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Abstract: A mathematical model to depict Tuberculosis disease population dynamics was presented. 
The model population was compartmentalised as appropriate and the resulting model equations were 
solved numerically while different instances of the disease transmission were simulated. The graphical 
profiles of the various sub-populations with time were presented and discussed based on the results 
from our simulations. Also, the disease-free and endemic equilibrium of the system were established 
and analyzed for stability. 
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INTRODUCTION 
 
 Tuberculosis (TB) is a contagious bacteria disease 
caused by inhaling the tubercle bacillus in the droplet 
nucleus form.  Like the common cold, it spreads through 
the air.  An infected person may have latent TB 
infection or active TB infection. Only actively infected 
people who are sick with TB bacilli in their lungs are 
infectious. When infectious people cough, sneeze, talk 
or spit, they propel TB germs, known as bacilli, into the 
air. A person needs only to inhale a small number of 
these to be infected [5].  A latent TB infected person 
does not show any symptoms of the disease and cannot 
infect others, though may live as long as possible 
without it degenerating into active TB.  

Presently, the only effective vaccine for TB is 
Bacillus Calmette-Guerin (BCG) which is usually given 
to infants . This vaccine has a demonstrated efficacy 
ranging from no protection to 80% protection though a 
meta-analysis estimated that the overall efficacy of 
BCG is 50% [1].  However, due to case reports of 
disseminated BCG infection, where the vaccine is 
contraindicated in immunocompromised persons; safer 
and more efficacious vaccines are clearly needed [1] . 

Christopher Murray [4], Harvard School of Public 
Health, described a mathematical model developed to 
forecast the future impact of improvements in TB 
prevention and control. Specifically, this model 
projected the number of TB cases and deaths averted 
through the year 2050. Different scenarios were 
simulated to project the effect of adding TB vaccines to 

existing interventions. Six specific scenarios assessed 
the effect of vaccines (with efficacy levels of 20%, 
50%, and 80%) to protect from M. tuberculosis 
infection, as well as the effect of vaccines of the same 
levels of efficacy to protect latently infected persons 
from "breakdown" to active TB. Although a TB 
infection vaccine with 20% efficacy would prevent 
more than 30 million TB cases, the best protection is 
obtained from a TB breakdown vaccine with 80% 
efficacy, which would prevent almost 130 million TB 
cases. The breakdown vaccine could be used in the 
large number of persons with latent M. tuberculosis 
infection, now estimated at almost one third of the 
world's population. Such anticipated gains justify the 
effort to develop better TB vaccines.  

In a related  research work by Gammaitoni and 
Nucci [3],  where mathematical model  was used to 
evaluate the efficacy  of TB control measures, it  was 
found that environmental  control cannot eliminate the 
risk of TB transmission  during high-risk procedures; 
respiratory protective devices, and  particularly high-
efficiency particulate air masks may provide nearly 
complete protection if used with air filtration or 
ultraviolent irradiation, although the efficiency of these 
control measures decreases as the infectivity of the 
source case increases; while administrative control 
measures  are the most effective  because they 
substantially reduce the rate of infection . 

In another research work conducted by Dye et al [2], 
they developed a mathematical model that makes use of 
routinely-collected data to calculate the number of 
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deaths directly prevented by TB treatment. The method 
was applied to the world largest TB control programme 
covering over 500 million people in 12 provinces in 
China. Their   results showed that counties  which had 
enrolled in the programme since 1991 were, by 1997, 
preventing at least 46% of the TB death that would 
have otherwise occurred. They concluded that the short-
course chemotherapy has substantially reduced TB 
mortality in half of China. 

According to the work of Castro [1] ,  the effect of 
the HIV epidemic on TB has been major in Africa, 
where HIV seroprevalence among TB cases is 50% to 
70% and TB case notifications have at times tripled. 
However, countries with inadequate TB control are 
particularly exposed to the consequences of both 
epidemics. Moreover, he found out that TB remains an 
important public health problem in many areas of the 
world where direct observation treatment short-course 
(DOTS) has not been implemented because treatment 
outcomes were better in countries where DOTS has 
been used,  though he averred that the strategy needs to 
be expanded rapidly and new tools to facilitate its 
implementation need to be developed.  
 The co-pandemic nature of TB-HIV calls  for more 
quantitative research work on TB particularly because it 
has cure unlike HIV.  It should then be no surprise that 
mathematical models are now been deployed in the 
study of the disease epidemiology and the evaluation of 
some of the world TB control measures and strategy. 
Thus, if we are able to reduce(to barest minimum) the  
spread of TB via all the control measures and strategies, 
we will have succeeded in reducing the alarming TB 
death tools and increase the life expectancy of HIV 
patients by reducing their chances of contacting TB, 
which may lead them to early grave. 
In this paper, we will present a mathematical model for 
the Tuberculosis disease population dynamics using 
Susceptible-Infected-Recovered but Susceptible (SIRS) 
model which is different from the approaches used in 
some the cited paper, though results may be interrelated  
and can help to confirm or refute the earlier findings.  
Moreover, we shall  evolve appropriate system of 
equations and solve the equations numerically. Also, 
we will simulate different instances of the infected sub-
population base on the effect of the different TB control 
measures and strategy. Finally, we shall establish the 
model system equilibriums  and analyse their stability. 
    
Model Formulation: Based on the standard SIRS 
model, the model population was compartmentalised 
into the susceptible (S) and the infected (I) which is 
further broken down into latently infected (IL) and 
actively infected (IA) while the recovered sub-

population is ploughed back into the susceptible group 
due to the possibility of re-infection after successful 
treatment of the earlier infection. The model monitors 
the temporary dynamics in the population of susceptible 
people S(t), TB latently infected people IL(t) and  TB 
actively infected people IA(t) as captured in the  model 
system of  ordinary differential equations that follows:  
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The  model parameters and their respective 

descriptions are given in the table below: 
 
Table 1:  Model parameters and their interpretations 

Parameter Description 
N Total number of new people into the 

location of interest 
S Number of susceptible people in the 

location 
IL Number of TB latently infected people 
IA Number of TB actively infected people 
? Probability that a susceptible person is 

not vaccinated 
f Efficacy rate of  vaccines 
TL Success rate of latent TB therapy 
TA Active TB treatment cure rate 
a TB instantaneous  incidence rate  per 

susceptible 
d Humans natural death rate 
p Proportion of infection instantaneously 

degenerating into active TB 
e TB-induced death rate 
ßA Breakdown rate from latent to active 

TB 
 
As can be observed from (2.1), the susceptible 
population changes due to the coming of  new 
susceptible people into the population  ( fNν ) where  

we assumed that people come into the location of 
interest at a constant rate N and this is  further increased 
by  the people who are cured from active TB and those 
successfully treated for latent TB while the  susceptible 
population diminishes due to natural death  at  d  death 
rate and  infection   with  a incidence rate of infection. 
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The instantaneous incidence rate of infection (a)  per 
susceptible  will depend on  number of respiratory 
contact  with infection per susceptible people  and the 
probability that the contact lead to TB infection 
In same way, the latently infected population  dynamics  
depends on the proportion of the TB infection that 
resulted in latent TB infection ( SIp Aα)1( − )  and this 
is reduced by loss  due to natural death , successful 
treatment of latent TB patients, and   occasional 
breakdown of   latent TB infection into active TB 
infection. 

Finally, the  change in the actively infected TB 
population is   dependent on the proportion of TB 
infection  of the susceptible sub-population  
degenerating instantaneously into active  TB infection  
plus   the number of latently infected people breaking 
down into active TB patients  while this is diminished  
due to  natural death, successful cure of active TB 
patients, and death caused  as result chronic active TB 
infection. 

 It is important to note that in this model, we 
assumed that successfully treated latent TB patients and 
cured active TB patients becomes susceptible 
immediately after their treatments whenever they are 
expose to TB infection again irrespective of their TB 
infection history.  Realistically, this group may 
sometimes enjoy some temporary immunity to TB 
infection and whenever they are re-infected, they may 
require more intensive treatment as a result of some 
multi-drug resistance that must have been built over 
time. 
 
Equilibrium Analysis: Modelling infectious diseases 
demands that we investigate  whether the disease spread 
could attain a pandemic level or it could be  wiped out. 
The equilibrium analysis helps to achieve this.  Thus, 
we shall consider the two equilibriums - the disease-free 
equilibrium and endemic equilibrium. 
At equilibrium, the LHS of the three equations 
constituting the system of equation are zeros, i.e. 

.0,0,0 ===
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dI
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dI
dt
dS AL  

Hence, the system of equation becomes: 
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Obviously, at the disease-free situation 0=LI , and 

0=AI . 

Thus, from equation (3.1) we have  0=− SfN δν . 
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So, the disease-free equilibrium is ( )0,0,0N  However, 
for the endemic equilibrium, we solve equation (3.1) for 
S, LI , and AI  respectively. This gives 
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Thus, we can take our endemic equilibrium as 

( )*** ,, AL IIS . 
To test for the stability of each of the two equilibriums 
where we examine the behaviour of  the  model 
population near the equilibrium solutions (the disease 
free and the endemic ), we  need to linearize  system  of  
equations (2.1) by taking the Jacobian matrix of the 
system .  For our system of equation (2.1), the Jacobian 
matrix is  
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At the disease-free equilibrium ( )0,0,0N , the Jacobian 
matrix becomes: 
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We  shall now obtained the eigenvalues of 0J  as below 
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Hence, the eigenvalues are  

0
321 ),(, NpTT ALA αδελδβλδλ −++=++−=−= . 

Obviously, ,0,0 21 << λλ  but 03 <λ  iff  
0NpTA αδε <++  since all the model parameters 

are positive.  
 The implication of the negativity of all the eigenvalues 
of the system Jacobian is that   disease free equilibrium  

is stable and this so as long as 0NpTA αδε <++  
holds. 

Similarly, for the endemic equilibrium ( )*** ,, AL IIS . 
The associated Jacobian matrix is  
 

















++−

−++−−
−−

=

)(

)1()()1(
**

**

**

*

δεαβα

αδβα
αδα

AAA

LAA

ALA

TSpIp

SpTIp
STTI

J     (3.5) 

 Obtaining the eigenvalues as usual from 

0* =− IJ λ . Results in characteristics polynomial 

of the form 03
1

2
2

1
3 =+++− aaa λλλ  where  

,,, 321 aaa  depend the various combinations of the 

model parameter values. In this case, the three 
eigenvalues could all be negative, positive,  zero, or any 
combinations of the three alternatives. Thus, the 
endemic equilibrium could be stable, unstable, or 
saddle depending on the values of the various  model 
population parameters combined at a given time. 
 

RESULTS AND DISCUSSION 
 
The system of equation (2.1) was solved numerically 
using maple mathematical package. The hypothetical 
value for  each of the model population parameters is  as 
given  in  the table that follows: 
 
Table 2: Hypothetic values of each model parameters 

used for  the numerical solution. 
Parameter Values 

N 100 
? 0.9 
f 0.50 

TL 0.8 
TA 0.74 
a 0.41 
d 1/(365x 70) 
p 0.00196 
e 0.0735 

ßA 0.01 
 The  results from our numerical solutions are  
displayed in the graphs that follow: 

  
Fig.1:S(0)=99,IL(0)=1,IA(0). 
 
 

 
Fig. 2:  S(0)=99, IL(0)=0, IA(0)=1, 

 
 Fig.3: S(0)=96, IL(0)=3, IA(0)=1. 
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In Fig.  1-3 above, we solved  the model equations 
and simulated for diffe rent initial conditions.  The 
trivial case is when the initial condition were zeros for 
the latently  and actively TB  infected population, and 
for this we expect a steady rise in the susceptible with 
occasional drops while the  infected  (both latent and 
active) population remained at zero level . However, we 
did not bother to show the graph of this since it is 
obvious. 

In Fig.  1, the TB spread starts with an latently 
infected patients, it takes sometime before the hitherto 
uninfected people in the environment gets infected, 
while  in Fig.  2 the TB spread starts from an actively 
infected TB patients, the disease spread is very rapid 
leading to more latently infected people and less 
actively infected people. However, in Fig.  3  we 
considered a situation where the spread starts from both 
actively and latently infected TB patients, the results 
here shows no  significant difference to the case  when  
it starts from  an actively infected patient except that the 
disease spread is slower in the latter. 

In addition, we simulate our  model equations  for 
varying TB incidence transmission rates and below are 
the resulting graphs: 

 
Fig. 4:  Graphs of result for a=0.001 

 
Fig. 5:  Graphs of results for  a=0.041 

 
Fig. 6:  Graphs of results for  a=0.1 
 

As can be seen from above graphs in Fig. s 4 to 6, 
the disease spreads more rapidly as the disease 
incidence transmission rate increases. Precisely, when 
the disease incidence transmission rate (a) is  0.001,  
meaning that one in every one thousand people that are 
exposed to the disease gets infected, the population of 
actively and latently  infected  remained close to zero 
all through. Moreover, when the  disease incidence 
transmission rate (a) is  0.041, meaning that  about four 
in every one hundred people that are exposed to the 
disease gets infected, the population of latently and 
actively infected people starts to increase departing 
from zero with the former increasing more rapidly.  
Nevertheless, for a situation with disease incidence 
transmission rate (a) equals 0.1, meaning that  in every  
ten people that are exposed to the disease one gets 
infected, the disease spread more rapidly to the extent 
that within a short time , the number of latently infected 
people out-numbers the susceptible while the number of 
actively infected people approaches half the number of 
the susceptible. The  inference that could be drawn 
from the above is that the spread of the disease can be 
drastically reduced if we can put in place measures and 
controls that will reduce the disease incidence 
transmission rate.  Thus,  any measures that will reduce  
either the respiratory contact with infection per 
susceptible  or the probability that the contact leads to 
infection will help check  the spread of the disease. 
Hence, this also confirms the findings of Gammaitoni 
and Nucci[3] which asserts that administrative control 
measures  are the most effective  since they are capable 
of reducing the disease incidence transmission rate to as 
close as possible to zero. 
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CONCLUSIONS 

 

In this research work, we considered the dynamics 

of the Tuberculosis  disease population  using the SIRS 

model.  The resulting  model equations were solved 

numerically   and  results were presented  graphically 

based on our simulations. Our results show that the 

population dynamics depends more on the number of 

actively infected people  in the population at the initial 

time  and also on the disease incidence transmission 

rate at a given time. Most importantly, we also showed 

that the disease-free equilibrium is stable while  the 

endemic equilibrium may or may not be stable  

depending on the various values of the model 

parameters. 
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