
American Journal of Applied Sciences 5 (2): 77-82, 2008
ISSN 1546-9239
© 2008 Science Publications

Corresponding Author: Kamal Zuhairi Zamli, School of Electrical and Electronic Engineering, Universiti Sains
Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia, Tel: +604-5996003,
Fax: +604-5941023

77

JTst – An Automated Unit Testing Tool for Java Program

Kamal Zuhairi Zamli and Nor Ashidi Mat Isa

School of Electrical and Electronic Engineering,
Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia

Abstract: Software testing is an integral part of software development lifecycle. Lack of testing can
often lead to disastrous consequences including lost of data, fortunes, and even lives. Despite its
importance, current software testing practice lacks automation, and is still primarily based on highly
manual processes from the generation of test cases up to the actual execution of the test. Although the
emergence of helpful automated testing tools in the market is blooming, their adoptions are lacking as
they do not adequately provide the right level abstraction and automation required by test engineers.
JTst is a Java based automated unit testing tool that addresses some of the aforementioned issues. The
main novel features are the fact that JTst automates the test preparation activities, facilitates the test
data generation through recombination, and allows concurrent execution of test data, in order to
encourage higher product quality at lower testing costs.

Keywords: Automated Software Testing, Software Engineering

INTRODUCTION

 In line with market demands and the need for
technological innovations, designing and implementing
a useful engineering product is ever growing in
complexity. In order to alleviate such complexity, many
chores that were once manual have been taken over by
computers. Factories use computers to control
manufacturing equipments. Electronics manufacturing
use computers to test everything from microelectronics
to circuit card assemblies. Often, the automation
provided by computers avoids the errors that humans
make when they get tired after multiple repetitions.
 The need for automation (i.e. programmatic
generation and execution of software test data) is no
exception in order to engineer a useful software
engineering product, particularly to support software
testing activities. Covering as much as 40 to 50 percent
of the development costs and resources[1], current
software testing practice is still primarily based on
highly manual processes from the generation of test
cases up to the actual execution of the test. These
manually generated tests are sometimes executed using
ad hoc approach, typically requiring the construction of
a test driver for the particular application under test.
The construction of a test driver is tedious, error prone,
and cumbersome process, as it puts extra burden to test
engineers especially if the test cases are significantly
large.

 Test engineers are also under pressure to test
increasing lines of code in order to meet market
demands and deadlines for more software
functionalities. To attain the required level of quality,
test engineers need to maintain high test coverage,
typically requiring large number of test cases per
module[1]. While there are significant proliferations of
helpful testing tool support in the market, much of
which runs sequentially and does not adequately
provides the right level of abstraction and automation
required by test engineers.
 In order to address some of the aforementioned
issues, this paper describes an automated software
testing tool, called JTst, based on the use of Java
technology. The main aim of JTst is to automate test
preparation activities, facilitate the test data generation
through recombination, and allow concurrent execution
of test data, in order to encourage higher product
quality at lower testing costs.
 The gradual shift toward software testing
automation is not new. A number of tools do exist
either commercially or as research prototypes. As far as
Java is concerned, some of these tools are summarized
below:
• Jaca[2] is a useful testing tool that permits testing of

Java classes by corrupting the method interfaces and
attributes. Jaca does not require the application’s
source code, but it needs the some information about
the application such as class name and method
interfaces.

Open Access
Author Manuscript

S
C

I-P
U

B
LIC

A
TIO

N
S Author M

anuscript

Am. J. Applied Sci., 5 (2): 77-82, 2008

 78

• JUnit[3, 4] is a testing tool used to write and run
automated and repeatable tests. In JUnit, test
engineer need to write a Java unit test case,
essentially a collection of tests designed to verify the
behavior of a single unit within a user program. The
Java unit test case can then be automatically executed
by the JUnit environment.

• FIONA[5] is a Java software testing tool for
distributed applications. FIONA provides a Java
Virtual Machine Tool Interface that enables the
inspection and execution of faults of distributed
application running in the Java Virtual Machine.

• Simple[6] is a functional testing tool that can be used
to assess reliability, robustness and performance of a
system as a whole. The aim of simple is to facilitate
testing of Java classes used in safety critical
applications.

• SoftTest[7] is a testing tool that is based on a
predefined test plan. Based on test plan, SoftTest
automatically insert and remove in executing code to
carry out testing strategies.

 Although useful, much of the aforementioned tools
do not adequately give the right level of abstraction and
automation as required by test engineers. A testing tool
must not assume that the user has significant knowledge
of Java in order to be able to use the tool (as required
Jaca and JUnit). In fact, a helpful tool should be
sufficiently high level to facilitate the testing process in
the sense that test engineers need not need to do any
coding whatsoever in order to perform the actual
testing.
 Additionally, test automation provided by the tools
must be sufficiently intuitive for the test engineers to
master. Providing some level of intuition is important to
help junior engineers to grasp the testing work context
particularly in terms of how each testing activity fits
together in the whole picture.
 In general, test automation can come in a number
of forms. In a nut shell, the test automation should
relieve the test engineer from the routine tasks of
creating Java test drivers for execution. In addition, test
automation should also facilitate the generation and
execution of the actual test cases. Here, parallel
execution of test cases can help to speed up the testing
process. In this manner, test engineers can put
significant focus on the job at hand (i.e. coming up with
good test cases) and be released from manually writing
test drivers.
 Apart from the above requirements, test engineers
are also burden with generating large data sets for
testing purposes. Permitting recombination of test data
from the existing data can also be useful to improve test
coverage. Based on the aforementioned constraints and
requirements as well as building and complementing
from earlier work, it is the development of JTst, is the
main focus of this paper.

INTRODUCING JTst
 JTst consists of a number of related components
consisting of the Class Inspector; the Test Editor; the

Test Combinator; the Automated Loader; and the Data
Logger/Log (see Fig. 2). The process flow for these
components is captured as the user’s work context
within the JTst user interface. The functionalities for
each of these components will be discussed next.

Fig. 1: JTst Workcontext

• Class Inspector – One useful feature of JTst is to

allow unit testing in the absence of source codes. In
this case, the class inspector can optionally be used to
obtain details information of the Java class interface.
To do so, the class inspector exploits Java Reflection
API in order interrogate Java classes for method
interfaces including public, private, and protected
ones (see Fig. 2). This information can be used to set
up the test cases in the fault file (discussed next).

Fig. 2: Interrogating Java Classes in JTst

• Test Editor – Test editor allows the user to edit and

setup the test cases (i.e. including the base test cases)
in a JTst fault file. Here, the test case definition
follows certain predefined formatting rules (shown in
bold) in order to facilitate the parsing of data for

S
C

I-P
U

B
LIC

A
TIO

N
S Author M

anuscript

Am. J. Applied Sci., 5 (2): 77-82, 2008

 79

automatic execution and recombination (see Fig. 3).

@FaultFile
///
 Common Header Definition
///
classname : adder
methodname : add_basictypes_integer
specifier: private
paramtypes : 2
returntype: int
parameter : partypes[0]=Integer.TYPE
parameter : partypes[1]=Integer.TYPE

///
 Body - Test case 0
///
arglist:arglist[0]=new Integer(Integer.MAX_VALUE)
arglist : arglist[1]=new Integer(Integer.MAX_VALUE)

///
 Body - Test case 1
///
arglist:arglist[0]=new Integer(Integer.MIN_VALUE)
arglist : arglist[1]=new Integer(Integer.MIN_VALUE)

……………

Fig 3: Sample Fault File

• Test Combinator – Test combinator manipulates the

user specified test cases as the base test cases in
order to generate test data through recombination
(see Fig. 4).

Fig. 4 : JTst Test Combinator

 As a unique feature of JTst, this issue warrants
further discussion here. The test cases data can be
viewed as a matrix with specified columns and rows.
Here, one can traverse one column at a time (called
sensitivity variable in JTst implementation), whilst

keeping other column fixed to recombine and generate
new test cases from existing ones.
 The current JTst implementation provides two
algorithms for recombination of test data. The first
algorithm considers one parameter to be the sensitivity
variable to be varied whilst the second algorithm
considers all parameter to the sensitivity variable to be
varied. To illustrate this, two examples will be shown
here.
 In each example, the following input data will be
used (see Table 1). The rationale for using these data
inputs stemmed from the fact that historically the same
data inputs have been used by other researchers in the
area. By adopting the same data inputs, objective
comparison may be made amongst different algorithm
implementations.

Table 1: Data Input

Applying the first algorithm with parameter 2 as the
sensitive variable to be varied yields the following
results.

Table 2: Output with Parameter 2 as sensitive variable

Applying the second algorithm with all parameter as
sensitive variables yields the following results.

S
C

I-P
U

B
LIC

A
TIO

N
S Author M

anuscript

Am. J. Applied Sci., 5 (2): 77-82, 2008

 80

Table 3: Output with All Parameters as sensitive
variable

 As far as predicting the number of generated
combinatorial values is concerned, one can use the
following expression. In the case of one parameter as
sensitivity variable, provided that all the base data
values are unique, recombination can regenerate new
test cases based on:
The number of generated test cases = n2
 where n = number of defined test cases

Referring to Table 2, the number of generated test cases
are = n2=32 = 9 test cases.

In the case of all parameters as sensitivity variable,
provided that all base data values are unique,
recombination can regenerate new test cases based on:

 The number of generated test cases = (p*n2) – �
 where n = number of defined test cases
 p = number of input parameters
 � = the number of repetitive values
 = n*(p-1)

Referring to Table 3, the number of generated test cases
are = (p * n 2) – n* (p-1) or (4*3 2) – 3(4-1) = 27 test
cases.

• Automated Loader – JTst automated loader have two

main responsibilities. The first responsibility is to
iteratively parse the test cases (defined in JTst fault
files), and automatically generates and executes the
appropriate Java code driver. The second
responsibility is to manage concurrent execution of
test cases. Here, the JTst automated loader is
actually consists of two sub-components: Loader and
Concurrent Manager (see Fig. 5).

Fig. 5: JTst Automated Loader & Token Passing

Mechanism
 Concurrent execution is achieved in JTst through a
well-known token passing algorithm. Sample
concurrent execution of test cases is shown in Fig. 6. In
the current version, JTst has been tested to concurrently
execute up to 15,000 test cases per execution.

Fig. 6: Concurrent Execution of Test Data

 Here, a token is always associated for each
concurrent execution. Once all the tokens have been
used up, no further concurrent execution is allowed

S
C

I-P
U

B
LIC

A
TIO

N
S Author M

anuscript

Am. J. Applied Sci., 5 (2): 77-82, 2008

 81

until one or more concurrent executions have
terminated (i.e. release its token). Here, the number of
defined tokens in the pool of tokens can be dynamically
configured through the user interface provided should
the need arise. Obviously, the more tokens are allowed,
the slower the test case executions will be. This token
setting can be illustrated in Fig. 7.

Fig. 7:`Token Generation for Concurrent Execution

• Data Logger –The Data logger is a text browser

utility with customized search capability to perform
offline analysis of the output captured by the
automated loader in the form of logs. Here, logs are
special database storing the input output behavior of
the Java module under test (MUT). If the
specification of the MUT method exists,
conformance analysis can be made using this
database. In the absence of source codes and formal
specification, the trivial outcome of “doesn’t hang
and doesn’t crash” suffices to determine whether
MUT passes the minimum testing requirement. In
this case, the operating system can be queried if the
test program terminates abnormally and a process
monitor can be employed to detect hangs. A key
issue here is the fact that the faults can always be
reproducible with the same sets of inputs.

DISCUSSION

 Over the past two years, JTst has been extensively
used as a tool to test Java program. In fact, JTst has
been used to evaluate a Linda based distributed shared
memory implementation[8] as well as the prototype
runtime environment for a visual language[9]. Interested
readers are referred to our earlier work [9,10].
 In order to discuss the usefulness of JTst, it is
necessary to revisit the aim of implementing JTst. As
discussed earlier, the main aim of JTst is to automate
test preparation activities, facilitate the test data
generation through recombination, and allow
concurrent execution of test data.

 Indeed, JTst has successfully achieved the first aim
to automate the test preparation activities. As discussed
earlier, the test engineers merely need to concentrate on
getting the good the test data. Unlike JUnit [6] where
test engineers need to manually specify test drivers and
execute them for testing, the process of generating test
drivers as well as executing the test data is done
automatically by JTst.
 JTst approach is similar to JACA in the sense that
JACA also uses computational reflection in order to
execute faults in a Java program. At a glance, JACA
appears to have all the features of JTst. Nevertheless, a
closer look reveals that, unlike JTst, JACA requires that
the test engineer who performs the testing have
substantial knowledge of Java in order to undertake the
testing process, that is, in order to manually write the
test driver program. In JTst, the driver code are
automatically generated and executed in a single-click
of a button. Furthermore, the testing process in JTst is
highly automated allowing 15,000 concurrent test cases
to be executed at a particular instant. As such, JTst can
be seen as offering a high level of abstraction for
testing. In fact, with concurrent execution, test
engineers can do multi-tasking activities without having
to wait for a particular test execution to finish before
moving on to the next testing assignments.
 Finally, JTst also permits recombination of test
data. Apart from enhancing test coverage, some earlier
work in the literature suggests that, in some software
implementation, the execution of combinatorial test
data based on interaction of two or more variables can
typically uncover 50% to 75% of faults in a program[11].

CONCLUSION

Summing up, development of an automated testing tool
like JTst is crucial in order to assist test engineers at
work. Although useful as an automated testing tool,
much work needs to be done before JTst can truly be a
practicable tool for testing Java program. In line with
such a vision, we are currently implementing a parallel
version of JTst to support test data execution over
heterogeneous distributed environment such as the
GRID.

ACKNOWLEDGEMENTS

 This research is partially funded by the eScience
Fund – “Development of a Software Fault Injection
Tool to Ensure Dependability of Commercial-off-the-
Shelf Components (COTs) for Embedded System
Applications” and the USM Short Term Grants –
“Development of An Automated Unit Testing Tool for
Java Program”.

S
C

I-P
U

B
LIC

A
TIO

N
S Author M

anuscript

Am. J. Applied Sci., 5 (2): 77-82, 2008

 82

REFERENCES

1. Beizer, B., 1990. Software Testing Technique.

Thomson Computer Press.
2. Moraes, R.L.O. and Martins, E., 2003. Jaca – A

Software Fault Injection Tool”. Proceedings of the
2003 Intl. IEEE Conf. on Dependable Systems and
Networks, IEEE CS Press, p.667.

3. JUnit Website - URL http://www.junit.org
4. Matt, A. 2003. Testing Java Interface with JUnit.

Dr Dobb’s Journal, 28(2): 24:28.
5. Silva, G.J., R.J. Drebes, J. Gerchman, and T.S.

Weber, 2004. FIONA: A Fault Injector for
Dependability Evaluation of Java-based Network
Applications”. Proceedings of the 3rd Intl.
Symposium on Network Computing and
Applications (NC’04).

6. Acantilado, N.J.P. and C.P. Acantilado, 2002.
Simple: A Prototype Software Fault Injection Tool,
Unpublished MSc Thesis, Naval Postgraduate
School, Monterey, California, December 2002.

7. Childers, B., M.L. Soffa, J. Beaver, L. Ber, K.
Camarata, T. Kane, J. Litman, J., and J. Misurda,
2003. SoftTest: A Framework for Software Testing
of Java Programs. Eclipse Technology Workshop,
Anaheim, CA, 2003.

8. Ciancarini, P., and D. Rossi, 1997. Jada: A
Coordination Toolkit for Java, Unpublished
Technical Report UBLCS-96-15, Department of
Computer Science, University of Bologna, Italy,
1997.

9. Zamli, K.Z., N.A. Mat Isa, and N. Khamis, 2005.
The Design and Implementation of the VRPML
Support Environment. Malaysia Journal of
Computer Science 18(1):57-69.

10. Alang Hassan, M.D., 2005. Enhancing and
Evaluating A Software Fault Injection Tool,
Unpublished MSc ESDE Dissertation, School of
Electrical and Electronics, University Science
Malaysia, 2005.

11. Kuhn, D.R. and D.R. Wallace, 2004. Software
Fault Interactions and Implications for Software
Testing. IEEE Transactions on Software
Engineering 30(6): 418-421.

S
C

I-P
U

B
LIC

A
TIO

N
S Author M

anuscript

