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Abstract: The relatively new field of framelets shows promise in removing some of the limitations of 
wavelets. Several applications have benefited from the use of frames, for example, denoising and 
signal coding. In this research, Fast 1D-2D Framlet Transform algorithm for computing advance 
transforms are proposed. For a 2D framelet transformation, the algorithm is applied in x-direction first 
and then in y-direction. The propose method reduces heavily processing time for decomposition of 
video sequences keeping or overcoming the quality of reconstructed sequences In addition, it cuts 
heavily the memory demands. Also, the inverse procedures of all the above transform for multi-
dimensional cases are verified.  
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INTRODUCTION 

 
 Though standard DWT is a powerful tool for 
analysis and processing of many real-world signals and 
images, it suffers from three major disadvantages, 
Shift- sensitivity, Poor directionality and Lack of phase 
information. These disadvantages severely restrict its 
scope for certain signal and image processing 
applications[1]. 
 Other extensions of standard DWT such as 
Wavelet Packet Transform (WP) and Stationary 
Wavelet Transform (SWT) reduce only the first 
disadvantage of shift- sensitivity but with the cost of 
very high redundancy and involved computation. 
Recent research suggests the possibility of reducing two 
or more above-mentioned disadvantages using different 
forms of Wavelet Transforms[2-4] with only limited (and 
controllable) redundancy and moderate computational 
complexity.  
 Frames, or overcomplete expansions, have a 
variety of attractive features. With frames, better time-
frequency localization can be achieved than is possible 
with bases. Some wavelet frames can be shift invariant, 
while wavelet bases cannot be. Frames provide more 
degrees of freedom to carry out design. There are a 
number of methods of generating practical frames[5]. 
The undecimated DWT (UDWT) generates a wavelet 
frame from an existing wavelet basis by removing the 
subsampling from an existing critically sampled filter 
bank[6]. A wavelet frame can be obtained by taking the 
union of two (or more) bases. This can be implemented 
with two independent filter banks operating in parallel. 
Kingsbury has shown the advantages of dual-tree 
DWTs[7].  

 A wavelet frame can also be obtained by iterating a 
suitably designed oversampled filter bank as developed 
in[8], for example. This is the type of frame to be 
considered in this research. 
This research describes new wavelet tight frames based 
on iterated oversampled FIR filter banks, first 
introduced in[9]. Selesnick et al.[9] introduce the double-
density wavelet transform (DDWT) as the tight-frame 
equivalent of Daubechies’ orthonormal wavelet 
transform; the wavelet filters are of minimal length and 
satisfy certain important polynomial properties in an 
oversampled framework. Because the DDWT, at each 
scale, has twice as many wavelets as the DWT, it 
achieves lower shift sensitivity than the DWT. New fast 
computation algorithms for computing discrete framelet 
transform have been described in this research in a 
simple and easy to verify procedure based on iterated 
FIR filter bank that simplify computation complexity 
by using simple operations like matrix multiplication 
and addition. 
 

PRELIMINARIES 
 
 Framelet are very similar to wavelets but have 
some important differences. In particular, whereas 
wavelets have an associated scaling function Φ(t) and 
wavelet function ψ(t), framelets have one scaling 
function Φ(t) and two wavelet functions ψ1(t) and 
ψ2(t) .  
 The scaling function Φ(t) and the wavelets ψ1(t) 
and ψ2(t) are defined through these equations by the 
low-pass (scaling) filter h0(n) and the two high-pass 
(wavelet) filters h1(n) and h2(n). Let  
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 Any function f(t) could be written as a series 
expansion in terms of the scaling function and wavelets 
by[5]: 
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 In this expansion, the first summation gives a 
function that is a low resolution or coarse 
approximation of f(t) at scale j = 0. For each increasing 
j   in   the second summation, a higher or finer 
resolution function is added, which adds increasing 
details.  
 The filters hi(n) and hi(-n) should satisfy the perfect 
reconstruction (PR) conditions. From basic multirate 
identities, the PR conditions are the following[10]: 
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And 
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 Let   K0 denote the number of zeros H0(e

jw) has at 
w = π . For i = 1,2, let Ki denote the number of zeros 
Hi(e

jw) has at w = 0. Then the Z-transform of each hi(n) 
factors as follows: 
 
   ( ) ( )( ) 0K

0 0H z Q z z 1= +  (6) 

 
   ( ) ( )( ) 1K

1 1H z Q z z 1= −  (7) 

 
   ( ) ( )( ) 2K

2 2H z Q z z 1= −  (8) 

 K0 denotes the degree of polynomials representable 
by integer translates of Φ(t) and is related to the 
smoothness of Φ(t). K1 and K2 denote the number of 
zero moments of the wavelets filters h1(n) and h2(n), 
provided K0>K1 and K0�K2. If it is desired for a given 
class of signals that the wavelets have two zero 
moments (for example), then the remaining degrees of 
freedom can be used to achieve a higher degree of 
smoothness by making K0 greater than K1 and K2. 
Although the values Ki need not all be equal, there is 
still the constraint: 
 
   Length h0� K0+min(K1, K2) (9) 
 
 So the minimum length of h0 is K0+min(K1, K2). In 
the orthonormal case K0 = K1 and K2 = ∞ (as h2 = 0), 
which gives the minimum length of h0 to be 2K0, which 
is consistent with Daubechies orthonormal filters. 
 For example, we ask that K0 = 5, K1 = K2 = 2. It 
was found that the shortest filters h0, h1, h2 satisfying 
(4,5) are of length 7, 7 and 5, respectively[5,10]. In this 
example, there are 4 distinct solutions, one of which is 
shown in Fig. 1 and shown in Table 1. 
 
Table 1: Set of asymmetric analysis filters (synthesis filters are just 

the flipped version of these) 
h0(n) h1(n) h2(n) 
0.0762236746486 -0.020547940251 -0.02716023590 
0.34908887241859 -0.0941053724585 -0.1243883373 
0.60208924236383 -0.122897820901 -0.1301659700 
0.44194173824159 0.0613533560838 0.7421378961 
0.06082336499856 0 .6063328088167 -0.4604233527 
-0.0839238294736 -0.311319898477 0 
-0.0320295008244 -0.118815132811 0 

 

 
 
Fig. 1: The generators of a wavelet tight frame with 

parameters K0 = 5, K1 = K2 = 2 
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A PROPOSED FAST COMPUTATION 
METHOD OF FRAMELET 

TRANSFORM 
 
1-D Framelet transform: The framelet transform is 
implemented on discrete-time signals using the over 
sampled analysis and synthesis filter bank shown in 
Fig. 2. The analysis filter bank consists of three analysis 
filters- one low pass filter denoted by h0(n) and two 
distinct high pass filters denoted by h1(n) and h2(n). As 
the input signal X(N) travels through the system, the 
analysis filter bank decomposes it into three sub bands, 
each of which is then down-sampled by 2. From this 
process XL(N/2) , XH1(N/2) and XH2(N/2) are generated, 
which represent the low frequency (or coarse) subband 
and the two high frequency (or detail) sub bands, 
respectively. 
 The up sampled signals are filtered by the 
corresponding synthesis low pass h0*(n) and two high 
pass   h1*(n)    and   h2*(n)   filters   and  then  added  to 

reconstruct the original signal. Note that the filters in 
the synthesis stage, are not necessary the same as those 
in the analysis stage. For an orthogonal filter bank, 
hi*(n) are just the time reversals of hi(n).  
 Wavelet frames, having the form described above, 
have twice as many wavelets than is necessary. Yet 
note that the filter bank showed in Fig. 2 is 
oversampled by 3/2, not by 2. However, if the filter 
bank is iterated a single time on its lowpass branch (h0), 
the total oversampling rate will be 7/4. For a three-stage 
filter bank, the oversampling rate will be 15/8. When 
this filter bank is iterated on its lowpass branch 
indefinitely, the total oversampling rate increases 
toward 2, which is consistent with the redundancy of 
the frame for L2(R). 
 For computing fast discrete framelet transform 
consider  the following transformation matrix for 
length-7: 
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Here blank entries signify zeros and for length-10 become: 
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Fig. 2: Analysis and synthesis stages of a 1-D single 

level discrete framelet transform 
 
 To compute a single level for 1-D signal the next 
steps should be followed: 
 
• Checking input dimensions: Input vector should be 

of   length  N,   where    N   must     be    even  and 
N> = length of analysis filters 

• Construct a transformation matrix: using 
transformation matrices given in (10) and (11) 

• Transformation of input vector, which can be done 
by apply matrix multiplication to the 3N/2xN 
constructed transformation matrix by the Nx1 input 
vector 
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2-D Framelet transform: The choice of the transform 
to be used depends on a number of factors, in particular, 
computational complexity and coding gain. 
Computational complexity is measured in terms of the 
number of multiplications and additions required for the 
implementation of the transform. Coding gain is a 
measure of how well the transformation compacts 
signal energy into a small number of coefficients.  
 A 2-D separable transform is equivalent to two 1-D 
transforms in series. It is implemented as 1-D row 
transform followed by a 1-D column transform on the 
data obtained from the row transform. Figure 3 shows 
the filter bank structure for computation of a 2-D 
discrete framelet transform. 

 X(N,N)

YLH2

h1(n)

h0(n)

2↓

2↓

h2(n) 2↓

h2(n) 2↓ YH1H2

XH2H2

YLH1

h1(n )

h0(n)

2↓

2↓

2↓

YH1H1

YH2H1

h1(n)

h0(n)

2↓

2↓

h2(n) 2↓

h1(n) 2↓

h0(n) 2↓

YLL

YH1L

YH2L

h2(n)

 
 
Fig. 3: Filter bank structure for computation of a 2-D 

discrete framelet transform 
 
framelet transform using nonseparable method, the next 
steps should be followed: 
 
• Checking input dimensions: Input matrix should be 

of   length   NxN,    where   N   must  be  even  and 
N> = length of analysis filters 

• For an NxN matrix input 2-D signal, X, construct a 
3N/2xN transformation matrix, W, using 
transformation matrices given in (10) and (11)  

• Apply Transformation by multiplying the 
transformation matrix by the input matrix by the 
transpose of the transformation matrix  

 
TY W X W= ⋅ ⋅  

 
 This multiplication of the three matrices result in 
the final discrete framelet transformed matrix. 
 

A PROPOSED METHOD OF INVERSE 
FRAMELET TRANSFORM 

 
1-D Inverse Framelet transform: To reconstruct the 
original signal from the discrete framelet transformed 
signal, inverse fast discrete framelet transform should 
be used. The inverse transformation matrix is the 
transpose of the transformation matrix as the transform 
is orthogonal. 
 To compute a single level 1-D Inverse discrete 
framelet transform, the following steps should be 
followed: 
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• Let Y be the 3N/2x1 framelet transformed vector. 
• Construct Nx3N/2 reconstruction matrix, T = Wt, 

using transformation matrices given in (10) and 
(11) 

• Reconstruction of input vector, which can be done 
by applying matrix multiplication to the Nx3N/2 
reconstruction matrix, T, by the 3N/2x1 framelet 
transformed vector 

 
[ ] [ ]

3 N 3N
N 1

2 2

X T . Y
× ×

=  

 
2-D Inverse Framelet transform: To compute a single 
level inverse framelet transform for 2-D signal using 
non-separable method the next steps should be 
followed: 
 
• Let Yo be the 3N/2x3N/2 framelet transformed 

matrix. 
• Construct Nx3N/2 reconstruction matrix, T = Wt, 

using transformation matrices given in (10) and 
(11) 

• Reconstruction of the input matrix by multiplying 
the reconstruction matrix by the input matrix by the 
transpose of the reconstruction matrix. 

t
oX T Y T= ⋅ ⋅  

 
A COMPUTER TEST 

 
 During a single level of decomposition using 
wavelet transform, the 2-D image data is replaced with 
four blocks corresponding to the subbands representing 
either lowpass or highpass in both dimensions. These 
sub bands are shown in Fig. 4a. The subband labels in 
this figure indicate how the subband data is generated. 
For example, the data in subband LH is obtained from 
highpass filtering of the rows and then low pass 
filtering of the columns[6]. The framelet transform is 
extended to 2D by iterating the 1D over sampled filter 
bank on the rows and then on the columns of an image, 
as is usually done for separable 2D- framelet transform. 
At a given level in the iterated filter bank, this separable 
extension produces nine 2D subbands. These subbands 
are showed in Fig. 4b. Since L is a lowpass filter (h0(n)) 
while both H1 and H2 are highpass filters (h1(n) and 
h2(n)), the H2H2, H2H1, H1H2, H1H1 subbands each have 
a frequency-domain support comparable to that of the 
HH subband in a DWT. A similar scheme creates the 
H1L, H2L (LH1, LH2) subband with the same 
frequency-domain support as the corresponding HL 
(LH) subband of the DWT, but with twice as many 
coefficients. Finally, note that there is only one subband 
LL with the same frequency-domain support as the LL 
subband in a DWT.  

 
 
Fig. 4: Image Subbands after a single-level 

decomposition,  for (a): Scalar Wavelets and 
(b): Framelets 

 

  
  (a) (b) 
 

  
  (c) (d) 
 
Fig. 5: Peppers image, (a): Original, (b): After input 

row transform, (c): After input column 
transform, (d): The upper-left most, LL, 
subband 

 
 A general computer program computing a single-
level fast discrete framelet transform is written using 
Matlab V.7.0 for a general NxN 2-D signal (or image). 
As shown in Fig. 5a, the original Peppers image 
dimensions are 512x512 (NxN). After a single-level of 
framelet decomposition using seperable method, after 
row transformation image dimensions will be a matrix 
of 768x512 (3N/2xN), as shown in Fig. (5b), after the 
column transformation , image dimensions will be a 
matrix of 768x768 (3N/2x3N/2), as shown in Fig. 5c. 
The upper-left most, LL, subband of 256x256 
dimensions, is zoomed in as in Fig. 5d.  
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CONCLUSIONS 
 
 This research presents a new framelets transform 
computation methods from 1D-2D that verify the 
potential benefits of framelets and gain a much 
improvement in terms of low computational 
complexity. The relatively new field of framelets shows 
promise in removing some of the limitations of 
wavelets. Several applications have benefited from the 
use of frames, for example, denoising and signal 
coding. 
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