, XML databases can
be used to manage geospatial data. Based on practical
tests of this research using native-XML databases
provides an efficient solution for storing and accessing
high volume geospatial data in multi-user enterprise
environments. Considering outcomes of this research,
coupling native-XML database systems with Web
services technologies proved to be an open,
interoperable and efficient solution for developing
geospatial Web services.

REFERENCES

1. OGC., 2003. The OpenGIS Reference Model.

http://portal.opengeospatial.org/files.
2. Worboys, M. and M. Duckham, 2004. GIS a

Computing Perspective, Florida, USA, CRC Press.
3. Volter, M., M. Kricher and U. Zdun, 2005.

Remoting Patterns: Fundamental of Enterprise,
Internet and Realtime Distributed Object
Middleware, New Jersey. John Wiley & Sons, Inc,
USA.

4. Amirian, P. and A. Alesheikh, 2008. J. Applied
Sci., 8 (5): 730-742.

5. Nance, K.L. and B. Hay, 2005. Automatic
transformations between geoscience standards
using XML. Comput. Geosci., 31 (9): 1165-1174.

6. Stal, M., 2002. Web services: Beyond component-
based computing. J. Commun. ACM.,
45 (10): 71-76.

Am. J. Applied Sci., 5 (10): 1358-1368, 2008

 1368

7. Booth, D., H. Haas, F. McCabe, E. Newcomer,
M. Champion, C. Ferris and D. Orchard, 2004.
Web Services Architecture, W3C Working Group.
http://www.w3.org/TR/ws-arch.

8. W3C., 2006. The World Wide Web Consortium.
Web Services Activity Statement.
http://www.w3.org/2002/ws/Activity.

9. Vinoski, S., 2003. Integration With Web Services,
IEEE J. Internet Comput., 7 (6): 75-77.

10. Newcomer, E. and G. Lomow, 2005.
Understanding SOA with Web Services, Maryland,
Addison Wesley, Inc, USA.

11. Lake, R., D. Burggraf, M. Trinic and L. Rae, 2004.
Geography Markup Language, Chichester,
England, John Wiley and Sons.

12. Zhang, J., J. Gong, H. Lin, G. Wang, J. Huang,
J. Zhu, B. Xu and J. Teng, 2007. Design and
development of distributed virtual geographic
environment system based on web services.
Inform. Sci., 177 (19): 3968-3980.

13. Open GIS Consortium, 2005. Geography Markup
Language Specification 3.1 http://portal.
opengeospatial .org/files/?artifact_id=4700.

14. Lake, R., 2005. The application of geography
markup language (GML) to the geological
sciences. Comput. Geosci., 31 (9): 1081-1094.

15. Lu, E.J., B.C. Wu and P.Y. Chuang, 2006. An
empirical study of XML data management in
business information systems. J. Syst. Software,
79 (7): 984-1000.

16. Atay, M., A. Chebotko, D. Liu, S. Lu and
F. Fotouhi, 2007. Efficient schema-based XML-to-
Relational data mapping. Inform. Syst.,
32 (3): 458-476.

17. Neilsen, P., 2003. Microsoft SQL Server 2000
Bible, Indianapolis, Indiana, John Wiley and Sons,
USA.

18. Software AG's Tamino XML Server. http://
documentation.softwareag.com/crossvision/ins441/
overview.htm.

19. Runapongsa, K., J.M. Patel, H.V. Jagadish and S.
Al-Khalifa, 2002. The Michigan benchmark.
http://www.eecs.umich.edu/db/mbench.

20. Yao, B.B., M.T. Ozsu and J. Keenleyside, 2002.
XBench-A family of benchmarks for XML
DBMSs. In: Proceedings of Efficiency and
Effectiveness of XML Tools (EEXTT) 2002,
pp: 974-985.

21. Bohme, T. and E. Rahm, 2001. XMach-1: A
benchmark for XML data management. In:
Proceedings of German Database Conference
BTW2001, pp: 264-273.

22. Schmidt, A., F. Waas, M.J. Carey, I. Manolescu
and R. Busse, 2002. XMark: A benchmark for
XML data management. In: Proceedings of the
28th Very Large Databases (VLDB) Conference,
Hong Kong, China, pp: 974-985.

23. Bressan, S., M.L. Lee, Y.G. Li, Z. Lacroix and
U. Nambiar, 2002. The XOO7 benchMark. In:
Proceedings of the First VLDB Workshop on
Efficiency and Effectiveness of XML Tools and
Techniques (EEXTT), Hong Kong, China.

24. Nambiar, U., Z. LaDDDDcroix, S. Bressan, M.L.
Lee and Y.G. Li, 2002. Efficient XML data
management: An analysis. In: Proceedings of the
3rd International Conference on Electronic
Commerce and Web Technologies (ECWeb), Aix
en Provence, France, 2002.

25. Liu, J. and M. Vincent, 2004. Querying relational
databases through XSLT. Data Knowledge Eng.,
48 (1): 103-128.

26. Fong, J., H.K. Wong and Z. Cheng, 2003.
Converting relational database into XML
documents with DOM. Inform. Software Technol.,
45 (6): 335-355.

27. Chung, T.S. and H.J. Kim, 2003. Techniques for
the evaluation of XML queries: A survey. Data
Knowledge Eng., 46 (2): 225-246.

28. Haustein, M. and T. Harder, 2007. An efficient
infrastructure for native transactional XML
processing. Data Knowledge Eng., 61 (3): 500-523.

29. Jea, K.F. and S.Y. Chen, 2006. A high concurrency
XPath-based locking protocol for XML databases.
Inform. Software Technol., 48 (8): 708-716.

30. Opern GIS Consortium, 2005. Open GIS Web
Feature Service implementation specification 1.1.
<https://portal.opengeospatial.org/files/?artifact_id
=8339>

31. Lhotka, R., 2006. Expert C# 2005 Business
Objects. 2nd Edn. California, USA, APress
Publishing.

32. Lawrence, R., 2004. The space efficiency of XML.
Inform. Software Technol., 46 (11): 753-759.

