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Abstract: This paper deals with the control of a class  of perfectly modelled linear hybrid systems  
which consist of two, in general  coupled,   subsystems  one being continuous -time while  the  
second one is digital. Both  subsystems are driven by continuous time and sampled values of a 
control input. The  description  of the overall system is given  through an extended  hybrid system , 
which is purely discrete at sampling instants,  which has two , in general, coupled continuous-time 
and discrete - time substates. The discrete -time substate is  jointly defined by the digital substate  
and the samples of the  continuous  substate while being driven by the sampled input. The control 
objective has a double nature and it consists of the achievement of separate continuous-time and 
discrete-time model- matching objectives with respect to two predefined stable reference models .  
It is achieved  by synthesizing a dynamic hybrid controller  consisting of a continuous subcontroller 
and a discrete one. Each of those controllers has its own control objective. 
 
KeyWords: Hybrid Systems, Control of Hybrid Systems 

 
INTRODUCTION 

 
 Hybrid systems have received important attention 
in the last years ( see , for instance,[2,3]. In particular , 
the  optimization  of inputs and the fundamental 
properties of such systems have received attention in[2] 
and the multirate sampling of such systems has been 
studied in[10,3] . The importance of those systems 
arises from the fact that continuous and digital 
subsystems usually operate in a combined and 
integrated fashion. Another important reason to deal 
with such systems  is that it becomes sometimes 
suitable the use  of either discrete-time or digital 
controllers  for continuous plants by  technological 
implementability reasons[8,9] .In this paper, a wide 
class of linear hybrid systems proposed in[2]and  also 
dealt with in[3] is considered in the context of model-
matchingdesigns. Such systems are characterized by 
the continuous substate being forced by both the 
current input in continuous time and its sampled value 
at the last preceding sampling instant as well. The 
objective  of  this  paper  is  the  design of an hybrid 
controller that allows the hybrid  plant to achieve ,  in  

genera  l, separate continuous - time and  discrete -
time  model- following objectives  in the  perfectly  
modelled  situation . In  this way,  the continuous-time 
and discrete-time closed-loop dynamics can be 
separately designed through the synthesis of two 
subcontrollers  which  give together the overall , in 
general, hybrid controller.  The subcontroller designed 
for accomplishing with the discrete-time control 
objective has a discrete-time nature while that 
designed to accomplish with the continuous-time 
objective is of a mixed continuous-time and discrete-
time nature.  Several particular cases which are 
included in the general  framework are for instance: 
• The choice of only a continuous-time reference  

model . Thus , its digital transfer function is used 
as discrete model  for controller synthesis at 
sampling instants 

• The use of only a discrete-time reference model 
under a piecewise constant plant input  inbetween 
sampling instants.  In such a case, the overall 
scheme becomes a  discrete-time one 

• The use of  the discrete-time reference model for 
periodic testing of the current closed-loop 
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performance designed for a continuous-time 
reference dynamics . If the test fails then the 
continuous-time objective can be  on - line 
modified  in terms of re-adjustment of the input to 
the (continuous-time) reference model or  high-
frequency gain re-adjustment to modify either  the 
transient reference signal or the  steady-state 
reference  set point.  

 Each subcontroller is designed  for  the 
achievement of  the corresponding model-following 
objective in the absence of plant unmodelled 
dynamics. Also, as a part of the design , each 
subcontroller generates a compensating signal to 
annihilate the coupling signals generated from the 
continuous  signals to the discretized output , for the 
discrete-time control objective , or viceversa. when 
dealing with the continuous control objective.  Such 
coupling signals are inherent  to the structure  of the 
open-loop  hybrid plant . Finally, the  overall 
controller  is robust against a class of  unmodelled 
dynamics and uniformly bounded state and 
measurement noises.  
Hybrid plant description: The  hybrid plant  
Consider  the  next single-input single-output hybrid 
linear system ( Kabamba and Hara 1994; De la  Sen  
1996): 

[k]dxcdA[k]cxscA(t)cxcA(t)cx ++=�  

+ b c u (t)+ b cs u[k]                                         

x d [k+1]=A d x d [k]+A d s x c[k]+b c u(t)+b cs u[k] 

y( t)=cc
T x c (t)+c cs

T x c [k]+cd
T x d [k]+d c u(t)+d d u[k]     

                                                                                (1) 
for t ∈  [ kT , ( k+1) T ) ; all nonnegative integer k , 
with  T being the sampling period , where  x c (.) and 

x d [.] are, respectively,  the n c and n d  continuous 

and digital subvectors  and u (.) a nd  y (.) are  the  
scalar input and output. The continuous  time 
argument is denoted by  '(t) '  while  the discrete time 
argument is denoted by  ' [ k ] '  and the  associated 
continuous and digital variables are denoted  
correspondingly. Thus, a continuous variable at 
sampling instants is denoted  in the same way as a 
digital variable so that xc[k] =x c ( kT) and u [k] = u ( 

kT) in (1). In  that way , there is no distinction in the 
treatment of digital and time- discretized variables. 
The orders of all the real constant matrices in (1) 
agree with  the dimensions of the substates and scalar  
input and output.  
Description of  ( 1) at sampling instants : The input 
/ output solution of (1)at sampling instants is given by 
the ARMA- model :  

Q d (q) y[k] = Pd (q) u[k]+ Q d (q) (c Tω [k])   (2) 
for  all nonnegative ionteger k ,  where  
c T =c c

T+ c c s
T  ,  Q d (q) and  P d (q)  are 

polynomials of real coefficients defined in  Appendix 
A ( see eqns. (A.4) and (A.6)  ) of degree  n = n c + n 

d  and  q is the one-step -ahead  shift operator.  The 

ARMA - model (2) is obtained from the extended 
discrete-time system of state  
x[k] =[ x c

T[k] , x d
T [k]] T  obtained from (1).  

 
Description of  ( 1) inbetwwen sampling instants: 
The input / output  differential-difference relationship 
for (1)  inbetween sampling instants is given by  
Q c (D)Q d (q) y(t) = Pc (D)Qd (q)u(t) +Q c (D)   

{ }]k[w)q,D(N]k[u)q,D(N
T

dc
u
dc

ω+            (3) 
for t ∈ [ kT , ( k+1) T ) ; all integer k � 0 , with q and 
D  being the one-step ahead time -shift and time-
derivative  defined  by q v( t ) = v ( t + T ) and 

(t)vD(t)v =�  , respectively , for any differentiable  
signal v (t)  in the continuous-time argument t  , where 
Q d ( q) and  P d ( q)  are  the  polynomials in (2) 

while  Q c( q) and  P c( q)  are  polynomials of degree 

n c and N cd
u  and N cd

ω  are  a  scalar  polynomial  and 

a  two-variable  n c -  polynomial matrix which have 

been obtained from the above parameters but the 
parametrical definition and its development are 
omitted by space reasons. Note that the term in 
brackets in the right - hand- side of (3) is  a coupling  
signal from the  digital  substate and discretized input 
to the continuous subsystem of (1).  The description 
(3)  is obtained from an extended hybrid system of 
continuous- time  substate x c(t) and  the discrete- 

time substate x[k] =[ x c
T[k] , x d

T [k]] T  used  for 
obtaining ( 2 ) at sampling instants . The  next simple 
descriptive example  illustrates the decomposition in 
continuous / discrete ( or digital )  state  variables  of  
an input / output  linear mapping involving the 
operators D and q as it occurs in the general 
description of  (3 ).  
 
Example: Consider  the  input/ output linear mapping  
v (t ) =  H 1 ( D) H 3 (q) δ [k ]+H2(D) υ(t)  driven by 

the discrete input δ [k ]  and  the continuous one  υ(t)  

whereH 1 (D) =
D + a
D + b

 ; H 2 (D) =
1

D + c
 ; 

H 3 (q) =
q + 1
q + 2

 with a , b and c being real constants. 
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Define now  two  continuous-time  variables  v1 (t) 

and v 2 (t)  and a digital variable  δ 1 [ k ]  given by 

the dynamics  v1 (t) =   
D + a
D + b

 δ 1 [ k ], v2(t) =
1

D + c
 

υ(t) and v 3 [ k ]  = 
q +1
q + 2

δ [k]  . Thus , the overall 

state - space representation  is described by   
 
v(t ) = v 1(t )+ v 2 (t )+ v 3 [k]  

]k[v)ba()t(vb)t(v 3
'
1

'
1 −+−=�   

v 1(t) = v 1
' (t) +v 3 [k ]   

)t()t(vc)t(v 22 υ+−=� ; 
v 3 [k] = −2 v 3[k −1]+ δ [k] + δ [k −1]  
subject to initial conditions  v i ( 0) =  v i 0  (i = 1, 2)  

and   v 3[0] = v 3 0.                                              �� 

 
Remark 1: The description of (3) also describes eqns. 
1  at sampling instants  and results to be  
 
Q c(D)Q d (q) y[k] = [Pc (D)Q d (D)  
+ Q c (D)N cd

u (D,q)]u[k]   

( ) ( ) [ ]kq,DNDQ
T

dcc ω+ ω  

whose discrete-time solution is  (2). Note through a 
comparison with (3) that the parametrization of the 
differential- difference solution to (1) becomes 
modified at sampling instants with respect to the 
intersample parametrization  since  additive  terms  
involving the sampled continuous substate and 
sampled input  result from the plant parametrization 
given by  (1) at sampling instants.                         
��                                                                                                                                                                                                      
Global  exponential  stability conditions for  the 
open-loop  plant: The  global  exponential stability of 
the unforced system (1) is only dependent on the 
stability of  the   A -matrix defined by 
 

 
e
AcT

[I+( e
−Ac τ

dτ0
T
� )Acd] e

Ac T
( e

−Acτ
dτ0

T
� )Ad

Ads Ad

� 

� 
� 

� 

� 
�   ( 4 ) 

 
obtained after omitted calculations . This follows from 
building the extended unforced discrete dynamics x [k 

+1]  =  A x[ k ] with x [ k ] =  (x c
T [k] , x d

T [k]  )T . 
Thus, the continuous - time solution of the continuous 
substate  in  ( 1)  satisfies : 

x c ( k T+ τ )= [e A c τ ( I+ e − A c τ ' dτ'
0

τ

� )A cs )  

                    , e A c τ ( e − A c τ ' d τ'
0

τ

� )A cd ]x[ k]          

. Thus , if  A  is  strictly Hurwitzian , then  x d [ k ]  , 

x  c [k]  and   x  c ( t)  converge to zero exponentially 

fast  exponentially fast for  any bounded rinitial 
conditions. The next result , whose proof is omitted, is 
concerned with the  stability of  the A  - matrix under  
that of  A c  and  A d   provided  that  the  coupling  

signals between  continuous and discretized  (or , 
indistinctly, digital ) variables  are sufficiently small. 
 
Proposition 1:  Assume  that  A c and A d are strictly 

Hurwitzian with their maximum eigenvalues  
satisfying : 
   
 e − ρ' T ≤ λ max ( e A c T )    

           ≤ e − ρ T( i. e., − ρ ≤λ max ( A c ) ≤ − ρ' )   
 
and λ max ( A d) ≤ e − ρ T .Thus, the open-loop 
unforced plant is globally exponentially stable if  

λ max (
A cs A d

A ds I
� 

� 
� 

� 

� 
� ) < Min( e ρ T − 1 ,

ρ' ( e ρ T − 1)
e ρ' T −1

)
 

 
Controller synthesis: General design philosophy and  
Assumptions.  The controller  to be synthesized will 
consist  of two subcontrollers each  one  being 
designed  to satisfy a different ( respectively,  
continuous-time or discrete - time ) control objective , 
namely : 
 
Objective  1 :  u [ k ] =  u [ k T ]  is generated  in 
such a  way that a prescribed stable discrete reference 
model of transfer function W m d ( q )  is matched at 

sampling instants. A discrete subcontroller 
(Subcontroller 1) which will be then synthesized 
accomplishes with this control objective.  As a part of 
the design , the coupling signal  in (2) from the 
continuous-time  subsystem to the discrete - time  
subsystem , caused by the signal  

[ ]=ω k [ e A c T ( e − A c t

0

T

� u (k T + t )dt ) b c  ,that 

includes the contribution of the continuous-time input 
over one sampling period to the output at sampling 
instants ,  is annihilated by synthesizing the 
appropriate compensator as addressed below.  
 
Objective  2  :  u  ( t )  ( t ≠  k T  )  is generated  in 
such a  way that  the closed-loop system matches a  
prescribed stable continuous-time  reference model of 
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transfer function W mc (D) inbetween sampling 

instants.  A mixed  continuous / discrete  subcontroller  
( Subcontroller 2 ) is synthesized  to accomplish   with 
such a control  objective.  As a part of the design , the 
couplings between the discretetized signals  u [ k ] and  

[ ]kω  and the continuous subsystem  are   cancelled  
by synthesizing the appropriate compensator  as 
addressed below.   
 Since  u [ k] and u ( t ) , t∈[ k T , ( k+1) T ] , all 
nonnegative integer k  are , in general , synthesized  to 
satisfy two different control objectives , 
discontinuities of the control input at sampling 
instants occur in general. Also , there are input 
discontinuities caused  by  the influence  in the  
feedback signals of  the modification of the digital 
substate at sampling instants while it is kept constant 
inbetween sampling instants.  When suitable, the two  
reference  models  can be appropriately related to  
each other  in order to  state the problem with a 
unique control objective as discussed later. Those 
input discontinuities translate in output discontinuities 
at sampling instants  in the more general case  when  
W mc ( D ) and Wmd ( q)  are chosen independently.  

The combined objective can be intuitively figured as 
of the actions of  Subcontrollers  1- 2  synthesized to 
satisfy the  Control  Objectives 1 - 2 . There are two 
control channels  integrated in  the actuator that 
generate the input ' at ' and ' inbetween' sampling 
instants  as u ( t ) = u ' [ k ]  ( t = k T )  ;  u ( t ) =  u ' ( 
t ) (  t  ≠  k T  )  Channel 1 is used  to  generate ( 
inbetween sampling instants )the input for model -
matching of W md ( q )  while Channel  2 is used to 

match  W mc ( D ) . Note that once Channel 

1modifies its state, it supplies u [k]  at  sampling 
instants  .  
 
Assumptions:  
1.  P d  ( q)  and   P c ( D )   have all their zeros  in  

q <1 and  Re ( D ) < 0 . 
2.  All common zeros  of  P d (q)  and  Q d ( q ) 

 (of P c (D)  and   Q c (D) ) , if any , are strictly  

Hurwitzian  and closed - loop  zeros and poles  of the 
discrete-time  ( continuous- time ) dynamics , i. e . , 
they  are  zero- pole cancellations of  W md (q)  in  

q <1 ( of  W mc ( D)  in Re (D)<0  ). Also, the   

zeros   of  P c (D)  and    P d (q)  which are cancelled 

by the controller, if any,  are closed- loop  poles and 
thus poles of   W mc ( D) and  W md ( q  ) , 

respectively .  

 
3. W mc ( D) and  W md ( q  ) are proper ,  strictly 

Hurwtzian and  of  relative orders  non less than those 
of   P c (D) / Q c ( D) and P d (q) / Q d ( q ) , 

respectively.                                                           � 
 
Note  that  Assumption 1 means that both ( open-loop) 
discrete and continuous-time descriptions eqns. 2 and 
3 are inversely stable. Assumption 2 means that if any 
of the discrete or continuous plant dynamics is 
uncontrollable (i.e., there are zero-pole cancellations ) 
then the associated uncontrollable modes have to be 
stable and closed-loop poles of the corresponding 
dynamics. The need for such an assumption will then 
arise from the solvability of the diophantine equations  
associated with the pole-placement problems of 
Objectives 1-2. Note also that if  d= d c +d d ( d c)  is  

nonzero in  (1)  then  P d (q) / Q d ( q )  ( P c (D) / Q c 
( D)  )  is nonstrictly proper and  then the realizability 
of Subcontroller 1 (Subcontroller 2 )  is realizable for 
any realizable W md (q ) (W mc ( D) ).  Thus, the 

relative order constraint  of Assumption 3 holds 
automatically under the realizability of the discrete-
time (continuous- time) reference model  guaranteed 
by  its  properness of the first partof the assumption.  
 
Objective 1: Synthesis of Subcontroller 1  and  
Generation of u [ k ] = u ( kT)  
The next discrete control law is designed to achieve 
Objective 1 when the plant (1) is perfectly known and 
noisy-free: 
 

u[k]=
G 1d (q)
L d (q)

u[k]+
G 2d (q)
L d (q)

y[k]    

          +
G 3d

T (q)
L d (q)

ω [k] +
R 1d (q)
L d (q)

r 1d [k]   (5) 

 
The compensating signal r 1d [ . ]  is forwarded to the 

plant input from the  reference model input  r d [k] 

and  [ ]kω  =  ( e A c (T− τ )

0

T

� u(k T + τ) dτ )b c   

according to  generation laws given below . All  the  
transfer functions in the above  control law are 
expressed as quotients of polynomials and realizable. 
The above law is explicited as follows: 
 
u[k]= C y u

d (q) y[k] + C ω u
d T

(q) ω [k]   

           + C r1 u
d (q) r 1d [k]                          (6.a) 
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where the compensator transfer  functions are  
 

C yu
d (q) =

G 2d (q)
L d (q) −G 1d (q)

 

C ωu
d (q) =

G 3d (q)
L d (q)− G 1d (q)

 

C r1 u
d (q) =

R 1d (q)
L d (q)− G 1d (q)L d (q)

          (6.b) 

 
The problem of accomplishing with Objective 1  
consists of designing the polynomials  G i d (q) ( 

i=1,2) and  R1d (q), the polynomial vector  G 3d (q)  

as well as  the compensating signal  r 1d [.] , for a 

given stable  L d ( q ) so that  Wmd (q) is matched if 

the plant is perfectly known and free of unmodelled 
dynamics and noise.  The next result  addresses the 
controller design :  
 
Theorem 1: Suppose that  the control law (6) is 
applied , r d [k]  ( k � 0 )is the uniformly bounded 

reference  input sequence  to  Wmd ( q ) and that the 

next  assumptions hold : 
 
4.  Assumptions 1 - 3 hold for  P d ( q ) , Q d ( q ) and  

the poles of  Wmd (q) , and that all the roots of  R 1d ( 

q )  and  L d ( q )  are in q <1 . Assume also  that  d 

c = - d d  in (1) and  deg( R 1d ) ≤ deg( L d − G 1d ) .  

 
5.  P d ( q ) =  Q d (q )P d

' (q )  and  Qd ( q ) =  

Q d (q )Q d
' ( q )  where  Q d (q )  is  the strictly 

Hurwitzian ( from Assumption 2 ) ma ximum common 
factor of  P d ( q ) and Q d ( q ). Also ,  

P d
' (q) = P1d (q) P 2d (q)  with  P 1d ( q ) being 

defined by the discrete strictly Hurwitzian plant zeros 
( from Assumption 2 ) which are not plant poles  and  
they are transmitted to the reference model W md ( q ) 

=  B md ( q ) / Amd ( q ) .  

 
6.  L d ( q ) is factorized as  L d ( q ) =  P 2d ( q ) L ' d 
( q )  in ( 5) .  
 
Thus , the discrete closed - loop transfer function 
equalizes that of W md ( q )  provided that 

Subcontroller 1  and its associated compensating 
signal  r 1d [.]  are synthesized as follows  :   

 

r 1d [k]=
B md (q)

R 1d (q) P d (q)
rd [k]  

            +
L d (q) − G 1d (q)

R 1d (q)
M d c T ω[k]           (7) 

where  G 1d (q)= G 1d
' (q)P 2d (q)  , d = d c + d d  ,  

c= c c + c c s   with M d (q) being an arbitrary 

polynomial satisfying  deg ( M d ( q ) ) < deg  ( L d ( 

q) - G 1d ( q ) )  -  deg ( R 1d ) ,  G 3d (q) = 

− ( 1+ R 1d M d c ) , and  G 1d
'  (q) , G 2d ( q)  being 

polynomials which are  the  unique solution to  the 
diophantine equation  :  
 
Q d

' (q) G1d
' (q) + P 1d (q)G 2d (q)   

                     = Q d
' (q) L d

' (q) − A m d
" (q)             (8) 

subject to the degree constraints  deg  ( G 2d ( q )  ) <  

deg ( Q ' d ( q ) )  or  deg  ( G ' 1d  ( q )   

< deg ( P 1d ( q ) ) )  for  A m d
" (q)  being a 

polynomial  satisfying the  factorizations  
A md (q) = Q d (q)A md

' (q)    

            = Q d (q)P 2d (q) A md
" (q)                        (9) 

which exist  from Assumption  2 .                            ��                                                                                                                      
 
Corollaries : 1 . Theorem 1 also holds under the same 
assumptions if  G 3 d is a  rational function and  the 

compensating signal  in the controller satisfy : 
 

G 3d (q)=
Q d

' (q)( G1d
' (q)− L d

' (q) )c
P 1d (q)

                 (10) 

r 1d [k]  =  
1

R 1d (q)
B m d

' (q)
P 2d (q)

rd [k]                       (11) 

and all  the remaining compensators  of the control 
law  remaining identical as in Theorem 1 .  
 
2 . Theorem 1  and Corollary 1 als o apply  directly to 
the regulation case  with r d [ k] = r 1d [ k] = 0  with 

the closed-loop dynamics  resulting to be A md ( q )  y 

[k] =  0.                                                                 ��� 
 
The proof of Corollary 1 becomes direct from the  
application of  Assumptions  3 - 6 of Theorem 1  and 
the  use of the cancelled factors  Q d P 2 d and   

 
G 1d = G 1d

' P 2 d  to  yield : 
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G 3d =
Q d Q d

' ( G 1d − L d )c
P d

  

        =
Q d

' ( G 1d
' − L 1d

' ) c
P 1d

 

         � C r1 u
d =

G 3d

L d
' − G 1d

' = −
Q d

'

P d
' = −

Q d

P d
  

 
which is  nonstrictly proper  and stable since P d is 

strictly Hurwitzian and d c ≠   d d .  The use of the 

above relationships leads to   
 
[( L d − G1d)Q d − P d G 2 d] y[ k]  
                              = Q d (q) R 1d (q)r 1d [ k]        (12) 
 
from (7)-(11) and Corollaries 1-2 follow as Theorem 
1. Corollary 2 follows when rd [k] ≡ 0.                   ��                                                                                                           

 
Note that the main difference  between the design of 
Theorem 1 and Corollary 1 is the choice of the 
compensator  C r1 d

d  (q) in (6).  In Theorem 1 , this  
proper compensator  of  high - frequency being  

 - d - 1 c =  -  ( d c + d d )
 -1  ( c c + c cs )  which  

cancels  the high- frequency gain of 
G 1d

' − L d
'

P 1d
Q d

' c  . 

Thus , the closed-loop dynamics depends on  
[ ]1k −ω  but not on [ ]kω  and M d (q) is kept 

arbitrary. However,  the  decomposition of  all  the  
transfer functions  from  the  components of [ ]kω  to  
u [k] in  Corollary 1 with  their high- frequency gains  
being  cancelled  is not  used. The synthesis 
mechanism  in that case is  the choice of G 3d (q) such 

that the  transfer function  from  [ ]kω  to  u [k] is 
cancelled.  
 
Objective 2: Synthesis of Subcontroller 2 and 
generation of u ( t )  ( t ≠  k T ) 
The next control law is designed  for  the achievement 
of Objective 2 when the known plant is perfectly 
modelled and free- noise and  has the following  
implicit  structure : 
 

u(t) =
G 1c (D, q)
L c (D, q)

u(t) +
G 2 c (D,q)
L c (D, q)

y(t )  

+
G3c (D,q)
L c (D,q)

u[k]+
G 4c

T (D,q)
L c(D,q)

ω[k]+
R1c (D)
Lc (D,q)

r1c(t)  (13) 

for  all  t ∈ �( k T , ( k+1) T ) and all nonnegative 
integer k , with r 1c (t ) being a compensating signal 

to be generated as a part of the controller design and  
L c ( D , q) being a  strictlty Hurwitzian two-variable 

polynomial. The various filters are  formed by  two 
variable polynomials and the associated  hybrid  
realizations  can be obtained as addressed in the given 
example. The above control law becomes explicited 
as follows :  
 
u(t) =C y u

c ( D,q )y(t) + C uu
c ( D, q) u[k]   

+ C ω u
c T

( D,q )ω [k]+ C r 1 u
c (D, q) r 1c[ k]       (14) 

 
for  all  t ∈( k T , ( k+1) T )  with  
 

C yu
c (D, q) =

G 2c ( D,q )
L c (D, q) − G1c (D, q)

              (15) 

C u u
c (D, q) =

G 3c ( D,q )
L c ( D,q )− G 1c ( D,q )

              (16) 

C ω u
c (D, q) =

G 4c ( D,q )
L c (D, q) − G 1c (D, q)

               (17) 

C r 1u
c ( D,q )=

R 1c (D )
L c ( D,q )− G 1c ( D,q )

        (18) 

 
Note that the compensators of (15)-(18) are dependent 
on D and q  because of  structure of (3) . The problem 
of fulfilling Objective 2 consists of synthesizing (14), 
subject to (15)-(18), as well as  the compensating 
signal r 1c (.) as addressed in the next result which 

applies the philosophy  of Theorem 1  and Corollary 1  
to the  problem of  model-matching  of the continuous 
reference model .  In the following, the degree of two-
variable polynomials with respect to one of the 
variables is denoted with the corresponding subscript.  
 
Theorem 2: Suppose that  r c ( t )  is the uniformly 

bounded reference input to Wmc D) and that the next 

assumptions hold  
7.  Assumptions 1 - 3 hold for P d (q) , Q d( q) , P c ( 

D)  and  Q c( D) and that the poles of Wmc( D)  and  

all the roots of  R 1c ( D) and L c ( D) are in 

Re (D)<0  . Assume also that  d c ≠ − d d . 
 
8.  P c (D) admits the polynomial factorization  

Q c (D)  P 1c ( D) P 2c ( D) where  Q c (D)  includes 

the  (stable ) common roots of P c ( D)  and  Q c( D) ,  
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P 1c ( D) contains eventual zeros of P c ( D)  

transmitted from the plant to the reference model and  
P 2c ( D) includes the (stable) plant  zeros which are 

closed-loop poles and controller poles .  
 
Thus, the closed -loop dynamics is globally 
exponentially stable and defined by 
 
A mc (D)y(t )= B m c (D) rc(t )                             (19) 
 
if the compensators  in (15)-(18) and compensating  
signal  r1c (t)  are  chosen  to  satisfy  G1c (D, q) = P 

2 ( D , q ) G 1c
' (D, q) where  ( G 1c

' (D, q) ,  G 2c (D, 

q)  ) is a polynomial pair being a unique solution to 
the two- variable diophantine equation  : 
Q c

' ( D) G1c
' ( D,q) + P c

' (D )G 2 c (D, q)   

                     = L c
' ( D, q) − A m c

" ( D, q)            (20) 

with L c ( D , q ) = P 2c ( D, q ) L c
' ( D,q )  and Amc 

(D, q) = Q c (D,q) P 2c (D,q)A mc
" (D,q)  subject to 

any of the two the next degree constraints  
 
deg D( L c ( D,q)− A mc ( D)) ≤deg D (G 1c (D, q))  
deg D( G2 c (D, q))< deg (Q c (D )) = deg ( P c ( D))  
                                                                     (21.a) 
deg D( L c ( D,q)− A mc ( D) )≤ deg D (G 2c (D, q))   
deg D( G1c( D, q))< deg (Q c (D )) = deg ( P c ( D))  
                                                                     (21.b) 
and 
 

G 3c(D,q)=
G 1c

' (D, q) − L c
' (D, q)

Q c (D) P1c (D)Q d (q)
N cd

u (D, q)   (22.a) 

G 4c (D,q) =
G 1c

' (D, q) − L c
' (D,q)

Q c (D)P1c (D) Q d (q)
N cd

ω (D, q)  (22.b) 

r 1c (t )=
B mc

' ( D)
P 2c ( D)R 1c ( D)

r c (t)                         (22.c) 

 
with  B m c

' (D)  being the free- design zeros  of  Wmc 

(D)  ( i. e. , those of  Wmc ( D) excluding the factor  

Q c (D)P 1c (D)  ).                                               �   
The proof is omitted by space reasons. Note   that 
Theorem 2  applies the same philosophy for pole-
placement  for the continuous reference model as  the 
previously  used for the discrete one  in Corollary 1 
since the  coupling  signals from the discrete  
subsystems to  the continuous one are cancelled by  

the controller (14)-(17) with the compensators and 
compensating signal fulfilling (20)-(22)  while the 
compensating signal in (22.c)  is used to cancel the 
unsuitable plant zeros .  A more general choice of  r1c 

(t) based on an arbitrary design of  G ic ( D, q )  ( i = 

3 , 4 ) could be established without difficulty  in the 
same way as addressed in Theorem 1 for the discrete 
model  , although at the expense of more involved 
calculations .               
 
Summary of the controller synthesis method and  
guidelines for  particular designs of  interest: The 
synthesis of the hybrid controller  for the hybrid plant 
(1) consists of firstly defining the discrete and 
continuous  reference models W md (q)  = B md (q) / 

Amd (q)  and  W mc (q)  = B mc(q) / Amc (q)   for 

uniformly bounded reference inputs  r d [ k] and  rc (t) 

, t ∈ [ k T , ( k+1)T)  .   Then,  u [ k ]   and u (t)  , t 
∈  [ k T , ( k+1)T)  are generated  from  (6) ,  with 

the compensators designed according to Theorem 1 or 
Corollary 1 , and  (15)-(18) with the compensators 
designed according to Theorem 2 , respectively . 
There are several particular designs of practical 
interest, within the above general framework, which 
are now described concerning  the use of a unique 
reference model or the way of combining the 
dynamics of two separate discrete and continuous 
reference models  to improve the  performances  of 
the closed-loop system . 
 
Design 1: (Continuous - time  reference  model). The 
reference  input to the continuous-time  reference 
modelWmc(D)is piecewise continuous with 

discontinuities at sampling instants and being constant 
inbetween sampling instants and  the discrete-time 
reference model  W m d (q)   is the z - transform  of  

W m c(D) . Choose  the reference signal as  r (t) = r c 

(t) = r c [k] = r d[k] = r [k]  ,  t ∈ �[ k T , ( k + 1 ) T ). 

Thus, the reference output  is generated  by a unique 
reference model for all  t � 0 .  The , in general 
discontinuous , plant  input is generated from (6) and 
Theorem 1 , or Corollary 1 , for t = k T and from (15) 
-(18)and Theorem 2 for t ≠  k T .  The main 
difference of  Design 1 with respect to  Design 2 
below is that  the  plant  input  is generated at 
sampling instants  from a discrete-time model - 
following philosophy  while it is generated from a 
continuous-time model- matching  philosophy 
inbetween  sampling instants  despite that  a unique 
continuous - time  model is available together  with  
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its  discretization  at  sampling  instantse.  In other 
words, the diophantine equation solving the pole-
placement problem at sampling instants  is of a 
discrete nature  and it  is related to the q-operator 
while  that  used for the continuous dynamics pole-
placement is of a continuous nature and it is related to 
the D-operator.  
 
Design 2:  (Continuous- time reference model with 
the controller using periodic plant reparametrization). 
W m c( D ) is used as  the unique reference model at 

all time.  The use of a discrete-time reference model   
W md (q)  is omitted in this design . At each new 

sampling instant t = kT , the  continuous-time 
description of the plant is reparametrized  with the 
replacement  Pc(D) Qd(q)  with Pc(D) Qd(q) + 

Q c (D) N cd
u (D,q)   in  (3), according to  Remark 1,  

since the right - hand -side  terms of (1.a ) and (1.c) 
that involve to u ( t ) and u [ k ] have to be summed up  
when  t = k T . Thus , (15) -(18)and Theorem 2 are 
used to generate the control signal for  each  t = k T    
with  r  (t)=r [k ]= r c  [k]. Subsequently, r1c (t) = r 1 

(t) and  r  (t)  = r c  (t)   , t ∈ ( k T , ( k + 1 ) T ) and 

the plant input u (t) is generated  from (17) and 
Theorem 2  for t ≠ k T.  The main difference of 
Design 2 with respect to Design 1  is that  now  the 
plant input is always generated from Theorem 2 (i. e.,  
from the continuous-time dynamics) with the plant 
involving a reparametrization at sampling instants (see 
Remark 1 ).  In  other words, the associated pole-
placement problem problem  is  given by two 
diophantine equations at and inbetween sampling 
instants. Those equations are associated to , in general 
, different plant parametrizations  which arise  fro the 
fact that the input , state and output  signals become 
additive at sampling instants in the rigth-hand-sides of 
eqns. 1 .  
 
Design 3: ( Discrete - time reference model ).  The 
plant input is restricted to be piecewise continuous   
with discontinuities at sampling instants only while 
being constant  inbetween sampling instants , i. e .,  it 
is generated by a zero-order-hold and u (t) = u [ k ] = 
u ( kT) , t ∈  ( k T , ( k + 1 )T ) . Thus , only the 
discrete-time reference model W md (q)  is used  in 

this particular design . Thus, r1 [k] = r1d [k] and  r (t) 

= r [k]= r d [k]. Simple calculus yields  ��[k] =
��
�u [k]   

with  
��

� =( e A c ( T− t )

0

T

� d τ) b c  ,  which substituted in 

(2) and (6) yields directly : 

Q d y[k]= P d (q)u[k]                              (23.a) 
u (t ) = u[k]= C yu

d (q)y[k]+ C r 1u
d (q) r 1d [k]     

                                                                 (23.b)                                  
all t ∈ [ k T , ( k + 1 ) T ) with  
 

��
G 1d (q) = G1d (q) +G 3d

T (q)� = G 1d
' (q)P 2d (q)       

                                                                 (23.c) 

��
P d (q) = P d (q)+ Q d (q)c T

�                    (23.d) 

C yu
d (q) =

G 2d (q)
L d (q) − G 1d (q)

                      (23.e) 

C r 1u
d (q) =

R 1d (q)
L d (q)− G 1d (q)

                      (23.f) 

 
the model- matching problem is solved by  applying 
the controller to the plant by recombining eqns. 26.a  
while solving the diophantine equation ( 8 ) with the 
replacement  G 1 d →G 1d  in the solution 

polynomials  G 1d
'  and  G 2 d  , which are unique if  

deg (G 1d
'  ) = deg ( P 1d ) -1  and the compensating 

signal  r 1 (t) = r 1 [ k ] = r 1d [k] = 

R 1d
− 1 P 2 d

−1 B md
' r [k]  ,  all t ∈ [ k T, (k+1)T ] and all 

nonnegative integer k . 
 
Design 4: (General combined continuous - time and 
discrete-time reference models  with large sampling  
periods ). This design keeps  both Objectives 1-2. The 
discrete-time reference model W md (q)  is designed 
with a large sampling period compared to the 
dominant  constant of the continuous- time  subsystem 
while  keeping Assumption 3. I this context,  
Objective 2 over the continuous- time reference model 
W mc (D )  is the basis of the overall design . 
Objective 1 is used  for periodic testing of the closed-
loop performance  and eventual re- adjustment of the 
continuous-time model in case of performance' s test 
failure. If such a test fails  in terms  of excessive 
deviations of the sampled output  from its 
neighbouring values  generated by Objective 1 then  
either the  high- frequency gain  of  Wmc ( D) or  its  
reference input rc (t) can be  re-updated appropriately. 
This model re-updating procedure makes justifiable 
the use of two separate continuous-time and discrete- 
time reference models and two associated control 
objectives  as stated in the general design procedure. 
An important advantage is that the possible re-
updating could be implemented while keeping two 
independent continuous-time and discrete - time 
reference dynamics. Another important key  issue  
which can be extended to all the above designs is that 
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the continuous-time equations of both the plant and 
continuous-time reference model can  be implemented  
in practice through  a discretization at very low 
sampling periods compatred  to  the  sampling  period  
that  regulates  the  discrete  dynamic. All the 
formulation has been extended to the presence of 
unmodelled dynamics and noise environments and 
also it has been tested with numerical examples in 
both of these situations as well as in the ideal 
deterministic one, but the obtained results have been 
omitted by space reasons. 
 

CONCLUSION  
 

 This paper has dealt with the model - following 
design of a class of single- input single- output linear 
hybrid systems  which consists of a continuous-time 
subsystem and a  digital one which are coupled in 
general . The digital subsystem is driven by the input 
samples and it has, in general, couplings  with the  
samples of the continuous substate. The design 
philosophy is the simultaneous use of a continuous - 
time model to be matched inbetween sampling 
instants as well as a discrete- time  one which has to 
be matched at sampling instants . A particular possible 
design objective, which is included within the general 
proposed framework, is the choice of the discrete 
model as the discretization of the continuous - time 
one  to be matched  inbetween sampling instants. 
Another possible particular design is the definition of 
the discrete model at slow sampling for a periodic on-
line testing of performance through testing of  either 
the set point input reference signal or the high 
frequency gain of the continuous - time reference 
model with  the eventual subsequent  re- adjustment of 
such a model in the case when the  above  
performance' s test is not  found to be suitable.  
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