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Abstract: We presented an aggregation approach for group multicriteria assignment decisions, where 
group members express their preferences on problem parameters in numeric format. Individual 
preferences are aggregated by WOWA operator following the majority concept and a group parameter 
set is derived that is used as input for the classification algorithm. In addition, we present a numeric 
example of the approach, demonstrating its applicability. The methodology has been applied to 
classification problems in business environment, with sufficient results depicting its validity for such 
problems.  
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INTRODUCTION 

 
 Multicriteria analysis has been utilized to assist 
group decision making in a variety of problems, 
resulting in numerous methodologies and group 
decision support systems [1, 3, 4, 5, 8, 12, 14, 16, 17, 18, 21, 22, 23, 24, 

25, 28]. Matsatsinis and Samaras [20] present an extensive 
review of such approaches, which clearly indicates that 
multicriteria analysis is a valid way to handle the 
inherent complexity of group decisions and structure 
such problems. It provides a structured way for problem 
formulation and guides members to understand 
requirements effectively and express their preferences 
reflecting their individual decision model.  
 Modelling a group decision problem in 
multicriteria setting can be formulated under two major 
approaches:  
 
• In the first approach, individual multicriteria 

models are developed, which capture individuals’ 
preferences. Each group member formulates a 
multicriteria problem defining the parameters 
according to his preferences and solves the 
problem getting an individual solution set. Next, 
the separate solutions are aggregated by 
aggregation operators providing thus the group 
solution.  

• In the second approach, a multicriteria model is 
developed for the entire team. Each group member 
provides a set of parameters that are aggregated by 
appropriate operators, providing finally a group 
parameter set. Upon this set the muticriteria 

method is applied and the solution expresses group 
preference.  

 Each approach poses both positive and negative 
aspects depending on the aggregation operation, which 
is followed. An issue that arises in such problems is the 
appropriate aggregation of values in a way to express 
group preferences. The aggregation problem has been 
studied in several works [2, 6, 7, 15, 19, 29] either in 
multicriteria problems or general group problems.  
 The objective of our work is to present an 
aggregation procedure for group decision problems in 
multicriteria classification decisions. The classification 
problem refers to the assignment of a set of actions in a 
number of categories and it can be defined in group 
setting as: 
Having a set of actions (e.g. projects, people, numbers, 
etc.), a set of categories and a set of evaluation criteria, 
assign actions to categories with respect to their score 
on the evaluation criteria according to group members’ 
preferences.  
 Our approach follows the second direction, where 
we utilize WOWA operator for the aggregation of 
individual preferences calculating an aggregated set of 
group parameters, which is used as input for the 
classification algorithm. The multicriteria classification 
algorithm we use is based on the concept of 
inclusion/exclusion of an action with respect to a 
category. In order to apply the entire procedure, initially 
a set of parameters is proposed to the group by group 
facilitator. Next, each group member evaluates the 
proposed parameter set and expresses his preferences in 
numeric format. Individual preferences are then 
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aggregated by WOWA operator and a group parameter 
set is produced. Classification algorithm is finally 
applied, using the group parameter set, for the 
classification of actions and group members evaluate 
derived results. In case of low level of acceptance, 
parameters are redefined and aggregation phase is 
repeated.  
 In this study we focus on the aggregation 
procedure of group preferences, presenting the 
proposed approach, as well as a numeric example, 
which demonstrates its application to real world 
problems. Initially, we present background information 
on OWA and WOWA operators, as well as a brief 
overview of the multicriteria classification algorithm. 
The aggregation approach is then presented continuing 
with an example, which demonstrates methodology’s 
applicability. Finally, we conclude summarizing key 
findings.  
 

MATERIALS AND METHODS 
 
OWA operator (Ordered Weighted Averaging 
Operator): OWA operator was initially introduced by 
Yager[29] and was further developed and discussed in 
several works[9, 10, 11, 13, 30, 31, 32, 33].  
 
Definition: An OWA operator of dimension n  is a 
mapping function φ: ℜn → ℜ, which has a weighting 
vector associated with it W = (w1,…,wn) such as 

n

i i
i 1

w [0,1],  and w 1
=

∈ =�  

and aggregates a set of values {p1,…,pn} according to 
the following expression  

n

w 1 n i (i)
i 1

(p ,...,p ) w pσ
=

φ = ×�  

where, σ: {1,…,n} → {1,…n} is a permutation of set 
{p1,…,pn}  such as pσ(i) ≥ pσ(i+1), ∀i = 1,…n-1, (e.g., pσ(i) 

is the i-highest value in set {p1,…,pn}.  
 A basic property of OWA is the reordering of 
arguments according to their values, which associates a 
weight to particular positions in the ordered set of 
values and not to the values. OWA operators are 
commutative, monotonic and idempotent, following the 
basic properties of averaging operators.  
 Weight vector definition is a basic issue for the 
OWA operator. Yager proposes two methods for their 
estimation[29]. The first approach uses a kind of training 
approach using some training data, while the second 
one assigns semantics on the weights. Following the 
second approach, weights can express the concept of 
fuzzy majority on the aggregation of the values with 
OWA[34].  

 In this approach weights can be obtained by using a 
functional form of linguistic quantifiers. In this case a 
quantifier is defined as a function Q: [0.1] → [0,1] 
where Q(0) = 0, Q(1) = 1, andQ(x) ≥ q(y) for x ≥ y. For 
a given value x ∈ [0,1], the Q(x) is the degree to which  
x satisfies the fuzzy concept being represented by the 
quantifier.  
 Based on function Q the OWA weight vector is 
given by the following expression  

i

i i 1
w Q( ) Q( ),i 1,...,n

n n
−= − = . 

Following this approach, the quantifier determines the 
weighting vector according to the semantics associated 
with the operator from function Q. Zadeh[34] defined 
membership function of quantifier Q by the following 
expression 
 

0,                  if  r a
(r - a)

Q(r) ,    if  a £ r £ b 
b - a
1,                  if  r b

<�
�
�= �
�
� >�

 

 
 with  a, b, r  ∈ [0,1].  
 The most common quantifiers used are most, at 
least half, as many as possible with parameters (a, b) 
equal to (0.3, 0.8), (0.05), (0.5, 1), respectively. For 
example  the  fuzzy  majority  concept  can be 
expressed  by  using quantifier  Q  most  with  values 
(a, b) = (0.3, 0.8) for the calculation of OWA weights.  
 The fuzzy majority approach with OWA 
aggregation has been utilized as is or with variations on 
group decisions[13], where the objective was the 
maximization of group consensus, since this approach 
is more appropriate than simple averaging operators.  
 
WOWA operator (Weighted OWA): WOWA 
operator was introduced by Torra[26, 27] in order to 
extend OWA based aggregation in a way to consider 
weights of sources in addition to weights of values.  
 
Definition: A WOWA operator of dimension n is a 
mapping function φWOWA : ℜn → ℜ, which has two 
weight vectors associated with  it,  W = (w1,…,wn) with 

 
n

i i
i 1

w Î [0,1], w 1
=

=� , 

(which expresses the values importance in analogy to 
OWA weights) and B = (β1,…,βn) with 
 

n

i i
i 1

Î [0,1], 1
=

β β =� , 



Am. J. Applied Sci., 5 (8): 952-958, 2008 
 

 954 

 (which expresses the importance of sources in analogy 
to a weighted average operator) and aggregates a set of 
values {p1,…,pn} with the following expression  
 

n

WOWA 1 n i (i)
i 1

(p ,...,p ) pσ
=

φ = ω ×�  

 
where, σ: {1,…,n} → {1,…n} is a permutation of set 
{p1,…,pn}   such   that   pσ(i) ≥ pσ(i+1), ∀i = 1,…n-1, 
(e.g.,  pσ(i)  is  the  i-highest value in set {p1,…,pn} and 
ω = (ω1,…, ωn) and 
 

n

i i
i 1

Î [0,1], 1
=

ω ω =�  

 
 is the weight vector of WOWA operator.  
 Weights ω = (ω1,…, ωn) are defined as:  
 

i ( j) ( j)
j£i j i

w * ( ) - w * ( )σ σ
<

ω = β β� � , 

 
where, w* is a monotone increasing function which 
interpolates points j

j£i

(i / n, w )�  with the point  (0,0).  

 Calculation of  w* can be executed a) either from 
direct definition of function w*, or b) from the 
definition of the vector  W = (w1,…,wn) initially and 
calculation of the interpolation function w* next.  
 Following the second approach, for the evaluation 
of the function w* from the weight vector W = 
(w1,…,wn) an interpolation method is required. From 
available methods the one to be used, has to define a 
monotonous and bounded function (e.g., polynomial) 
when input data are monotonous and bounded. WOWA 
operator can be considered as generalization of 
weighted mean and OWA operators, since for 
equivalent sources’ weights it coincides with OWA, 
while for equivalent values’ weights it coincides with 
weighted mean.  
 From the analysis of relevant works we derive that 
WOWA operator is quite efficient for the aggregation 
of  the  individuals   values   in   group   setting,  since it 
allows aggregation of values considering members’ 
importance and the definition of zones of different 
importance which express variations of majority values.  
 
Multicriteria classification algorithm: Inclusion/ 
exclusion from a category is determined by evaluating 
the fuzzy inclusion degree of the action for the specific 
category, following the concordance/non-discordance 
concepts as used in ELECTRE III method. Categories 
are defined by an entrance threshold, which can be 

considered as the least typical representative action that 
satisfies the inclusion requirements. The objective of 
the algorithm is to classify actions to categories in a 
way to consider inclusion/exclusion concept.  
 
Fuzzy inclusion degree: The inclusion/exclusion 
concept defines at what degree an action can be 
included in a category or excluded from it. In order to 
utilize this concept for classification of actions, we 
define the fuzzy inclusion relation. Fuzzy inclusion 
relation P(a, b) is defined as a binary relation between 
an action ai and a category threshold bh. According to 
the concept of inclusion/exclusion and considering 
category thresholds, an action ai is preferred over a 
threshold bh  (and can be thus included in the category 
Ch) iff there is a majority of criteria supporting 
preference of action ai over threshold bh and there is no 
strong opposition to this. In order to evaluate the 
relation P(a, b) we utilize concordance/non-discordance 
principle, defining appropriate indexes as follows:  
 
A criterion is said to be concordant if it expresses 
agreement about classification of action ai to a class Ch. 
For the evaluation of concordance per criterion, we 
define the partial inclusion index for action ai and 
criterion gj as Cj (ai, bh). In order to overcome 
imprecision in definition of data, we define two 
discrimination thresholds  q(gj) and p(gj) for each 
criterion, resulting in three areas of values as follows:  
 

h

j i j j

j j

h
C (a , b )

j i

h
 for  [g (a ) g (b ) q(g )],

j i j j

h h
[g (b ) q(g ) g (a ) g (b ) p(g )],

j j j i j j

h
[g (a ) g (b ) p(g )]

j i j j

0

g (a ) g (b ) q(g )

p(g ) q(g )

1

=

≤ +

+ ≤ ≤ +

≥ +

− −

−

�
�
�
�
�
��

 

 
For the evaluation of concordance degree for all 
criteria, we define the comprehensive inclusion index 
for action ai as: 

m
h h

i j j i
j 1

C(a , b ) w * C (a , b )
=

=�  

where, wj  is the importance weight of criterion gj.  
 In some cases a criterion can express negative 
judgment about classification of action ai to a class Ch. 
More specifically, a criterion gj can express a 
significant opposition to action’s ai preference (or 
inclusion) over threshold bh. In this case the criterion is 
discordant  with  the inclusion relation between action 
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ai  and  threshold  bh.  We  define a discordance index 
Dj (ai, bh) for every criterion, in order to measure the 
discordance degree. To handle imprecision, we define a 
veto threshold v(gj) for each criterion as the minimum 
value which is incompatible with the assertion that the 
criterion is discordant with the inclusion relation, 
resulting in three areas of values as follows:  
 

h

j i j jh

j i

j j

h
j i j j

h h
j j j i j j

h
j i j j

0

g (a ) - g (b ) - p(g )
D (a , b )

v(g ) - p(g )

1

for [g (a ) g (b ) p(g )],

 g (b ) p(g ) g (a ) g (b ) v(g )

 g (a ) g (b ) v(g )

=

�
�
�
�
�
��

≤ +

+ ≤ ≤ +

≥ +

 

 
Utilizing the concordance/non-discordance principles 
we define the comprehensive fuzzy inclusion relation 
aggregating the inclusion relations Eq. 2 weakened by 
discordance Eq. 3 as: 
  

hm
j ih h

i i h
j 1 i

1- D (a ,b )
P(a ,b ) C(a ,b ) * ( )

1 - C(a ,b )=

= ∏ . 

 
Finally,   we   define   the   fuzzy  inclusion  degree  as 
γ(ai, C

h) = P(ai, b
h). 

 
Required parameters: In order to solve group 
classification problems using the fuzzy inclusion degree 
as defined above requires the definition of a set of 
appropriate parameters. In the general case where a 
facilitator guides the process initiating parameters, the 
following parameters are required:  
 
• Members: Facilitator   defines   group   members 

M = {m1, m2,…mn} and assigns importance 
weights B = {β1,…,βj} to each.  

• Evaluation criteria: Facilitator defines a set of 
evaluation criteria F = {g1, g2,…gn}  according to 
problem requirements and defines initial criteria 
weights.  

• Categories: Facilitator defines a set of categories 
Ω = { C1, C2,…,Ch} for the classification of 
actions. Categories are defined by their entrance 
thresholds bh and their scores to evaluation criteria 
gj(b

h).  
• Actions:  Facilitator   defines   a   set   of   actions 

A = {a1, a2,…,am} for classification, which are 
defined by their performance on the evaluation 
criteria ∀a, g(a) = (g1(a), g2(a),…,gn(a)).  

 For each criterion facilitator defines initial 
preference, indifference and veto thresholds.  
 After the initiation of parameters, facilitator 
informs members asking them to submit their 
preferences.  
 
Aggregation of individuals’ parameter sets: In this 
phase group members express their preferences on the 
proposed parameter set. Member preferences are 
expressed or converted in numeric values. For the 
aggregation of values we utilize the WOWA 
Operator[26, 27]. Aggregation of member preferences is 
executed for the following parameters:  
 
• Criteria: Group members express their acceptance 

on each proposed criterion and their preferred 
weight in numeric value.  

• Categories: Group members express their 
acceptance on each category definition and submit 
their preferences on category thresholds in numeric 
value.  

• Alternatives: Group members express their 
acceptance on alternatives’ performance or submit 
their preference in numeric value.  

• Thresholds: Group members express their 
preference on indifference, preference and veto 
thresholds in numeric format.  

 
RESULTS AND DISCUSSION 

 
 In the following we demonstrate the proposed 
aggregation approach on sample data, focusing on the 
aggregation of group preferences. We consider a 
classification problem with the following initial 
parameters:  
 
• A group of seven members M = {mj}, j = 1,…7  as 

decision makers and corresponding importance 
weights B = {β1,…,βj}  = {0.2, 0.2, 0.1, 0.1, 0.1, 
0.2, 0.1}, 

• A set of evaluation criteria G = {gi}, i = 1,…8,  
• A set of categories C = {Ci}, i = 1,…4 for the 

classification of actions, 
• A set of alternatives A = {ai}, i = 1,…,6 for 

classification, 
 
 The  objective  is   to   classify   the   alternatives  
A  = {ai}, i = 1,…,6 in appropriate categories C = {Ci}, 
i = 1,…4. The aggregation process is as follows:  
 
Step 1: We define, values to be aggregated {p1,…,pn} 
as given by members and members’ weights, which are 
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B = {β1,…,βj}  = {0.2, 0.2, 0.1, 0.1, 0.1, 0.2, 0.1}, by 
definition.  
 
Step  2  :   Calculate    associated    WOWA   weights 
W = (w1,…,wn) by means of OWA. For the calculation 
we consider the fuzzy majority concept and use the 
values (a, b) = (0.3, 0.8) representing the most value for 
the quantifier 
 

0,                  if  r a
(r - a)

Q(r) ,    if  a £ r £ b 
b - a
1,                  if  r b

<�
�
�= �
�
� >�

 

 
and evaluate the weights of the OWA operator from the 
expression wi = Q(i/n)-Q(1-1)/n), i = 1,…,n.  
 
Step 3: Following an approach proposed by Torra[26, 27] 

calculate WOWA weights ω = (ω1,…, ωn). Initially we 
calculate the set of points that will be connected. This 
set is defined as  

 
j

j i

S {(i / n, w ) | i 1,...,n} {(0,0)}
≤

= = ∪�  

 
Next the set of points is interpolated and function w* is 
calculated.  
 
Step  4:   With    respect    to    the   sets    of   weights 
ω = (ω1,…, ωn)  aggregate the set of values {p1,…,pn} 
as 

n

WOWA 1 n i (i)
i 1

(p ,...,p ) pσ
=

φ = ω ×� . 

Illustrating example: In the following we present the 
aggregation as applied to criteria acceptance and 
criteria weights, since the same procedure is applied to 
the rest of values.  
 
Step 1: Initially, each member mj expresses his opinion 
indicating acceptance level in a linguistic scale 
{Extremely High, High, Medium, Low, Extremely 
Low}, on the set of criteria These values are converted 
to numeric ones from 5 to 1 as below.  
 

[ ]ij

5 5 4 5 4 4 4

4 2 3 1 2 1 2

5 5 3 4 5 3 4

3 5 3 4 5 4 5
g

2 4 3 4 5 5 4

4 4 5 4 5 5 5

5 4 5 5 5 5 5

1 3 2 3 1 2 2

=

� �
� 	
� 	
� 	
� 	
� 	
� 	
� 	
� 	
� 	
� 	
� 	
 �

. 

Step 2: W = (w1,…,wn) weights are W = (0, 0, 0.257, 
0.285, 0.285, 0.171, 0)  
 
Step 3: The set of points 

j
j£i

S = {(i/n, w )|i=1,...,n}È{(0,0)}�  for the interpolation 

function is calculated as  

1

1 1
i 1, ( ,w ) ( ,0)

7 7
= = ��

1 2

2 2
i 2, ( ,w w ) ( ,0)

7 7
= + = ��

1 2 3

3 3
i 3, ( ,w w w ) ( ,0.257)

7 7
= + + = ��

........... ��

1 2 3 7

7 7
i 7, ( ,w w w ... w ) ( ,1) (1,1)

7 7
= + + + + = =  

 
 Based on these points the interpolation function is 
w* is  calculated  using  the  algorithm  used by 
Torra[26, 27]. Next, we calculate the set of WOWA 
weights ω = (ω1,…, ωn) as follows:  
 

1 1i 1, � w*(p ) w*(0.2)= = = ��

........... ��
7 6

7 i i

i 1 i 1

i 7, � w*( p )-w*( p )
= =

= = � � ��

�

WOWA weights are thus ω =  { 0, 0.2032, 0.1926, 
0.1994, 0.1994, 0.1995, 0}.  
 
Step 4: Next WOWA values are calculated as 

n

WOWA 1 n i (i)
i 1

(p ,...,p ) pσ
=

φ = ω ×� . For example for the first 

criterion we have 
 

WOWA (5,5,5, 4, 4, 4, 4) 0 * 5 0.2032 * 5

0.01962 * 5 0.1994 * 4 0.1995 * 4

0.1995 * 4 0 * 4 4.3915

φ = +

+ + +

+ + =

 

 
Aggregation result for the set of criteria is the 
following: 
  

[ ]ij

4.3915

1.8159

4.1919

3.9957
g

3.7595

4.3915

4.9376

1.8159

=

� �
� 	
� 	
� 	
� 	
� 	
� 	
� 	
� 	
� 	
� 	
� 	
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, 
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while  results  using  OWA   and   Weighted   mean  are  
 

[ ]ij

4.249

1.825

4.077

4.077
g

3.82

4.534

4.99

1.825

=

� �
� 	
� 	
� 	
� 	
� 	
� 	
� 	
� 	
� 	
� 	
� 	
 �

 and [ ]ij

4.5

2.2

4.2

4.1
g

3.8

4.5

4.8

2.0

=

� �
� 	
� 	
� 	
� 	
� 	
� 	
� 	
� 	
� 	
� 	
� 	
 �

 respectively.  

 
 Acceptance result for criteria g2 and g8 are relative 
low and thus are excluded from problem We follow the 
same procedure for categories.  
 Members’ mj preferences on criteria weights wi are 
expressed on numeric values as:  
 

[ ]ij

18 15 14 15 16 19 20

28 33 26 30 25 23 21

7 5 9 8 10 9 11
w

15 12 13 12 16 16 12

11 9 14 8 5 9 6

21 26 24 27 28 6 30

=

� �
� 	
� 	
� 	
� 	
� 	
� 	
� 	

 �

 

 
 Aggregation results are depicted in the table below, 
compared to results from alternative aggregation 
approaches.  
 
Table 1: Comparison of Aggregation approaches  
OWA Weighted mean WOWA Arithmetic mean 
16.055 16.900 16.417 17 
27.717 27.000 26.030 27 
8.370 8.000 7.894 8 
13.055 13.890 13.417 14 
8.199 9.100 8.732 9 
25.343 25.100 24.659 26 

 The above steps are followed for every set of 
parameters: criteria, actions scores, categories 
thresholds as well as indifference, preference and veto 
thresholds. Aggregated actions scores, criteria weights 
and categories thresholds, is the input parameter set for 
the multicriteria classification algorithm, which is 
applied next.  
 The above methodology has been applied to real 
world problems with sufficient results. An indicative 
problem that has been resolved refers to classification 
of locations for potential ATM installation into 
appropriate categories at the environment of a Greek 
bank. In brief, the bank wanted to classify locations for 
potential ATM installation in order to decrease failed 
installation costs as well as relocations. The bank’s 

objective was to create a pool of potential viable sites 
for further consideration, excluding less viable ones. 
Thus, we formulated a decision problem for the 
classification of locations to appropriate non-ordered 
categories. Following a brainstorming technique, 
stakeholders from bank’s divisions defined an initial set 
of parameters and assigned the supervision and 
operation of the entire decision procedure as well as the 
group coordination to a group facilitator. Group 
members were selected from several bank’s divisions, 
resulting to a group of nine decision makers. Next, 
applying the methodology following all the steps, we 
received result sets with very high degree of accuracy 
compared to training sets, as well as high acceptance 
degree from group members.  
 

CONCLUSION 
 
 In this study we presented a methodology for 
classification decisions where aggregation of members’ 
preferences is executed at the parameter level. We 
presented details of the aggregation methodology as 
well as a sample application for a classification problem 
demonstrating its usage for similar problems.  
 Application of methodology in business 
environment and empirical findings provide evidence 
that the methodology is a valid approach for similar 
decision problems. In addition, we believe that the 
methodology can be easily applied to support group 
decisions in a variety of environments. However, since 
the methodology requires a relative substantial number 
of parameters, it is possible that group members who 
are not familiar enough with the methodology will be 
confused. Thus, the number of criteria and parameters 
should be kept to a number, which will minimize 
complexity  without  however  loosing  critical problem 
parameters. Concluding, we believe that this approach 
can be easily deployed to support group decisions in 
similar environments.  
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