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Abstract: Problem statement: The design of hip prostheses has evolved over toeeto various
complications found after hip replacement surg&he currently commercially available cementless
femoral stems can be categorized into one of thnaer types, straight cylindrical, tapered rectdagu
and anatomical. Each type proposes a unique cotzgghieve primary stability-a major requirement
for bone healing process. Virtual analyses haven beade on individual implants, but comparison
between the three major types is required to déterrthe strength and weaknesses of the design
concepts. Approach: Three types of implants were modeled in three dgiwers-the straight
cylindrical, rectangular taper and anatomical. Stze of the three implants was carefully desigreed t
fit and fill the canal of a femur reconstructed nfrca computed tomography image dataset. Hip
arthroplasty was simulated virtually by insertirige thip stem into the femoral canal. Finite element
method was used in conjunction with a specialiagotreutine to measure micromotion at the bone-
implant interface under loads simulating physiotadi walking and stair-climbing. Another sub-
routine was used to assign bone properties bas#iteqggrayscale values of the CT imaBesults: All

the three types of cementless hip stems were foaubhe stable under both walking and stair climbing
activities. Large micromotion values concentrateguad the proximal and distal part of the stems.
Conclusion/Recommendations. The three major types of hip stems were comparetisnstudy and

all of them were found to be stable after simulatbgsiological activities.
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INTRODUCTION extensive porous coating with distal fixation (the
AML), the anatomic proximal fixation (the PCA, the
Cementless hip stems come in different shape#&natomic) and gradual proximal to distal off-loagin
and sizes. In order to analyze practically theaffef  tapered geometry (the Mallory-Head).
these different geometries on primary stabilityeyth From the search in the literature and websites of
should be grouped into several categories based damplant manufacturers, similar groupings to
their features. There is no consensus at the moiment Mallory et al.”! was found based on the overall
terms of grouping cementless stems according to thegeometry. The first group belongs to hip stems Wwhic
geometry, mostly due to the large variety ofare not tapered in any plane in the distal halthwit
cementless stems available in the market. Haly cylindrical shape. Examples of hip stems withinsthi
grouped cementless femoral components into 5 basigroup are the AML (DePuy) and the Versys (Zimmer).
types with examples of each-the cylindrical distalThe second grouping is based on stems that have a
filling (the AML, the solution), the anatomic, prioxal ~ proximal to distal taper in either or both the $idi
fit and fill (the PCA, the anatomic), combinatidhg S- and longitudinal planes such as the Alloclassic
ROM, the bridge), dual, tapered wedge (the Omnifit,(Zimmer) and the Triloc (DePuy). Some tapered
the Summit) and flat, tapered wedge (the Tri-Labtle ~ designs such as the Mallory-Head also have a poister
Accolade). Malloryet al.”) grouped them into three to-anterior taper in the coronal pl&heThe third group
distinct design geometries and philosophies-thés the Anatomic and was defined as stems designed
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with an anterior-posterior curve that mimics théunal The implants were then positioned inside the
curve of the human femur. The design thereforeahas femoral canals and the necks of the implants were
unique left and right component. Some examplei®f t angulated according to the anteversion angles ef th
anatomical stem are the ABG (Stryker) and the IPSntact femur (Fig. 1). The stems were assignedeali
(DePuy). All the three groups were categorized #hasejsotropic material properties resembling titaniutioya
on the overall geometry of the implant. Micro and (110 GPa), whilst the properties of the bone was
macro features on the surface of the implant wergggigned according to the grey level values ofGfie
ignored in the grouping. _._dataset. An in-house algoritffnwas used to correlate
Most cementless femoral stems rely on fixation,, grey-level of the CT images using the apparent

based on press-fit where there is a contact pressu ; : ;
between the bone and the implant. However, dubdo t Hensny thro]ugh (.:Ublc C(_)rrela_tlon proposed by Garte
and Hayed. This relationship was based on the

viscoelastic behavior of bone the effectivenesgregs- assumption that cancellous and cortical bones are
fit is limited through relaxation of contact presss at ) ptior .
simply at different ends of a continuous spectrum.

the interfacE. The straight cylindrical stems normally ; b ol d
rely on strong cortical support distally for stéyil Perfect bone-implant contact was assume

however, there are reports where fixation could pdnitially with the coefficient of friction set to.@ and
achieved proximalf). The tapered stems usually rely @n interference fit of 0.1 mm. In order to precicid
on a three-point fixation pattern and a graduat off simulate unstable femoral components, bone-implant
loading distally[f]. Fixation can also be achieved contacts were removed on elements with interface

proximally, such as the CLS stem (Zimmer), ormicromotion of more than 50 microns after the first
distally, such as the Alloclassic (Zimmer). The iteration to simulate interfacial bone loss. Thedels
curvature in anatomical stems provides maximumwere then loaded in the same physiological loading
contact with the endosteal bones and sometimesawithand the iterations continued until either a stedibde
large proximal segment to match the proximal cavitymicromotion was achieved or loosening was
of the femur. It has been claimed that this desigmpredicted.

feature optimized resistance to axial, bending and Two of the most common physiological activities-
rotational force¥. Fixation for the anatomical stems walking and stair cimbing were used in the analysis
can also be achieved either proximally or distallje  (Fig. 2). The dataset was obtained from the work of
ABG (Stryker) and the IPS (DePuy) has a smallemgitsako$” and Dud&°*? in which muscle and joint
stem diameter distally suggesting an intendedprces for two physiological activities, walkingdastair

proximal fixation through distal bone overreaming climbing, were measured using telemetry (Table 1).
technique. The Profile (DePuy), however, has a

standard diameter of stem distally which can be
regarded as distally fixed.

MATERIALSAND METHODS

Three implant designs to represent each group were
modeled using a commercially available three
dimensional modeling software. A generic straight
cylindrical stem was developed to represent thst fir
group with a geometry similar to the AML (DePuy).
For the tapered group, another hip stem model was
developed based on the overall geometry of the
Alloclassic (Zimmer). It has a flat straight tapier
transverse section and a wedge shape mediolaterally
For the anatomical group, the ABG (Stryker)
prosthesis was used as a reference. All the three
implants were designed to fit and fill the canaltioé
femur which has been reconstructed virtually from
Computed Tomography (CT) image datasets. AllFig. 1: The three models of cementless hip stesigen
implants have the same length and a homogeneous the femoral canal-straight cylinder (left),
surface structure and surface finish throughout. rectangular taper (middle) and anatomical (right)
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Table 1: Maximum loading configurations in the 3rdase (toe-off) mm,
from Bitsako$!

Force (N) X Y z s
Joint contact force -613.7 -219.3 2868.7 W
Gluteus maximus 172.3 -105.0 -203.8
Gluteus medius 63.7 -28.9 -113.3 0.080

85.0 -32.2 -97.4

92.3 -40.4 -87.1 0.070
Gluteus minimus 25.4 -0.7 -51.6

30.2 -14.4 -46.8 0,060

43.2 -18.6 -33.2
llliopsoas 3.6 160.6 -158.5 g8
Piriformis 1105 -70.1 -22.4

Piriformis

0.030
Joint contact

Gluteus nunimus force 0 020

Gluteus medus 0 010

Tliopscas 0,000

Gluteus macimus

0.100
0.090
0.080
0.070
0.060

0.050

Fig. 2: Location of the muscles attachment uséd by

0.030

An in-house experimentally validated computer
algorithn'”! was used to measure micromotion at the J§ «
interface and predict instability of the stem. This
algorithm calculates the displacement of the stative
to the endosteal surface of the bone by subtractincll .o
displacement values between corresponding nodée at
interface. Non-linear contact analysis was used by

assigning target and contact surfaces between thgg 3: Contour plots of micromotion for the cylizhl

0.010

individual parts of the model. The constraint agxed (left), the tapered (middle) and the anatomical
with no penetration is implemented by transforming (right) using Bitsakos gait loading (top) and
degrees of freedom of the contact node and applying Duda’s stair-climbing loads (bottom) after the 1st
boundary condition to the normal displacement. iteration

RESULTS

After simulated interfacial bone loss, results aver

Figure 3 shows the magnitudes and distribution otompared again (Fig. 4). In general, all designsewe
micromotion for all three implants in both physigical  found to be stable with bone loss only increased
walking and stair climbing. Large micromotions were slightly, up to 13%. The anatomical design was tbun
found in the proximal areas and around the dis&ahs to be the most stable with a very small increase in

The amount of surface areas with micromotion exeged surface area above 50 microns. The cylindricalgiesi
the threshold value of 50 microns were between%-10 was the worst in stair climbing with an increase in

for all designs. unfeasible surface area from 9-13%. The taperedries
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Fig. 5: Percentage of surface area with predictaaeb
growth for the cylindrical, the tapered and
anatomical stem designs using Bitsakos gait

0.020
0.010

o.000

had similar distribution of micromotion and werd al

stable when bone loss was simulated. The reswdtgar

agreement with published results of actual hip stem
belonging to these groups. The AML, the Alloclassic
and the ABG are all implants with excellent surViva
rates in short-term, medium-term and long-t&¥Af.

The AML is one of the most widely used
cementless stems with good clinical outcomes dififer
arthroplast{’l. The results are well-published covering
patients with a wide range of ages. Sugiyasnal *®
reported their 15 years clinical experience witle th
AML hip prosthesis. Out of 393 AML stems implanted
only 6 have been revised, 3 of which were due to
loosening. Another stuff{ reported a survival rate of
92% at 10.5 years with 88% of the patients had gwod
excellent clinical results. Kronickt al.*” reported a
follow-up study of 88 AML stems inserted in patient
under the age of 50 with a survival rate of 99 a6él
of which has bone ingrown, 3% stable fibrous tissue
and only 1% was found unstable.

The FE results were also in agreement with other
follow-up studies in terms of predicting bone ingtb.

Fig. 4: Contour plots of micromotion for the cylihl When solid initial fixation of the AML stem is aehied

(left), the tapered (middle) and the anatomica|intraoperatively and radiographically, l_aone_ ingrowt
(right) using Bitsakos gait loading (top) and reliably occurs whether or not the patient is abow

Duda’s stair-climbing loads (bottom) after part_ial or full weight-bearing post surggﬁ}g]. Dense _
simulated interfacial bone loss cortical and cancellous bone ingrowth was founchwit

strong attachment of the metal implant to the

was the worst in physiological walking where thers ~ Surrounding borlé?l. No slippage was found at the
an increase from 8-10%. Fig. 5 shows the reduation interface when the retrieved sample was tested runde

torsional and axial load. Another study reporteat #m
average of 57% of the porous coated area of tha ste
DISCUSSION had bone ingrowtf".

For the anatomical design, there are also follgw-u

The results showed that the three categoriespof hireports confirming our FE predictions. The ABG hip

stems, the cylindrical, the tapered and thécamigal, stem has been reported to have excellent clinindl a
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radiographic results at short-tdfht? and middle-term secondary stability. The Alloclassic, for exampias a
follow-up®?>%!. Other anatomical stem designs such adateral flare feature-a proximal lateral expansishijch
the APR-Il and the Profile showed excellent clihica is designed to engage the lateral cortex of theufem
and radiographic results at 10 years follow-uphwib  the metaphysis. It has been reported that thisufeat
stems revised for aseptic looserfifif’ Proximal provides extra initial stability in cementless hip
fixation through bone ingrowth was found in allmte  stem&**. The ABG has unique semi-circular
and no patient reporting thigh pain after 3 years. indentation macrofeatures on both its anterior and
Invitro experimental comparison studies between gosterior sides. This feature can provide additiona
curved anatomical stem and a straight &&ifl found  fixation strength proximally as the distal bone Bve
that at low angles of flexion, the curved and gindi reaming technique employed for this stem will only
stems demonstrated similar patterns of interfacallow load transfer in the proximal region. Proxima
micromotion. However, at high torsional momentshsuc tapered fins such as the one found in CLS stem and
as the one observed during stair climbing, the edirv grooves were also used to provide primary and
stem was found to be more stable than the stratght.  secondary stability.
Our FE results, however, did not show a significant

difference between the two designs at this phygiokd CONCLUSION
loading condition. The reason could be that in e
models, a perfect fit was assumed with an interigge Three types of cementless femoral stems were

of 0.1 mm throughout the surface of the stem. TEe F analyzed for stability using an in-house experirafint
results showed that the straight stem had 9% sarfacvalidated interface micromotion algorithm. Load
area in excess of the threshold limit of 50 umriaee  simulating physiological activities of walking asthir-
micromotion compared to the anatomical stem with 8%climbing was used and micromotion results were
However, when the bone elements were adjusted toompared between them. Interfacial bone loss was
simulate bone loss, the aredldr the straight stem simulated to better predict the stability of therss.
increased to 12%, but the anatomical stem mairdaineThe results showed that the three types of femoral
at 8%. This showed that straight stems were morstems were stable under both physiological actiwiti
susceptible to micromotion during stair-climbing ewh
a perfect fit at the interface was not achieved. ACKNOWLEDGEMENT
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