
American Journal of Applied Sciences 5 (11): 1528-1534, 2008
ISSN 1546-9239
© 2008 Science Publications

Corresponding Author: Weng Fook Lee, Emerald Systems Design Center, 737-1-10 Kompleks Sri Sg Nibong, Jalan Sultan
Azlan Shah, 11900 Bayan Lepas, Penang, Malaysia Tel: +604-6461113 Fax: +604-6448181,

1528

Implementing a Large Data Bus VLIW Microprocessor

1Weng Fook Lee and 2Ali Yeon Md Shakaff

1Emerald Systems Design Center, Kompleks Sri Sg Nibong, Bayan Lepas, 11900, Penang, Malaysia
2School of Computer and Communication Engineering, University Malaysia Perlis,

Arau, 02600 Perlis, Malaysia

Abstract: Microprocessors have grown tremendously in its computing and data crunching capability
since the early days of the invention of a microprocessor. Today, most microprocessors in the market
are at 32 bits, while the latest microprocessors from IBM, Intel and AMD are at 64 bits. To further
grow the computational capability of a microprocessor, there are two possible paths. One method is to
increase the data bus size of the microprocessor to 128/256/512 bits. The larger the data bus size, the
more data can be crunched at any one time. The second method is to implement multiple
microprocessor core in a single microprocessor unit. For example, Intel’s Pentium 4 Dual Core and
AMD’s Athlon Dual Core both have two microprocessor core within a single microprocessor unit.
Latest from Intel and AMD are quad core microprocessors with four microprocessor core within a
single microprocessor unit. Both methods have its advantages and disadvantages. Both methods yields
different design issues and have different engineering limitations. This research looks into the
possibility of implementing a large data bus size VLIW microprocessor core of 256 bits on the data
bus. VLIW is chosen as opposed to CISC and RISC due to its ease of scalability.

Keywords: Large data bus size microprocessor, multicore

INTRODUCTION

 Micro-processors and micro-controllers are widely
used in the world today. It is used in everyday
electronic systems, be it a system used in the industries
or a system used by consumers. Complex electronic
systems such as ATM machine, POS systems, financial
systems, transaction systems, control systems, database
systems all uses some form of micro-controller or
micro-processor as the core of their system. Consumer
electronic systems such as home security systems,
credit cards, microwave ovens, cars, cell phones, PDA,
refrigerators and other daily appliances have within the
core of the system either a micro-controller or micro-
processor.
 What is a micro-controller and micro-processor? If
they are such a big part of our daily life, what exactly is
their function?
 Micro-processors and micro-controllers are very
similar in nature. In fact, from a top level perspective, a
micro-processor is the core of a micro-controller. A
micro-controller basically consists of a micro-processor
as its CPU (central processing unit) with peripheral
logic surrounding the micro-processor core. As such it
can be viewed that a micro-processor is the building

block for a micro-controller.
 A microprocessor’s capability to crunch data is
dependent on its bus width. A larger data bus width
allows the microprocessor to crunch more data at any
one time. For example, the crunching capability of a 32
bit microprocessor is at a comparable doubling factor of
a 16 bit microprocessor. Therefore having a
microprocessor with larger data bus size allows for
more data crunching capability. However there is a
drawback to using larger data bus size. The larger the
data bus size, the greater amount of logic is required
and the larger the die size. Most microprocessors in the
market today such as Intel’s Xeon and EMT64
microprocessor, AMD’s Athlon 64 and Opteron
microprocessor, IBM’s PowerPC microprocessor are 64
bit microprocessors. They are able to crunch data at 64
bits at a time.
 Moving forward, in order to have a microprocessor
to have more data crunching capability, there are two
methods of progress:

• increase the data bus size from 64 bits to

128/256/512 bits and beyond
• increase the amount of microprocessor core in a

single microprocessor

Am. J. Applied Sci., 5 (11): 1528-1534, 2008

 1529

Method (1) increases the data bus width to
accommodate for more data crunching capability, while
method (2) uses multiple microprocessor core in a
single microprocessor to allow for multiple activities.
Each method has its advantages and disadvantages.

INCREASING DATA BUS SIZE TO IMPROVE
DATA CRUNCHING POWER OF

MICROPROCESSORS

 One obvious method to increase the data crunching
capability of microprocessors is by increasing its data
bus size. This allows the microprocessor to crunch
more data at any one time[1,2,3,4,5,6,20,21,22].
 The advantages of this method:

• The large data bus size microprocessor can process

large amounts of data at any one time. This will
make the microprocessor ideally suited for
applications that require data crunching

• Although power consumption increases when the
data bus size is doubled from 64 to 128, the
increase in power consumption is lower compared
to having two 64 bit microprocessor core in a
single microprocessor unit. Thermal management
is more manageable on the 128 bit microprocessor
as compared to dual 64 bit microprocessor core, as
the larger bit size microprocessor has lower logic
density

• The larger bit size microprocessor can still fully
utilize the memory bandwidth since effectively
there is still one microprocessor addressing one
memory bus. This is a clear advantage over
multicore microprocessor whereby the memory
bandwidth is reduced to 1/n (n is the amount of
microprocessor core in the microprocessor
unit)[7,8,9]

This method however creates several disadvantages:

• Increasing the data bus size of a microprocessor to

large bus size of 256/512 provide a design
challenge especially in terms of engineering
resource (design schedule and engineering man-
power)

• When a microprocessor is increased from 64 bits to
128/256/512 bits data bus size, the amount of die
area increases tremendously This increase is due
to:
a) paths and logic will have to be duplicated to

cater to the larger data bus size. This would
lead to more logic and larger die size

b) having a 128/256/512 bit data bus means that

the amount of metal routing on silicon for that
bus will have to be increased to 128/256/512
as well. This will increase the physical layout
area of the design and results in larger die size

• Increasing the data bus size from 64 bits to
128/256/512 means that the ALU (Arithmetic
Logic Unit)[10,20,21,22] within the microprocessor
will also need to increase its computation
capability to accommodate 128/256/512 bits. This
increases the ALU logic and thus increases the
die size.

• When a microprocessor is increased in bus width,
the die size increases, the amount of logic required
for the design increases and power consumption
increases

• As the die size of the microprocessor increases, the
probability of having defects per wafer also
increases[11]. This means that yield will drop
therefore further increasing the cost of the
microprocessor

• Software and OS support is required for a system
to take advantage of the additional data bus size.
Most software and OS today only supports 32 bits
and 64 bits operations. To fully utilize the
crunching capability of 256/512 bits, the software
and OS must be updated to address the larger data
bus size

MULTIPLE MICROPROCESSOR CORE TO
IMPROVE DATA CRUNCHING POWER OF

MICROPROCESSORS

 Apart from increasing the data bus size of the
microprocessor, one other method to improve the data
crunching power of a microprocessor is to put multiple
microprocessor core within one microprocessor
unit[12,13,14,20,21,22]. This means that a microprocessor unit
may have two or more microprocessor core within that
one package. The multiple core may be on one silicon
or on separate silicon within the package. This method
allows the two separate microprocessor core to crunch
data separately and therefore increasing the crunching
capability of the system.
 The advantages of this method:

• Multiple core on the same silicon have smaller

travel time allowing cache coherency logic circuits
to operate at higher frequency as compared to
travel time to external of the chip package[15]

• Multicore microprocessors shares level 2 cache
among the cores to allow faster access to data for
each core from the same cache[16]

Am. J. Applied Sci., 5 (11): 1528-1534, 2008

 1530

• Design risks are lower as the multicore
microprocessor unit is basically using multiple core
which is proven to work on a single
microprocessor unit. This allows for lower design
risk compared to designing a large super size
microprocessor

• Having two microprocessor core in a single
microprocessor unit reduces the motherboard area
compared to having two microprocessor unit on the
motherboard. This helps to reduce cost on the PCB
of the motherboard

 The disadvantages of this method:

• Putting two or more microprocessor core in a

microprocessor unit strains the thermal
management of the microprocessor package as heat
generated from both core will increase the
temperature of the package significantly

• Yield during production will drop due to the
difficult integration of the multiple core[11]

• Operating systems utilizing this multi core
microprocessor must be able to optimally support
the additional core resource. This means that the
software will have to be able to perform
multiprocessing efficiently

• If the multicore microprocessor shares one same
memory bus, the memory bandwidth is reduced to
1/n, whereby n is the amount of microprocessor
core in the microprocessor unit[7,8,9]

• This research looks into the possibility of
implementing a large data bus size VLIW
microprocessor core of 256 bits on the data bus

USING VLIW MICROPROCESSOR FOR

LARGE DATA BUS SIZE
IMPLEMENTATION

 The first microprocessor was developed by Intel
Corp in 1971. It was called 4004[23]. It was a simple IC
chip, by today's standards of microprocessor design, but
back in 1971, the 4004 was a revolutionary break-
through from Intel Corp. The original design of the
4004 was meant for a calculator called Busicom[23].
Intel Corp however saw the potential of the 4004 and
used it for applications other than just for a calculator.
 From the humble beginnings of the first
microprocessor in the world, it has grown by leaps and
bounds and today's computational capability of
microprocessors far surpass that of the original design.
 Looking at the history of microprocessor design,
there are three distinct types of microprocessor that

have played an important role in the growth and
development of the microprocessor; CISC, RISC and
VLIW[26,27]. CISC (Complex Instruction Set
Computing) is based on the concept of allowing
programmers to use as little instructions as possible to
write programs for a microprocessor. CISC consists of
many instructions, ranging from simple basic
microprocessor instructions to complex instructions.
The idea was to use as few instructions as possible to
write a program for a microprocessor. CISC
microprocessors were largely popular until John Cocke
from IBM Research[24,25] brought forward the idea that
most CISC microprocessors utilizes very little of the
complex instructions while the simple basic
microprocessor instructions were utilized heavily. From
this idea, the RISC microprocessor was developed.
 Apart from the CISC and RISC microprocessors,
there is a different generation of microprocessor based
on a concept called VLIW (Very Long Instruction
Word). VLIW microprocessors make use of ILP
(Instruction Level Parallelism - the ability to execute
multiple instructions in parallel). VLIW
microprocessors are not the only type of
microprocessors that takes advantage of executing
multiple instructions in parallel. Superscalar
superpipeline microprocessors are also able to achieve
this parallelism.
 For this research, VLIW is chosen for building the
large data bus size microprocessor as opposed to CISC
or RISC because of its hardware simplicity to allow for
up scaling of data bus size.

IMPLEMENTATION OF LARGE DATA
BUS SIZE VLIW MICROPROCESSOR

ON FPGA

 A 64 bit custom instruction set VLIW
microprocessor core is implemented on Altera’s Stratix
II FPGA (EP2S180F1508I4) using the operations of
arithmetic, logic, load, read and compare[28,29,30,31,32],
creating a minimal customized instruction set of 16
instructions:

1. nop
2. add
3. sub
4. mul
5. load
6. move
7. read
8. compare
9. xor
10. nand

Am. J. Applied Sci., 5 (11): 1528-1534, 2008

 1531

11. nor
12. not
13. shift left
14. shift right
15. barrel shift left
16. barrel shift right

 Altera’s EP2S180F1508I4 FPGA is used as it
needs to have adequate elements and enough usable IO
pins for implementation of the VLIW microprocessor
core. The implemented microprocessor core is a 4 stage
pipeline, 3 parallel pipes superscalar VLIW
microprocessor[19,26,27]. The microprocessor core is
designed with a shared register file with 16 registers
accessible by all 3 pipes. Each register’s width is the
same as that of the data bus.
 Figure 1 shows the top level block diagram of the
microprocessor core. Figure 2 shows the system level
implementation utilizing the microprocessor core
implemented on FPGA. The cache, prefetch, branch
prediction is implemented external to the
microprocessor core on the system level as the FPGA
(implemented microprocessor core) has limited
resource. Figure 3 shows the micro-architecture of the 4
stages (fetch, decode, execute and writeback and shared
register file).

Fetch Decode

Execute1

Execute2

Execute3
Register

File (shared)

Operation1

Operation2

Operation3

1 st stage 2 nd stage 3 rd stage

WriteBack

4 th stage

Fig. 1: Diagram showing top level block diagram of the

microprocessor core

VLIW

Microprocessor

clock

reset

data[191:0]

word[63:0]

readdatapipe1

readdatapipe2

readdatapipe3

jump

readdatavalid

clock
generation

module

instruction
memory

(with builtin
memory cache)

To external
systems

Fig. 2: Diagram showing system level implementation

utilizing microprocessor core on FPGA

Fig. 3: Diagram showing micro-architecture of the 4 stages of the microprocessor core

Am. J. Applied Sci., 5 (11): 1528-1534, 2008

 1532

The execute stage of all 3 parallel pipes are also
designed with register bypass mechanism to cater for all
cases of instruction dependency[21]. For an n (n = 3 to 6)
pipe superscalar pipeline microprocessor, the register
bypass mechanism must cater for a total of y number of
conditions that require register bypassing[21].

Intra-pipe register bypass conditions = n (n+2)
Inter-pipe register bypass conditions = n4+n2-2n
Total conditions = y = n4+2n2 = 81 + 15 = 99

 Register bypass logic is implemented for all 15
conditions of intra pipe and 84 conditions of inter pipe
bypass, resulting in a total of 99 bypass conditions.

IMPLEMENTATION RESULTS OF LARGE
DATA BUS SIZE VLIW MICROPROCESSOR

CORE ON FPGA

 Each pipe stage for all 3 parallel pipes in the
microprocessor core are designed in verilog RTL and
synthesized onto Altera’s EP2S180F1508I4 FPGA
using Altera’s Quartus II full version 6.0 (synthesis,
fitting, P and R) while verilog RTL simulation is done
using Mentor Graphics’s Modelsim version 6.1.
 The verilog RTL is written using only
combinational logic and sequential logic and does not
use any IP components or library components from
Altera’s MegaIPCore Library. For the microprocessor
core in 64 bit data bus, the critical path delay, FPGA
cell element usage and power consumption is analyzed.
 The microprocessor core on the FPGA is then
expanded to larger data bus size of
96/128/160/192/224/256 bits and the same data is
collected for each implementation. When the
microprocessor core’s data bus size is expanded from
64 bits to larger data bus size, the internal core logic as
well as the system level logic is expanded to
accommodate the microprocessor core’s larger data bus
size. From the results obtained, the normalized power-
delay product for each data bus size implementation is
calculated and plotted as shown in Fig. 4.
Power-delay product is commonly not a priority factor
considered in FPGA design as FPGA draws more
power compared to ASIC[17,18,33,34,35,36]. However for
this research, the normalized power-delay product is
important as it provides an indication reference on the
power-delay product increase per the increase in bus
size implementation. This indication reference can
serve as a good reference point when migrating the
large data bus size implementation into ASIC. The
FPGA cell element usage is plotted and shown
in Fig. 5.

Normalized Power-Delay Product

0

0.2

0.4

0.6

0.8

1

64 96 128 160 192 224 256
Data Bus Size (Bits)

Fig. 4: Diagram showing normalized power-delay

product for different data bus size

10

100

1000

10000

100000

64 96 128 160 192 224 256
D ata Bus Size (Bits)

ALUT s

Registers

D SP block 9 bit elements

Total C ell Element Usage
(ALUTs+R egisters+DSP
block 9 bit elements)

Fig. 5: Diagram showing FPGA cell element usage for

different data bus size

Referring to Figure 4, the power-delay product
increases by 3x when the data bus size is increased
from 64 to 128 bits. When the data bus size increased
from 64 to 256 bits, the power-delay product increases
by 13x. This shows a steep increase in power-delay
product when the data bus size is increased fourfold to
256 bits.
 As for the FPGA cell element usage (Fig. 5),
ALUTs increases by 1x when data bus size increased
from 64 to 128 bits. It however increases by 5x when
the data bus size is increased from 64 to 256 bits. The
sequential elements (registers) increases by 1x when
data bus size increased from 64 to 128 bits. It increases
by 3x when the data bus size is increased from 64 to
256 bits. The DSP 9 bit block element increases by
more than 2x when data bus size increases from 64 to
128 bits. It however increases by almost 10× when the
data bus size increases from 64 to 256 bits. The steep
increase in DSP 9 bit block element is due to larger
ALU that requires computation of larger chunks of data
as the data bus size is increased. For the total FPGA cell
elements usage, it increases by 1x when data bus size
increase from 64 to 128 bits. However when data bus
size increase from 64 to 256 bits, the total FPGA cell
elements usage increases by 4.6x.

Am. J. Applied Sci., 5 (11): 1528-1534, 2008

 1533

 From the results of Figure 4 and Figure 5,
increasing the data bus size comes at a certain cost. To
double the data bus size from 64 bits to 128 bits results
in an increase of 3x in power-delay product and an
increase of 1x in total FPGA cell elements usage.
However when the data bus size is quadrupled to 256
bits, there is an increase of 13x in power-delay product
and an increase of 4.6x in total FPGA cell elements
usage.

CONCLUSION

 From the results of the implemented
microprocessor core on FPGA as shown in Figure 4 and
Figure 5, increasing the data bus size comes at a certain
cost. To quadruple the data bus size from 64 bits to 256
bits, there is a increase of 13x in power-delay product
and an increase of 4.6x in total FPGA cell elements
usage.
 Moving forward, more work is needed to expand
the VLIW microprocessor’s VLIW instruction set to
encompass a larger set of operations, A software
assembler and compiler must also be created to allow
assembly language to be compiled for the VLIW
microprocessing environment. This will create a full
system level implementation for the large data bus size
VLIW microprocessor.
 Once the infrastructure to build a system level
implementation for a large data bus size microprocessor
is achieved, software applications can be modified or
rewritten for the large data bus size environment. By
running real time software applications on a large data
bus size microprocessing environment, more data can
be collected on real time applications that can be used
to benchmark the performance/cost/power
advantages/disadvantages of a large data bus size
VLIW microprocessor in comparison to that of
multicore microprocessing environment.

ACKNOWLEDGEMENTS

 Special thanks to Bernard Lee, CEO of Emerald
Systems and Azrul Halim, Director of Design
Engineering, Emerald Systems for funding this project.

REFERENCES

1. IBM Inc. (2006, Nov 21). IBM WebSphere

Application Server 64-bit Performance
Demystified White Paper

2. Vladimir Romanchenko. (2006, June 27).
Evolution of the multi-core processor architecture
Intel Core: Conroe, Kentsfield. Digital Daily.

3. Microsoft Inc. (2006). Benefits of Microsoft
Windows 64 Edn. White Paper.

4. White Paper: Intel’s multi-core processors move
forward. (2006, Jan). Computer Power User. 6 (1).

5. Advanced Micro Devices, Inc. (2005, June 14). 86-
64TM Technology White Paper.

6. Advanced Micro Devices, Inc. (2003, April 20).
64-bit Technology:Driving The Digital Media
Revolution White Paper.

7. Richard Goering, 2007. Speaker cites multicore
benchmarking challenges. EE Times.

8. Bader, D.A., Varun Kanade and Kamesh Madduri,
2007. SWARM: A Parallel Programming
Framework for Multicore Processors. IEEE
1-4244-0910-1/07

9. Alan Zeichick, 2005. Driving in the Fast Lane:
What Multi-Core Computing Means for
Programmers. AMD Developer Central.

10. Godfrey P. D’Souza, 1998. Arithmetic logic unit
with improved critical path performance. US Patent
#5764550

11. Christopher W. Hampson, 1997. Redundancy and
high-volume manufacturing methods. Int.
Technol. J.

12. Benson Inkley and Scott Tetrick, 2006. Intel Multi-
core Architecture and Implementations. Intel IDF.

13. Bob Valentine, 2006. Inside the Intel Core (TM)
Microarchitecture. Intel IDF.

14. Advanced Micro Devices Inc., 2005. Multi-core
Processors-The Next Evolution In Computing.
33211A.

15. Advanced Micro Devices Inc. AMD Developer
Central, 2006. AMD’s Multiple Threads, Multiple
Cores, Multiple Gains. Peter Aitken.

16. Ramanathan, R.M., 2006. Intel® Multi-Core
Processors Making the Move to Quad-Core and
Beyond-Intel. White Paper. Technology@Intel
Magazine

17. Weng Fook Lee, 2003. Verilog Coding For Logic
Synthesis. John Wiley. pp: 3-14.

18. Weng Fook Lee, 2000. VHDL Coding and Logic
Synthesis With Synopsys. Academic Press
Publication. pp: 1-23

19. Weng Fook Lee, 2007. VLIW Microprocessor
Hardware Design for ASIC and FPGA. McGraw
Hill. pp: 1-23.

20. Weng Fook Lee, Ali Yeon Md Shakaff.
implementation results on increasing data bus size
on a 4 stage pipe in a pipeline superscalar
microprocessor core implemented on FPGA.
Proceedings of 10th EuroMicro Conference on
Digital System Design, WIP, SEA-Publications
SEA-SR-16, July 2007-11-23. ISBN 978-3-
902457-16-5.

Am. J. Applied Sci., 5 (11): 1528-1534, 2008

 1534

21. Weng Fook Lee, Azrul Halim, Nor Hisham, Yap
Vooi Voon, Lo Hai Hiung, Patrick Sebastian.
Implementation results on register bypass
conditions of an n-parallel pipes superscalar
pipeline microprocessor core on FPGA.
Proceedings of 10th EuroMicro Conference on
Digital System Design, WIP, SEA-Publications
SEA-SR-16, July 2007-11-23. ISBN
978-3-902457-16-5.

22. Weng Fook Lee, Ali Yeon Md Shakaff, 2007.
Implementation of 128/256 Bit Data Bus
Microprocessor Core on FPGA. Journal of
Programmable Devices, Circuits and Systems.
International Congress of Global Sci. and Technol.,
7 (1): 7-13.

23. Intel Corp. Intel's First Microprocessor-the Intel®
4004.

24. John Cocke, V. Markstein. IBM Corp. The
Evolution of RISC Technology at IBM.

25. MIT Inventor of the Week Archive. John Cocke.
Reduced Instruction Set Computing. Aug 1999.

26. John L Hennessy and David A. Patterson. (2003).
Computer Architecture: A Quantative Approach.
Morgan Kaufmann Publication.

27. John L Hennessy and David A. Patterson, 2003.
Computer Organization and Design: The
Hardware/Software Interface. Morgan Kaufmann
Publication.

28. Weng Fook Lee, 2000. VHDL Coding and Logic
Synthesis With Synopsys. Academic Press
Publication.

29. IBM Corp. 2000. PowerPCTM Microprocessor
Family: The Programming Environments for
32-Bit Microprocessors

30. Intel Corp, 1999. Intel Architecture Software
Developer’s Manual.

31. Advanced Micro Devices Corp, 1997. Am186 and
Am188 Family Instruction Set Manual.

32. Intel Corp, 1994. i960® Jx Microprocessor
Instruction Set and Register Quick Reference.

33. Emerald Systems Design Center, 2007. IC Design
Synthesis Using RTL Training Course.

34. Emerald Systems Design Center, 2007. IC Design
Using Verilog HDL Training Course.

35. Emerald Systems Design Center, 2007.
Intermediate Verilog Coding for IC Design
Training Course.

36. Emerald Systems Design Center, 2007. FPGA
Implementation and Verification Training Course.

