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Abstract: This paper proposes a new algorithm to simplify the multiple valued logic (MVL) decision 
diagrams. This algorithm is based on a new level coupling rule. By changing the designer’s perspective 
towards the design, this rule can make further simplification possible. In most of state of the art 
designs, the decision diagram plays a serious role in the implementation of the logical functions. The 
proposed algorithm uses the new level coupling rule and combines it with the existing ones, presenting 
a new method in simplifying and implementing the basic decision diagram. 
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INTERODUCTION 
 

Using the decision diagram is a very efficient and 
common method to illustrate the switching functions. 
Additionally using this method compared to the other 
methods has many advantages such as overall circuit 
delay reduction, higher layout density, less power 
dissipation and added logical flexibility [10]. This fact is 
confirmed by widespread application of this trend in 
different logic families.  For example we can cite the 
pull-down tree in DCVSL (Differential Cascade 
Voltage Switch Logic), SSDL (Sample-Set Differential 
Logic), ECDL (Enable/disable CMOS Differential 
Logic), DCSL (Differential current switch logic), etc. 
Another example is the realization of multiple valued 
logic circuits, especially in current mode (BDDs, and 
MDDs). The arrangement of the layout variables or 
their ordering will affect the dimensions of the decision 
diagram. Many different methods have been presented 
to find the best ordering however the level coupling 
method is a very efficient method and it can be used in 
BDDs and MDDs [2,15,21].  

In this method, the coupling method, achieving the 
best ordering in the input variables (controls) is simply 
accomplished by analyzing those specific diagrams 
obtained by the coupling operations. This fact will help 
to reduce time and operational complexity of the 
proposed algorithm. This rule dose not influence the 
simplification of the reduction tree directly, but by 
changing the viewpoint of the designer it would 
simplify further possibilities, in comparison to the 
existing rules. 

As mentioned above, the decision diagram defines 
a graph based structure for representing radix2 and 
higher radix. Numerous researches in simplification and 
implementation of MVL decision diagram have been 
conducted [1,3,9]. In[3] some of the well known 
implementations of MDD have been considered as well 

several methods to reduce dimensions of the decision 
diagram (ROMDD). The realization of algorithms is 
achieved by using the C programming language. In[5, 6 

and 9], some of methods for realization of MVL decision 
diagram are introduced, which are completely 
encapsulated in the CAD package. In [1] a method has 
been proposed in which the dimension reduction of 
diagrams is achieved by using multiplexers and 
combining the output terminals. In [7] one can observe 
the different kinds of simplification and implementation 
of radix 3 decision diagram. There is also a discussion 
about the MVL decision diagram, which illustrates that 
the number of nodes for function realization in a 
defined radix has an exponential relation to the number 
of variables, and the upper bound of this number is 
analyzed. 

In [4], a method called CDD (copy DD) is 
introduced and initially its influence on size reduction 
of the multi-terminal BDD is investigated and then its 
simplifying domain in MDDs is expanded by 
introducing CMDDs. Other method such as “sifting” [15] 
is also proposed.  

In this paper the required preliminaries to begin the 
discussion is described and then the state of the art rules 
are explained. Third section discusses the coupling rule 
and its related algorithm for decision diagram and 
realization of their current mode in radix2 (BDD) and 
higher radixes (MDD). In the following section results 
of some examples in different radixes are represented. 
The penultimate section investigates the time 
complexity of the mentioned algorithm and the final 
section an overall conclusion with regard to the 
obtained results is provided. 
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PRELIMINARIES 
 

We assume that there is an r-valued function 
0 1 1( , , , )nf x x x −�  in which ix  can have any arbitrary 

value from the set {0, 1, …, r-1}. In other words 
function f is some form of Multiple-dimensional 
(multiple-valued) to two-dimensional (two-valued) 
domain assignment, { }: 0,1nf R →  

where { }0,1,2, , 1R r= −� . These functions are presented 
based on multiple value decision diagrams and using 
DAG (Directed Acyclic Graph). In this graph every 
node has r input terminals which are labeled 0, 1… r-1. 
Every node has one output. The nodes including “0” 
and “1” values are called “leaf”. An MDD is called 
ordered if going from root to leaves, traveling through 
every path and only one specific ordering of input 
variables is seen. The ordered MDD is abbreviated as 
OMDD. A reduced MDD is one in which there are no 
nodes with inputs which are all connected to a single 
node or leaf. Meanwhile the graph is not permitted to 
have an isomorphic sub-graph (the second simplifying 
rule) [7]. 

In this type of representation the minterms or a 
product term (p) has two general forms. The first one is: 

 
(1) 
 

ix s are the function variables and Vi s are variable 

values. We have { }0,1, , 1iv n= −�  

where { }0,1, , 1i n= −� .  
In other words, if the product term p is a 

component of the product terms of f, then if 
0 0 1 1 2 2 1 1, , , , n nx v x v x v x v− −= = = =�  f will equal “1”. 

Generally, a set of these product terms constitute the 
function ( )1 2, , , kf p p p=� � .  

Another representation of p is: 
 

(2) 
 

This representation is also very descriptive. As an 
example an MDD graph is illustrated in Fig. 1 which 
represents function f, which is equal to 

( )3 3 3 3101 ,110 ,111 ,112f =�  where n= 3 and r= 3. The 

function F can be demonstrated as 1 0 1 1 1f A B C A B= + . 
Before continuing the discussion on MDD we track 

BDDs and their related implementation functions. The 
structured BDD design method was expanded by 
Pulfrey and Chu [21]. In this method the function table is 

used to design a tree capable of realization of f  and f . 
This method allows the designer to construct some part 
of the transistor making f  and f  in common. This fact 
greatly helps the simplifying procedure, chip area 
reduction and circuit speedup [2]. In order to implement 
this tree we also use source-coupled transistors (as 
illustrated in Fig. 2). From now on, we consider Fig. 
2(b) as the symbolic representation of the source-
coupled transistors. One of the transistors is controlled 
by the input and the other by the inverse of the output. 
Every transistor has a separate drain which is connected 
to a and b. “a” and “b” can take the logic values “0” or 
“1”. Either can be the output of higher layers. This 
structure has a unique output called “u”. The way “u” is 
calculated which is based on the controls is illustrated 
in Fig. 2. 

 
Fig. 1: Illustration of a 3-varible graph. 

 

  
(b) Symbol (a) Basic circuit 

Fig. 2: Basic BDD cell structure. 
 
In reality Fig. 2 structure is a multiplexer. In Fig. 

2(b) the side with negative sign (-) is controlled by x  
and the opposite side (+) is controlled by x. The first 
DD simplification rule for r=2 is described with 
equation (3) and illustrated in Fig. 3. According to this 
rule, a node with equal inputs has no influence on 
circuit functionality and can be omitted [11], [12]. 

 
 (3) 

 
In this situation the transistors do not perform any 

logical operations apart from directing the input to the 
output node, so one can directly connect one of the 
inputs to the related output. This is also called short 
circuit.  

x x 

b a 

b.xa.xu += 

( ) ( )0 1 2 1 0 1 2 1, , , , n n r
p x x x x v v v v− −= =� �

0 11 2
0 1 2 1

nv vv v
np x x x x −

−= ⋅ ⋅ ⋅ ⋅�

( )0 1 0 1u a x a x a x x a= ⋅ + ⋅ = ⋅ + =
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Fig. 3: Omitting one node with equal inputs (a= b). 

 
If 2r ≥  then, in the related node entry, there will 

be r inputs. As in here we have r= 2 and the number of 
inputs is 2. Now if there is a case in which two nodes 
have the exact same inputs and controls, then we can 
consider these two nodes as equivalents and omit one 
(Fig. 4). This is called the second simplifying rule [11], 

[12]. 

 
Fig. 4: Elimination of a node. 

 
If 2r �  then, in the related node entry, there will 

be r inputs. We want to accentuate that it is 
straightforward to extend these rules to MDDs. Using 
the two noted simplifying rules; one can simplify the 
decision diagram and reduce it size. In the next section 
we will describe the level coupling rule. 
 

NEW D.D. SIMPLIFICATION ALGORITHM 
 
A. The coupling rule: In the following algorithm, we 
use a new rule. We have called it the “coupling rule” or 
the “third simplifying rule”. A point to note in applying 
the third rule into simplifying is that in spite of the first 
and second rules, this rule dose not directly contribute 
to the simplifying process, however by changing the 
designer’s viewpoint it provides more simplifying 
capability than the first and second rule (which directly 
influence the simplifying procedure) [2]. Fig. 5 
illustrates a branch of decision diagram for r radix with 
“n” variables.  

, , , ,k k k kα β γ ω�  are the symbols reserved for branch 
inputs (where { }0,1, , 1k r= −�  and ,i jx x  are control 

variables in these two levels, where 
{ }, 0,1, , 1 ,i j n i j= − ≠� , and , , , ,α β γ ω�  are also the 

weights or the labels of node input terminals. Fig. 6 
represents the coupling of these two levels of decision 
diagram. 

 
Fig. 5: Two levels of decision diagram. 
 

The proof of the fact that the outputs of the two 
branches are equal is as follows (in this equation the 
node output is presented by u) (equ. 4); 

 
( )
( )
( )

( )

0 1 2 1 0
0 0 0 0

0 1 2 1 1
1 1 1 1

0 1 2 1 2
2 2 2 2

0 1 2 1 1
1 1 1 1

i i i i

i i i i

i i i i

i i i i

r
j

r
j

r
j

r r
r r r r j

u x x x x x

x x x x x

x x x x x

x x x x x

α β γ ω

α β γ ω

α β γ ω

α β γ ω

−

−

−

− −
− − − −

= ⋅ + ⋅ + ⋅ + + ⋅ ⋅ +

⋅ + ⋅ + ⋅ + + ⋅ ⋅ +

⋅ + ⋅ + ⋅ + + ⋅ ⋅ +

⋅ + ⋅ + ⋅ + + ⋅ ⋅

�

�

�

� � �

� (4) 
 
The matrix representation of those relations is as 

shown in equ. 5: 
 

( )0 1 2 2

1

0

0 0 0 0
1

1 1 1 1
2

2 2 2 2

1
1 1 1 1

1

i

i

i

i

r
j j j j r

r
r r r r r r

r

u x x x x

x

x

x

x

α β γ ω
α β γ ω
α β γ ω

α β γ ω

−

×

−
− − − − ×

×

=

� �� � � �� �
� �� �
� �� �× ×� �� �
� �� �
� �� � � �� � � �

�

�

�

�

� � � � � �

�

(5) 
 

Using multiplication and simplifying operations in 
the above matrix one can find out that there is another 
representation for u. This is exact representation of 
what we have called coupling. 

 
( )
( )
( )

( )

0 1 2 1 0
0 1 2 1

0 1 2 1 1
0 1 2 1

0 1 2 1 2
0 1 2 1

0 1 2 1 1
0 1 2 1

r
j j j r j i

r
j j j r j i

r
j j j r j i

r r
j j j r j i

u x x x x x

x x x x x

x x x x x

x x x x x

α α α α

β β β β

γ γ γ γ

ω ω ω ω

−
−

−
−

−
−

− −
−

= ⋅ + ⋅ + ⋅ + + ⋅ ⋅ +

⋅ + ⋅ + ⋅ + + ⋅ ⋅ +

⋅ + ⋅ + ⋅ + + ⋅ ⋅ +

⋅ + ⋅ + ⋅ + + ⋅ ⋅

�

�

�

� � �

�
(6) 

Or: 
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( )0 1 2 2

1

0
0 1 2 1

1
0 1 2 1

2
0 1 2 1

1
0 1 2 1 1

r
i i i i r

r j

r j

r j

r
r jr r r

u x x x x

x
x

x

x

α α α α
β β β β
γ γ γ γ

ω ω ω ω

−

×

−

−

−

−
− × ×

=

� �� �
� �� �
� �� �
� �� �× ×
� �� �
� �� �
� �� �

� � � �

�

�

�

�

� � � � � �

�
(7) 

 
Where we label the following matrix, the input 

matrix: 

0 0 0 0

1 1 1 1

2 2 2 2

1 1 1 1

r r

r r r r r r

I

α β γ ω
α β γ ω
α β γ ω

α β γ ω

×

− − − − ×

� �
� �
� �
� �=
� �
� �
� �
� �

�

�

�

� � � � �

�
(8) 

 
And the following vector, the control vector of the 

j-th level: 
 

(9) 
 

 
Additionally we labeled the following matrix the 

control matrix of the  i-th level input: 
 

 
 
 
(10) 
 
 

 
 

Transposing all elements of the matrix and then 

switching the two matrices ( )1 1

T

r r
Ci × ×

 and ( )1 1

T

r r
Cj × ×

 

according to matrix multiplication rules, will result in 
the same “u” as before. The matrix: 

0 1 2 1

0 1 2 1

0 1 2 1

0 1 2 1

r

r

r

r r r

α α α α
β β β β
γ γ γ γ

ω ω ω ω

−

−

−

− ×

� �
� �
� �
� �
� �
� �
� �
� �

�

�

�

� � � � �

�
 

Is the transpose of  matrix r rI ×  or ( )T
r rI × . 

 
Fig. 6: Coupling of two levels of decision diagram. 
 

There are some remarkable points about level 
coupling (level exchange) operation that make it 
important: 

 
1. Exchanging and interchanging of the location of 

input variables (control variables) 
2. The possibility of applying the rule locally and 

only to those special branches of the graph which 
can be simplified 

3. The possibility of simplifying prediction, based on 
the inputs ordering before applying the coupling 
operation.  
 
This property helps us to make more and more 

suitable implementation of the decision diagram. As an 
example the level coupling rule for a binary decision 
diagram can be represented as in equ. 11: 

( ) ( )

( ) ( )

1

1

0 1 0 0 1 1
0 0 1 0 1 1 1 1 0

0 0 1 0 0 1 1 1
0 0 0 1 0 1 1 0 1 1 0

0 1 0 0 1 1
0 0 1 0 1 0 0 1 0 1

BDDu x x x x x x

x x x x x x x x

x x x x x x u

α β α β

α β α β

α α β β

= ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ =

⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ =

⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ =
(11) 

 
The coupling operation can be defined for level L 

(L is indicated in next pseudo codes) according to the 
following codes: 

[ ]
[ ]

[ ] [ ]

_ 0 1,0 1 ;

0 1,0 1 ;

0 1 {
0 1 {

, _ , ;

};
};

_ ;

array branch inputs r r

array temp r r

for col to r
for raw to r

temp raw col branch inputs col raw

branch inputs temp

− −

− −
= −

= −
=

=

� �

� �

 
In [17], it is proven that for achieving the simplest 

graph with minimum size, it is sufficient to consider 
and analyze the specific trees with independent control 
variable locations. 

( )0 1 2 2
1 1

r
r j j j j r

Cj x x x x −
× ×

= �

0

1

2
1

1

1

i

i

i

i

r

r

r

x

x

Ci x

x

×

−

×

� �
� �
� �
� �= � �
� �
� �
� �
� �

�
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0 1 2 1

1 2 3 0

2 3 4 1

1 0 1 2

n

n n n n

x x x x

x x x x

x x x x

x x x x

−

− − ×

� �
� �
� �
� �
� �
� �
� �
� �

�

�

�

� � � � �

�
 

In other words this matrix demonstrates that for 
achieving the minimum size of the decision diagram it 
is sufficient to analyze only n graphs. It means that in 
the above example for a branch of a two level binary 
graph for n= 3, it is sufficient to analyze only 3 graphs. 
Although the proof of it was questioned in 2005 [16], as 
stated in that paper, only in some rare cases this 
procedure cannot achieve the minimum graph size. 
Nevertheless, the proposed rule can be applied in both 
cases. In other words, by using the new coupling rule as 
new optimize tools; any possible graph can be covered. 
Using the following algorithm an ordered DD could 
lead to an ordered or non-ordered (free) DD. In the 
following algorithm, this rule is applied to graphs that 
have already as far as possible been simplified with first 
and second rules. 

As another example, if we analyze all the different 
kind of permutations in a binary graph (BDD) with n= 
3, we will obtain six different graphs (with different 
variable ordering) which represent the same function as 
shown below: 

( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

( )

3 0 1 0 0 1 1 0
0 2 0 2 1 1 2 1 2 1 0

0 1 0 0 1 1 1
0 2 0 2 1 1 2 1 2 1 0

3 0 1 0 0 1 1 0
0 1 1 1 2 0 1 1 1 2 0

0 1 0 0 1 1 1
0 1 1 1 2 0 1 1 1 2 0

3 0 1
0 1 1 1 0

B D D

B D D

B D D

n

n

n

u x x x x x x x

x x x x x x x

u x x x x x x x

x x x x x x x

u x x x

α β α β

γ ω γ ω

α α β β

γ γ ω ω

α α

=

=

=

= ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ +

⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ =

= ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ +

⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ =

= ⋅ + ⋅ ⋅ ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

( ) ( )( )

0 0 1 1 0
0 1 1 1 0 2

0 1 0 0 1 1 1
0 1 1 1 0 0 1 1 1 0 2

3 0 1 0 0 1 1 0
0 0 0 0 1 1 0 1 0 1 2

0 1 0 0 1 1 1
0 0 0 0 1 1 0 1 0 1 2

3 0 1 0 0 1 1 0
0 0 0 0 2 0 0 0 0 2 1

B D D

B D D

n

n

x x x x

x x x x x x x

u x x x x x x x

x x x x x x x

u x x x x x x x

γ γ

β β ω ω

α γ α γ

β ω β ω

α γ β ω

=

=

+ ⋅ + ⋅ ⋅ ⋅ +

⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ =

= ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ +

⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ =

= ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ +

( ) ( )( )

( ) ( )( )
( ) ( )( )

0 1 0 0 1 1 1
1 0 1 0 2 1 0 1 0 2 1

3 0 1 0 0 1 1 0
0 2 0 2 0 0 2 0 2 0 1

0 1 0 0 1 1 1
1 2 1 2 0 1 2 1 2 0 1

B D D

n

x x x x x x x

u x x x x x x x

x x x x x x x

α γ β ω

α β γ ω

α β γ ω

=

⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ =

= ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ +

⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅

 

 
 
Algorithm: As stated in the previous part of this 
section, we present an algorithm which adds many 
different capabilities to the decision diagram design 
tool.  

The algorithm illustrated in Fig. 7 accepts an 
OMDD graph as input. The next step in this approach is 

detecting branches that can be coupled and lead to 
further simplification. 

We begin this operation by making some matrix 
called “coupling matrix”, which must be fabricated for 
every two level branch of the graph. 

[ ]

[ ]

2

0 1,0 1 ;

0 1 {
0 1 {

0 1 {

, ( );

};
};

};

Z

m

col raw
Z j i

array CM r r

for Z to r
for col to r

for raw to r

CM raw col value x x

−

− −

= −
= −

= −
= ⋅

� �

 
This process is done step by step and if we are to 

number graph levels from root to bottom( 0 to m) then 
level m would be the terminal nodes, or a node 
containing ‘0’ or “1” values. We perform the procedure 
of making CM matrices from the (m-2) th level nodes to 
the top and consequently in every step we consider only 
one level. In each step, we consider m-1 and m-2 level 
nodes. 

For the whole graph: 
[ ]

[ ]

2

0 1,0 1 ;

int _ ;
mod 2 0 { _ 0;

_ 1; };
2 _ 2 {

0 1 {
0 1 {

0 1 {

, ( );

};
};

};
/*

L
Z

m

L col raw
Z j i

array CM r r

bound level
if m bound level

else bound level
for L m to bound level step

for Z to r
for col to r

for raw to r

CM raw col value x x

STOP for red

−

− −

= =
=

= − =
= −

= −
= −

= ⋅

� �

* /
};

uction

 
In this step, simplifying must be applied. We must 

notify that every time the term ‘L level coupling” is 
used, it means that the L-1 and L+1 levels are 
considered and manipulated. The overall function of the 
algorithm is as follows: 

 
1. If in L

ZCM  matrices (with constant L, Z) all 
elements of the C-th column are equal, then we can 
eliminate the c-th node from L+1 level. In the case 
where all the elements of L

ZCM  matrixes 

S
C

I-P
U

B
LIC

A
TIO

N
S Author M

anuscript



Am. J. Applied Sci., 5 (2): 158-164, 2008 
 

 
 

163

(considering constant L, Z) are equal, then the Z-th 
branch can be omitted in L and L+1 levels 

2. If in the same L
ZCM  matrixes (considering constant 

L) there are some columns with equal elements 
then we can keep one node and eliminate the others. 
Choosing the node we keep is an important 
consideration 

3. The information about the number of nodes in the 
above two steps will be stored and then we 
transpose the coupling matrix and finally steps 1 
and 2 will be applied to them again. The 
transposition is done from the lowest levels up to 
the root and in this procedure, the upper-level 
matrices are corrected as well. 

 
Transposition of coupling matrices means applying 

the coupling operation on levels m-2, m-4, m-6, and so 
on. If a larger number of simplifications are obtained in 
this level, simplification information is rewritten; 
otherwise, the old information is kept. In both cases, 
matrices are transposed once again after this step and 
all the proceeding steps are repeated. 

 
RESULTS 

 
In [20] a method named 123dd has been presented 

in which the improvement of the number of transistors 
in DCVS tree for: 

F = (1011 0000 1011 0011 1011 1001 1011 0001) 
is more than 15% (from 26tT to 22T). If we implement 
F with the new proposed algorithm we will only need 
16T. The improvement is about 34.5% in comparison to 
the 26T implementation and 27.27% in comparison to 
the 12dd method.  

As an example of MDD, Fig. 1 demonstrates the 
function ( )3 3 3 3101 ,110 ,111 ,112G =�  and as another 

example, we can mention the sample presented in [7]. 
Its implementation with the new proposed method 
illustrates a reduction of 20% in the number of 
transistor used. 

 

The first reduction rule 

The second reduction rule 

Start 

counter=0 
var. count=n 

N 

Y 

First graph 
? 

Store info. 

Complete coupling rule 

Update info. 

Y 

N Reduction 
? 

counter=counter+1 

counter 
= 

n-1 

Final info. 

End 

N 

Y 

 
       Fig. 7: Proposed Algorithm. 
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After applying the primary algorithm to the above 
mentioned graph, the number of nodes will be reduced 
from 13 to 4. Now if we analyze the coupling matrix for 
the resulted graph further simplification using the first 
rule can be obtained by applying the coupling algorithm 
to the root of the D.D. above. So one of the four 
resulting nodes is omitted and the design is completed 
using three nodes achieving, 25% more simplification 
in comparison to the common ROMDD. In other words, 
we have made an enhanced ROMDD that needs the 
least number of nodes to implement a function. This 
simplification will affect size and power dissipation.  
 

CONCLUSION 
In this paper we presented a new algorithm for free 

MDD graph design. By applying the coupling rule, as 
described in the paper, we can obtain better 
simplification in circuit implementation. This new rule 
referred to as the third simplifying rule, changes the 
designer’s perspective leading to better simplification 
using the first and second rules. Simplifying is 
improved by 20% in the three implemented variable 
example function compare to the old algorithm. In 
multiple-value implementation 27% improvement and 
in other comparisons an improvement of more than 
27% was achieved. 
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