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Abstract: This study deals with cost analysis of a two- unit cold standby redundant system with 
preventive maintenance.The random failure occurs at random times which follow an exponential 
distribution and also the repair time are assumed to be exponentially distributed. Using the 
Kolmogorov’s forward equations method. Several reliability characteristics are obtained. The mean 
time to system failure (MTSF) and the profit function are studied graphically. 
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INTRODUCTION 
 
 Many authors[1,2] have studied the two unit 
redundant systems with two types of repair.[3] have 
studied stochastic analysis of a two - unit parallel 
system with partial and catastrophic failure and 
preventive maintenance. [4,5,6,7] have studied the cost 
analysis of different systems. In[8] by using the 
Kolmogorov’s forward equations method. Evaluate the 
MTSF and availability of two different systems. This 
study devoted deals with cost analysis of a two- unit 
cold standby redundant system with two types of failure 
and preventive maintenance by using the Kolmogorov’s 
forward equations. Initially one unit is operative and the 
other is kept as cold standby, i.e. it does not fail while 
standing by. Each unit works in two different types of 
failures. The both systems fail when both units fail 
totally. The failure and repair times are assumed to have 
exponential distribution. Using the special case study 
the effect of preventive maintenance on the system 
performance is shown by performing comparisons 
theoretically and graphically. 
 
The following notations are adopted for the system: 

1α  constant failure rate of type I.  
2α  constant failure rate of type II. 

1β  constant repair rate of type I. 
2β  constant repair rate of type II. 

)(t
i

P
probability the system at time t, (t 0)≥ at state iS . 

λ  constant rate for taking a unit into preventive 
maintenance. 

δ  constant rate end of preventive maintenance . 
O  the unit is operative. 
S   the unit is standby. 

R1F   the failed unit is under repair of type I. 
R 2F  the failed unit is under repair of type II. 
W1F  the failed unit is waited for repair of type I. 
W 2F the failed unit is waited for repair of type II. 
PO  the operative unit is under preventive maintenance. 

PS   the standby unit is under preventive maintenance.  
 
The following system characteristics are studied: 
i. Mean time to system failure. 
ii. Steady state availability. 
iii. Steady state busy period. 
iv. Steady state, the expected frequency of preventive 

maintenance per unit time. 
v. Cost analysis.  
 
The following assumptions are adopted for the 
system: 
 
1. The system consists of two similar units. Initially 

one unit is operative and the other unit is kept as 
cold standby. 

2. Standby is switched to operative state in negligible 
time. 
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3. A repaired unit works as a good as new. 
4. The system is down when both units are non-

operative. 
5. Each unit has two types of failure. 
 
 Stochastic behavior of the system 
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Fig. 1: Shows the states of the system 
 
The system can take one of the following states: 

0S (O,S) , 1 R1S (F ,O) , 2 R 2S (F ,O) , 3 R1 W 2S (F , F ) ,
4 R 2 W1S (F ,F ) , 5 R1 W1S (F ,F ) , 6 R 2 W 2S (F ,F ) , 7 P PS (O ,S ) . 

3. Mean time to system failure: For Fig. 1 let )(t
i

P  

probability the system at time t, ( )t 0≥  at state iS  let 
P(t)  denote the probability row vector at time t, then 
the initial conditions for this problem are 
P(0)

0 1 2 3 4 5 6 7[P (0), P (0), P (0), P (0), P (0), P (0), P (0), P (0)]=

[ ]1, 0, 0, 0, 0, 0, 0, 0= ,  
we obtain the following differential equation: 

0
1 2 0 1 1 2 2 7

dP (t)
( )P (t) P (t) P (t) P (t)

dt
= − α + α + λ + β + β + δ

, 
1

1 2 1 1 1 5 1 0 1 4

dP (t)
( )P (t) P (t) P (t) P (t)

dt
= − α + α + β + β + α + β

,
2

1 2 2 2 2 6 2 0 2 3

dP (t)
( )P (t) P (t) P (t) P (t)

dt
= − α + α + β + β + α + β

, 

3
2 3 2 1

dP (t)
P (t) P (t)

dt
= −β + α

, 

4
1 4 1 2

dP (t)
P (t) P (t)

dt
= −β + α

, 

5
1 5 1 1

dP (t)
P (t) P (t)

dt
= −β + α

, 

6
2 6 2 2

dP (t)
P (t) P (t)

dt
= −β + α

, 

7
7 0

dP (t)
P (t) P (t)

dt
= −δ + λ

. (3.1) 
This can be written in the matrix form as 

P QP
•

=   
where, 

1 2 1 2

1 1 2 1 1 1

2 1 2 2 2 2

2 2

1 1

1 1

2 2

( ) 0 0 0 0
( ) 0 0 0 0

0 ( ) 0 0 0
0 0 0 0 0 0

Q
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

− α + α + λ β β δ� �
� �α − α + α + β β β� �
� �α − α + α + β β β
� �

α −β� �= � �α −β
� �

α −β� �
� �α −β� �
� �λ −δ� �   

to evaluate the transient solution is too complex 
therefore we will restrict ourselves in calculating the 
MTSF. To calculate the MTSF we take the transpose 
matrix of Q and delete the rows and columns for the 
absorbing state the new matrix is called A. the expected 
time to reach an absorbing state is calculated from  

MTSF = 

( ) ( ) ( ) ( )1
P 0 P absobing

1
1

E T P 0 A
1
1

−
→

� �
	 

	 
� � = −� � 	 

	 
	 

� � (3.2) 

where, 
1 2 1 2

1 1 2 1

2 1 2 2

( )
( ) 0 0

A
0 ( ) 0
0 0

− α + α + λ α α λ� �
� �β − α + α + β� �=
� �β − α + α + β
� �

δ −δ� �  
MTSF = 

)])(()[(

)]()[())(2(

122121
3

21

2212121221121

βα+βαα+α+α+αδ
β+α+αλ+δαβ+α+α+β+α+αβ+α+αδ

 
   (3.3) 
4. Availability analysis: The initial conditions for this 
problem are the same as for the reliability case: 
P(0) [ ]1, 0, 0, 0, 0, 0, 0, 0= , 
the differential equations form can be expressed as: 

0

1 2 1 21

1 1 2 1 1 1
2

2 1 2 2 2 2

3 2 2

1 1
4

1 1

5
2 2

6

7

P

( ) 0 0 0 0P
( ) 0 0 0 0

P 0 ( ) 0 0 0
P 0 0 0 0 0 0

0 0 0 0 0 0P
0 0 0 0 0 0

P 0 0 0 0 0 0

0 0 0 0 0 0P

P

•

•

•

•

•

•

•

•

� �
� �
� � − α + α + λ β β δ� �� � � �� � α − α + α + β β β� �� � � �α − α + α + β β β� � � �� � α −β� �� � = � �α −β� � � �� � α −β� �� � � �� � α −β� �� � � λ −δ� �� �
� �
� �� �

0

1

2

3

4

5

6

7

P
P
P
P
P

P
P
P

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� � �
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 The steady state availability can be obtained using 
the following procedure. In the steady state, the 
derivatives of the state probabilities become zero. That 
allows us to calculate the steady state probabilities with. 

( ) ( ) ( ) ( ) )(PPPPA 7210 ∞+∞+∞+∞=∞ , (4.1) 
( )QP 0∞ = , (4.2) 

or, in the matrix form 
01 2 1 2

11 1 2 1 1 1

22 1 2 2 2 2

32 2

41 1

51 1

62 2

7

P( ) 0 0 0 0 0
P( ) 0 0 0 0 0
P0 ( ) 0 0 0 0
P0 0 0 0 0 0 0
P0 0 0 0 0 0 0
P0 0 0 0 0 0 0
P0 0 0 0 0 0 0
P0 0 0 0 0 0 0

− α + α + λ β β δ � �� � �
� �� � �α − α + α + β β β � �� � �
� �� � �α − α + α + β β β
� �� � �

α −β � �� � �=� �� � �α −β
� �� � �

α −β � �� �
� �� �α −β � �� �
� �� �λ −δ� � �� �

�
�
�
�
�
�
�
�

� �
� �
� �
� ��  

to obtain ( )0P ∞ , ( )1P ∞ , ( )2P ∞ , ( )∞7P  we solve the 
equation (4.2) and the following normalizing condition: 
 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 2 3 4 5 6P P P P P P P∞ + ∞ + ∞ + ∞ + ∞ + ∞ + ∞
 

( )7P+ ∞ =1, (4.3)  
 We substitute the equation (4.3) in any one of the 
redundant rows in equation to (4.2) yield  

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

=

β−α
β−α

β−α
β−α

βββ+α+α−α
βββ+α+α−α

δββλ+α+α−

1
0
0
0
0
0
0
0

7P
6P
5P
4P
3P
2P
1P
0P

11111111
02000200
00100010
00010100
00002020
02002)221(02

001100)121(1

000021)21(

 
 

 The steady state availability ( )A ∞ is given by: 

( )A ∞
1

1

N
D

=
 (4.4)  

where, 

)}]()({

))([(N

12122211

221121211

β+α+αα+β+α+ααδ+
βα+βα+ββδ+λββ=

, 

]4[

]2[

)]2()([

))((D

21211221

21222112
2
1

2
1

1121112
2
2

221121211

αα+βα+βαβδβ+
ββ+βα+βα+βα+βδα+

β+α+αβ+β+αβδα+

βα+βα+ββδ+λββ=

 
 
Busy period analysis: The initial conditions for this 
problem are the same as for the reliability case: 

P(0)

0 1 2 3 4 5 6 7[P (0), P (0), P (0), P (0), P (0), P (0), P (0), P (0)]=

[ ]1, 0, 0, 0, 0, 0, 0, 0= , 
the differential equations form can be expressed as: 

0

1 2 1 21

1 1 2 1 1 1
2

2 1 2 2 2 2

3 2 2

1 1
4

1 1

5
2 2

6

7

P

( ) 0 0 0 0P
( ) 0 0 0 0

P 0 ( ) 0 0 0
P 0 0 0 0 0 0

0 0 0 0 0 0P
0 0 0 0 0 0

P 0 0 0 0 0 0

0 0 0 0 0 0P

P

•

•

•

•

•

•

•

•

� �
� �
� � − α + α + λ β β δ� �� � � �� � α − α + α + β β β� �� � � �α − α + α + β β β� � � �� � α −β� �� � = � �α −β� � � �� � α −β� �� � � �� � α −β� �� � � λ −δ� �� �
� �
� �� �

0

1

2

3

4

5

6

7

P
P
P
P
P

P
P
P

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� � �

 
 The steady state busy period can be obtained using 
the following procedure. In the steady state, the 
derivatives of the state probabilities become zero. That 
allows us to calculate the steady state probabilities with. 

( ) ( ) )](PP[1B 70 ∞+∞−=∞          (5.1)                                                   
( )QP 0∞ = , (5.2) 

or, in the matrix form 
01 2 1 2

11 1 2 1 1 1

22 1 2 2 2 2

32 2

41 1

51 1

62 2

7

P( ) 0 0 0 0 0
P( ) 0 0 0 0 0
P0 ( ) 0 0 0 0
P0 0 0 0 0 0 0
P0 0 0 0 0 0 0
P0 0 0 0 0 0 0
P0 0 0 0 0 0 0

P0 0 0 0 0 0 0

− α + α + λ β β δ � �� � �
� �� � �α − α + α + β β β � �� � �
� �� � �α − α + α + β β β
� �� � �

α −β � �� � �=� �� � �α −β
� �� � �

α −β � �� �
� �� �α −β � �� �
� �� �λ −δ� � �� �

�
�
�
�
�
�
�
�

� �
� �
� �
� ��  

to obtain ( )0P ∞ , ( )7P ∞ ,we solve the equation (5.2) 
and the following normalizing condition: 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 2 3 4 5 6P P P P P P P∞ + ∞ + ∞ + ∞ + ∞ + ∞ + ∞

( )7P+ ∞ =1, (5.3)  
we substitute the equation (5.3) in any one of the 
redundant rows in equation (5.2) to yield  

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

=

β−α
β−α

β−α
β−α

βββ+α+α−α
βββ+α+α−α

δββλ+α+α−

1
0

0
0

0
0

0
0

7P
6P
5P
4P
3P
2P
1P
0P

11111111
02000200

00100010
00010100

00002020
02002)221(02

001100)121(1

000021)21(

 

  The steady state busy period ( )B ∞ is given by 

2

1

N
B( ) 1

D
∞ = −

                     (5.4) 
Where, 

2 1 2 1 2 1 1 2 2N ( s)( )= β β λ + β β + α β + α β  
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The expected frequency of preventive maintenance: 
The initial conditions for this problem are the same as 
for the reliability case: 
P(0) [ ]1, 0, 0, 0, 0, 0, 0, 0= , 
the differential equations form can be expressed as: 

0

1 2 1 21

1 1 2 1 1 1
2

2 1 2 2 2 2

3 2 2

1 1
4

1 1

5
2 2

6

7

P

( ) 0 0 0 0P
( ) 0 0 0 0

P 0 ( ) 0 0 0
P 0 0 0 0 0 0

0 0 0 0 0 0P
0 0 0 0 0 0

P 0 0 0 0 0 0
0 0 0 0 0 0P

P

•

•

•

•

•

•

•

•

� �
� �
� � − α + α + λ β β δ� �� � � �� � α − α + α + β β β� �� � � �α − α + α + β β β� � � �� � α −β� �� � = � �α −β� � � �� � α −β� �� � � �� � α −β� �� � � λ −δ� �� �
� �
� �� �

0

1

2

3

4

5

6

7

P
P
P

P
P
P
P
P

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� � �

 
 The steady state, the expected frequency of 
preventive maintenance per unit time can be obtained 
using the following procedure. In the steady state, the 
derivatives of the state probabilities become zero. That 
allows us to calculate the steady state probabilities with. 

( ) ( )7K P∞ = ∞ , (6.1) 
( )QP 0∞ = , (6.2) 

or, in the matrix form 
01 2 1 2

11 1 2 1 1 1

22 1 2 2 2 2

32 2

41 1

51 1

62 2

7

P( ) 0 0 0 0 0
P( ) 0 0 0 0 0
P0 ( ) 0 0 0 0
P0 0 0 0 0 0 0
P0 0 0 0 0 0 0
P0 0 0 0 0 0 0
P0 0 0 0 0 0 0
P0 0 0 0 0 0 0

− α +α +λ β β δ � �� � �
� �� � �α − α +α +β β β � �� � �
� �� � �α − α +α +β β β
� �� � �

α −β � �� � �=� �� � �α −β
� �� � �

α −β � �� �
� �� �α −β � �� �
� �� �λ −δ� � �� �

�
�
�
�
�
�
�
�

� �
� �
� �
� ��  

to obtain ( )7P ∞ we solve the equation (6.2) and the 
following normalizing condition: 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 2 3 4 5 6P P P P P P P∞ + ∞ + ∞ + ∞ + ∞ + ∞ + ∞  
( )7P+ ∞ =1 (6.3)  

We substitute the equation (6.3) in any one of the 
redundant rows in equation (6.2)to yield 
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=
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β−α
β−α
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1
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02000200
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00010100
00002020
02002)221(02

001100)121(1

000021)21(

 
 
   The steady state, the expected frequency of 

preventive maintenance per unit time ( )K ∞ is given by 
 
 

1 2 1 2 1 1 2 2

1

( )
K( )

D
λβ β β β + α β + α β

∞ =
           (6.4) 

 
 Cost analysis: The expected total profit per unit time 
incurred to the system in the steady-state is given by: 
Profit = total revenue - total cost 
 

0 1 2PF( ) C A( ) C B( ) C K( )∞ = ∞ − ∞ − ∞          (7.1) 
Where, 
PF: is the profit incurred to the system, 
C0: is the revenue per unit up-time of the system, 
C1 : is the cost per unit time which the system is under 
repair 
C2: is the cost per preventive maintenance. 
 
Special case: After study the system when the  
preventive maintenance is not allowed, we get 
    The Mean Time to System Failure is given by 
 

MTSF =
1 2 2 1 2 1 2 1 2 1

3
1 2 1 2 1 2 2 1

( )(2 ) ( )
( ) ( )( )

α + α + β α + α + β + α α + α + β
α + α + α + α α β + α β  (8.1)  

    The steady state availability is given by 

( )Â ∞
1

1

N̂

D̂
=

 (8.2)  
where, 

)](

)()[(N̂

1212

2211221121211

β+α+αα+
β+α+αα+βα+βα+ββββ=

 

]4[

]2[

)]2()([

)(D̂

21211221

21222112
2
1

2
1

1121112
2
2

221121211

αα+βα+βαββ+
ββ+βα+βα+βα+βα+

β+α+αβ+β+αβα+

βα+βα+ββββ=

 
 
The steady state busy period is given by 

2

1

N̂
B̂( ) 1

D̂
∞ = −

 (8.3) 
Where, 
 

2 1 2 1 2 1 1 2 2N̂ ( )= β β β β + α β + α β  
 
 The steady state, the expected frequency of preventive 
maintenance per unit time is given by 
 

1

22112121

D̂

)(
)(K̂

βα+βα+ββββ
=∞

           (8.4) 
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Table 1:Relation between failure rate of type I and both the MTSF and the profit of the system (with and without PM) 
�1 MTSF of the system with 

PM 
MTSF of the system 
without PM 

The profit of the system 
with PM 

The profit of the system 
without PM 

0.02 81.37255 49.01961 650.7418 573.1518 
0.03 65.51724 39.90148 588.5392 508.2898 
0.04 54.62963 33.56481 532.3624 452.9389 
0.05 46.73452 28.92282 482.1569 405.5684 
0.06 40.76923 25.38462 437.5162 364.8204 
0.07 36.11525 22.60308 397.8912 329.5545 
0.08 32.38994 20.36164 362.7034 298.8366 
0.09 29.34473 18.51852 331.4007 271.9087 
0.1 26.81159 16.97723 303.482 248.157 
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  Fig. 2: Relation between the failure rate of type I and 

the MTSF 
 

0

100

200

300

400

500

600

700

0 0.05 0.1 0.15

The f ailure rate of  ty pe I 

Th
e 

P
ro

fit

 
  Fig. 3: Relation between the failure rate of type I and 

the Profit 
 
The expected total profit per unit time incurred to the 
system in the steady-state is given by 

)(K̂C)(B̂C)(ÂC)(F̂P 210 ∞−∞−∞=∞        (8.5) 
 

CONCLUSION 
 
 By comparing the characteristic, MTSF and the 

profit function with respect to 1α  for both systems with 
and without preventive maintenance graphically, it was 
observing that: - 

 The increase of failure rate 1α  at constant 
2 0.04,α = 1 0.05,β = 2 0.06,β =  0.02,λ = 0.02δ = , 

C0 =1000, C1= 100, C2 = 100. The MTSF and the profit 
function of the system decrease for both systems with 
and without preventive maintenance. We conclude that 
the system with preventive maintenance is more grater 
than the system without preventive maintenance with 
respect to the MTSF and the the profit function incurred 
to the model.  
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