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Abstract: Microprocessors have grown tremendously in its computing and data crunching capability 
since the early days of the invention of a microprocessor. Today, most microprocessors in the market 
are at 32 bits, while the latest microprocessors from IBM, Intel and AMD are at 64 bits. To further 
grow the computational capability of a microprocessor, there are two possible paths. One method is to 
increase the data bus size of the microprocessor to 128/256/512 bits. The larger the data bus size, the 
more data can be crunched at any one time. The second method is to implement multiple 
microprocessor core in a single microprocessor unit. For example, Intel’s Pentium 4 Dual Core and 
AMD’s Athlon Dual Core both have two microprocessor core within a single microprocessor unit. 
Latest from Intel and AMD are quad core microprocessors with four microprocessor core within a 
single microprocessor unit. Both methods have its advantages and disadvantages. Both methods yields 
different design issues and have different engineering limitations. This research looks into the 
possibility of implementing a large data bus size VLIW microprocessor core of 256 bits on the data 
bus. VLIW is chosen as opposed to CISC and RISC due to its ease of scalability. 
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INTRODUCTION 

 
 Micro-processors and micro-controllers are widely 
used in the world today. It is used in everyday 
electronic systems, be it a system used in the industries 
or a system used by consumers. Complex electronic 
systems such as ATM machine, POS systems, financial 
systems, transaction systems, control systems, database 
systems all uses some form of micro-controller or 
micro-processor as the core of their system. Consumer 
electronic systems such as home security systems, 
credit cards, microwave ovens, cars, cell phones, PDA, 
refrigerators and other daily appliances have within the 
core of the system either a micro-controller or micro-
processor. 
 What is a micro-controller and micro-processor? If 
they are such a big part of our daily life, what exactly is 
their function? 
 Micro-processors and micro-controllers are very 
similar in nature. In fact, from a top level perspective, a 
micro-processor is the core of a micro-controller. A 
micro-controller basically consists of a micro-processor 
as its CPU (central processing unit) with peripheral 
logic surrounding the micro-processor core. As such it 
can be viewed that a micro-processor is the building 

block for a micro-controller. 
 A microprocessor’s capability to crunch data is 
dependent on its bus width. A larger data bus width 
allows the microprocessor to crunch more data at any 
one time. For example, the crunching capability of a 32 
bit microprocessor is at a comparable doubling factor of 
a 16 bit microprocessor. Therefore having a 
microprocessor with larger data bus size allows for 
more data crunching capability. However there is a 
drawback to using larger data bus size. The larger the 
data bus size, the greater amount of logic is required 
and the larger the die size. Most microprocessors in the 
market today such as Intel’s Xeon and EMT64 
microprocessor, AMD’s Athlon 64 and Opteron 
microprocessor, IBM’s PowerPC microprocessor are 64 
bit microprocessors. They are able to crunch data at 64 
bits at a time. 
 Moving forward, in order to have a microprocessor 
to have more data crunching capability, there are two 
methods of progress: 
 
• increase the data bus size from 64 bits to 

128/256/512 bits and beyond 
• increase the amount of microprocessor core in a 

single microprocessor 



Am. J. Applied Sci., 5 (11): 1528-1534, 2008 
 

 1529 

Method (1) increases the data bus width to 
accommodate for more data crunching capability, while 
method (2) uses multiple microprocessor core in a 
single microprocessor to allow for multiple activities. 
Each method has its advantages and disadvantages. 
 

INCREASING DATA BUS SIZE TO IMPROVE 
DATA CRUNCHING POWER OF 

MICROPROCESSORS 
 
 One obvious method to increase the data crunching 
capability of microprocessors is by increasing its data 
bus size. This allows the microprocessor to crunch 
more data at any one time[1,2,3,4,5,6,20,21,22].  
 The advantages of this method: 
 
• The large data bus size microprocessor can process 

large amounts of data at any one time. This will 
make the microprocessor ideally suited for 
applications that require data crunching 

• Although power consumption increases when the 
data bus size is doubled from 64 to 128, the 
increase in power consumption is lower compared 
to having two 64 bit microprocessor core in a 
single microprocessor unit. Thermal management 
is more manageable on the 128 bit microprocessor 
as compared to dual 64 bit microprocessor core, as 
the larger bit size microprocessor has lower logic 
density 

• The larger bit size microprocessor can still fully 
utilize the memory bandwidth since effectively 
there is still one microprocessor addressing one 
memory bus. This is a clear advantage over 
multicore microprocessor whereby the memory 
bandwidth is reduced to 1/n (n is the amount of 
microprocessor core in the microprocessor 
unit)[7,8,9] 

 
This method however creates several disadvantages: 
 
• Increasing the data bus size of a microprocessor to 

large bus size of 256/512 provide a design 
challenge especially in terms of engineering 
resource (design schedule and engineering man-
power) 

• When a microprocessor is increased from 64 bits to 
128/256/512 bits data bus size, the amount of die 
area increases tremendously This increase is due 
to: 
a) paths and logic will have to be duplicated to 

cater to the larger data bus size. This would 
lead to more logic and larger die size 

b) having a 128/256/512 bit data bus means that 

the amount of metal routing on silicon for that 
bus will have to be increased to 128/256/512 
as well. This will increase the physical layout 
area of the design and results in larger die size 

• Increasing the data bus size from 64 bits to 
128/256/512 means that the ALU (Arithmetic 
Logic Unit)[10,20,21,22] within the microprocessor 
will also need to increase its computation 
capability to accommodate 128/256/512 bits. This 
increases   the   ALU logic and thus increases the 
die size. 

• When a microprocessor is increased in bus width, 
the die size increases, the amount of logic required 
for the design increases and power consumption 
increases 

• As the die size of the microprocessor increases, the 
probability of having defects per wafer also 
increases[11]. This means that yield will drop 
therefore further increasing the cost of the 
microprocessor 

• Software and OS support is required for a system 
to take advantage of the additional data bus size. 
Most software and OS today only supports 32 bits 
and 64 bits operations. To fully utilize the 
crunching capability of 256/512 bits, the software 
and OS must be updated to address the larger data 
bus size 

 
MULTIPLE MICROPROCESSOR CORE TO 
IMPROVE DATA CRUNCHING POWER OF 

MICROPROCESSORS 
 
 Apart from increasing the data bus size of the 
microprocessor, one other method to improve the data 
crunching power of a microprocessor is to put multiple 
microprocessor core within one microprocessor  
unit[12,13,14,20,21,22]. This means that a microprocessor unit 
may have two or more microprocessor core within that 
one package. The multiple core may be on one silicon 
or on separate silicon within the package. This method 
allows the two separate microprocessor core to crunch 
data separately and therefore increasing the crunching 
capability of the system.  
 The advantages of this method: 
 
• Multiple core on the same silicon have smaller 

travel time allowing cache coherency logic circuits 
to operate at higher frequency as compared to 
travel time to external of the chip package[15] 

• Multicore microprocessors shares level 2 cache 
among the cores to allow faster access to data for 
each core from the same cache[16] 
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• Design risks are lower as the multicore 
microprocessor unit is basically using multiple core 
which is proven to work on a single 
microprocessor unit. This allows for lower design 
risk compared to designing a large super size 
microprocessor 

• Having two microprocessor core in a single 
microprocessor unit reduces the motherboard area 
compared to having two microprocessor unit on the 
motherboard. This helps to reduce cost on the PCB 
of the motherboard 

 
 The disadvantages of this method: 
 
• Putting two or more microprocessor core in a 

microprocessor unit strains the thermal 
management of the microprocessor package as heat 
generated from both core will increase the 
temperature of the package significantly 

• Yield during production will drop due to the 
difficult integration of the multiple core[11]  

• Operating systems utilizing this multi core 
microprocessor must be able to optimally support 
the additional core resource. This means that the 
software will have to be able to perform 
multiprocessing efficiently 

• If the multicore microprocessor shares one same 
memory bus, the memory bandwidth is reduced to 
1/n, whereby n is the amount of microprocessor 
core in the microprocessor unit[7,8,9] 

• This research looks into the possibility of 
implementing a large data bus size VLIW 
microprocessor core of 256 bits on the data bus 

 
USING VLIW MICROPROCESSOR FOR  

LARGE DATA BUS SIZE  
IMPLEMENTATION 

 
 The first microprocessor was developed by Intel 
Corp in 1971. It was called 4004[23]. It was a simple IC 
chip, by today's standards of microprocessor design, but 
back in 1971, the 4004 was a revolutionary break-
through from Intel Corp. The original design of the 
4004 was meant for a calculator called Busicom[23]. 
Intel Corp however saw the potential of the 4004 and 
used it for applications other than just for a calculator. 
 From the humble beginnings of the first 
microprocessor in the world, it has grown by leaps and 
bounds and today's computational capability of 
microprocessors far surpass that of the original design. 
 Looking at the history of microprocessor design, 
there are three distinct types of microprocessor that 

have played an important role in the growth and 
development of the microprocessor; CISC, RISC and 
VLIW[26,27]. CISC (Complex Instruction Set 
Computing) is based on the concept of allowing 
programmers to use as little instructions as possible to 
write programs for a microprocessor. CISC consists of 
many instructions, ranging from simple basic 
microprocessor instructions to complex instructions. 
The idea was to use as few instructions as possible to 
write a program for a microprocessor. CISC 
microprocessors were largely popular until John Cocke 
from IBM Research[24,25] brought forward the idea that 
most CISC microprocessors utilizes very little of the 
complex instructions while the simple basic 
microprocessor instructions were utilized heavily. From 
this idea, the RISC microprocessor was developed. 
 Apart from the CISC and RISC microprocessors, 
there is a different generation of microprocessor based 
on a concept called VLIW (Very Long Instruction 
Word). VLIW microprocessors make use of ILP 
(Instruction Level Parallelism - the ability to execute 
multiple instructions in parallel). VLIW 
microprocessors are not the only type of 
microprocessors that takes advantage of executing 
multiple instructions in parallel. Superscalar 
superpipeline microprocessors are also able to achieve 
this parallelism.  
 For this research, VLIW is chosen for building the 
large data bus size microprocessor as opposed to CISC 
or RISC because of its hardware simplicity to allow for 
up scaling of data bus size. 
 

IMPLEMENTATION OF LARGE DATA  
BUS SIZE VLIW MICROPROCESSOR  

ON FPGA 
 
 A 64 bit custom instruction set VLIW 
microprocessor core is implemented on Altera’s Stratix 
II FPGA (EP2S180F1508I4) using the operations of 
arithmetic, logic, load, read and compare[28,29,30,31,32], 
creating a minimal customized instruction set of 16 
instructions: 
 
1. nop 
2. add 
3. sub 
4. mul 
5. load 
6. move 
7. read 
8. compare 
9. xor 
10. nand 
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11. nor 
12. not 
13. shift left 
14. shift right 
15. barrel shift left 
16. barrel shift right  
 
 Altera’s EP2S180F1508I4 FPGA is used as it 
needs to have adequate elements and enough usable IO 
pins for implementation of the VLIW microprocessor 
core. The implemented microprocessor core is a 4 stage 
pipeline, 3 parallel pipes superscalar VLIW 
microprocessor[19,26,27]. The microprocessor core is 
designed with a shared register file with 16 registers 
accessible by all 3 pipes. Each register’s width is the 
same as that of the data bus.  
 Figure 1 shows the top level block diagram of the 
microprocessor core.  Figure 2 shows the system level 
implementation utilizing the microprocessor core 
implemented on FPGA. The cache, prefetch, branch 
prediction is implemented external to the 
microprocessor core on the system level as the FPGA 
(implemented microprocessor core) has limited 
resource. Figure 3 shows the micro-architecture of the 4 
stages (fetch, decode, execute and writeback and shared 
register file). 

Fetch Decode

Execute1

Execute2

Execute3
Register

File (shared)

Operation1

Operation2

Operation3

1 st stage 2 nd stage 3 rd stage

WriteBack

4 th stage  
 
Fig. 1: Diagram showing top level block diagram of the 

microprocessor core 
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Fig. 2: Diagram showing system level implementation 

utilizing microprocessor core on FPGA 
 

 
 
Fig. 3: Diagram showing micro-architecture of the 4 stages of the microprocessor core 
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The execute stage of all 3 parallel pipes are also 
designed with register bypass mechanism to cater for all 
cases of instruction dependency[21]. For an n (n = 3 to 6) 
pipe superscalar pipeline microprocessor, the register 
bypass mechanism must cater for a total of y number of 
conditions that require register bypassing[21]. 
 
Intra-pipe register bypass conditions = n (n+2) 
Inter-pipe register bypass conditions = n4+n2-2n 
Total conditions = y = n4+2n2  = 81 + 15 = 99 
 
 Register bypass logic is implemented for all 15 
conditions of intra pipe and 84 conditions of inter pipe 
bypass, resulting in a total of 99 bypass conditions. 
 

IMPLEMENTATION RESULTS OF LARGE 
DATA BUS SIZE VLIW MICROPROCESSOR 

CORE ON FPGA 
 
 Each pipe stage for all 3 parallel pipes in the 
microprocessor core are designed in verilog RTL and 
synthesized onto Altera’s EP2S180F1508I4 FPGA 
using Altera’s Quartus II full version 6.0 (synthesis, 
fitting, P and R) while verilog RTL simulation is done 
using Mentor Graphics’s Modelsim version 6.1. 
 The verilog RTL is written using only 
combinational logic and sequential logic and does not 
use any IP components or library components from 
Altera’s MegaIPCore Library. For the microprocessor 
core in 64 bit data bus, the critical path delay, FPGA 
cell element usage and power consumption is analyzed.  
 The microprocessor core on the FPGA is then 
expanded to larger data bus size of 
96/128/160/192/224/256 bits and the same data is 
collected for each implementation. When the 
microprocessor core’s data bus size is expanded from 
64 bits to larger data bus size, the internal core logic as 
well as the system level logic is expanded to 
accommodate the microprocessor core’s larger data bus 
size. From the results obtained, the normalized power-
delay product for each data bus size implementation is 
calculated   and   plotted   as   shown   in   Fig. 4. 
Power-delay product is commonly not a priority factor 
considered in FPGA design as FPGA draws more 
power compared to ASIC[17,18,33,34,35,36]. However for 
this research, the normalized power-delay product is 
important as it provides an indication reference on the 
power-delay product increase per the increase in bus 
size implementation. This indication reference can 
serve as a good reference point when migrating the 
large data bus size implementation into ASIC. The 
FPGA   cell   element   usage   is   plotted   and  shown 
in Fig. 5.  
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Fig. 4: Diagram showing normalized power-delay 

product for different data bus size 
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Fig. 5: Diagram showing FPGA cell element usage for 

different data bus size 
 
Referring to Figure 4, the power-delay product 
increases by 3x when the data bus size is increased 
from 64 to 128 bits. When the data bus size increased 
from 64 to 256 bits, the power-delay product increases 
by 13x. This shows a steep increase in power-delay 
product when the data bus size is increased fourfold to 
256 bits. 
 As for the FPGA cell element usage (Fig. 5), 
ALUTs increases by 1x when data bus size increased 
from 64 to 128 bits. It however increases by 5x when 
the data bus size is increased from 64 to 256 bits. The 
sequential elements (registers) increases by 1x when 
data bus size increased from 64 to 128 bits. It increases 
by 3x when the data bus size is increased from 64 to 
256 bits. The DSP 9 bit block element increases by 
more than 2x when data bus size increases from 64 to 
128 bits. It however increases by almost 10× when the 
data bus size increases from 64 to 256 bits. The steep 
increase in DSP 9 bit block element is due to larger 
ALU that requires computation of larger chunks of data 
as the data bus size is increased. For the total FPGA cell 
elements usage, it increases by 1x when data bus size 
increase from 64 to 128 bits. However when data bus 
size increase from 64 to 256 bits, the total FPGA cell 
elements usage increases by 4.6x. 
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 From the results of Figure 4 and Figure 5, 
increasing the data bus size comes at a certain cost. To 
double the data bus size from 64 bits to 128 bits results 
in an increase of 3x in power-delay product and an 
increase of 1x in total FPGA cell elements usage. 
However when the data bus size is quadrupled to 256 
bits, there is an increase of 13x in power-delay product 
and an increase of 4.6x in total FPGA cell elements 
usage. 
 

CONCLUSION 
 
 From the results of the implemented 
microprocessor core on FPGA as shown in Figure 4 and 
Figure 5, increasing the data bus size comes at a certain 
cost. To quadruple the data bus size from 64 bits to 256 
bits, there is a increase of 13x in power-delay product 
and an increase of 4.6x in total FPGA cell elements 
usage.  
 Moving forward, more work is needed to expand 
the VLIW microprocessor’s VLIW instruction set to 
encompass a larger set of operations, A software 
assembler and compiler must also be created to allow 
assembly language to be compiled for the VLIW 
microprocessing environment. This will create a full 
system level implementation for the large data bus size 
VLIW microprocessor.  
 Once the infrastructure to build a system level 
implementation for a large data bus size microprocessor 
is achieved, software applications can be modified or 
rewritten for the large data bus size environment. By 
running real time software applications on a large data 
bus size microprocessing environment, more data can 
be collected on real time applications that can be used 
to benchmark the performance/cost/power 
advantages/disadvantages of a large data bus size 
VLIW microprocessor in comparison to that of 
multicore microprocessing environment. 
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