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Abstract: Problem statement: To design, implement, and test an algorithm for solving the square 
jigsaw puzzle problem, which has many applications in image processing, pattern recognition, and 
computer vision such as restoration of archeological artifacts and image descrambling. Approach: The 
algorithm used the gray level profiles of border pixels for local matching of the puzzle pieces, which 
was performed using dynamic programming to facilitate non-rigid alignment of pixels of two gray 
level profiles. Unlike the classical best-first search, the algorithm simultaneously located the neighbors 
of a puzzle piece during the search using the well-known Hungarian procedure, which is an optimal 
assignment procedure. To improve the search for a global solution, every puzzle piece was considered 
as starting piece at various starting locations. Results: Experiments using four well-known images 
demonstrated the effectiveness of the proposed approach over the classical piece-by-piece matching 
approach. The performance evaluation was based on a new precision performance measure. For all 
four test images, the proposed algorithm achieved 100% precision rate for puzzles up to 8×8. 
Conclusion: The proposed search mechanism based on simultaneous allocation of puzzle pieces using 
the Hungarian procedure provided better performance than piece-by-piece used in classical methods. 
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INTRODUCTION 
 
 Automatic solving of jigsaw puzzles suggests 
finding a subjectively correct spatial arrangement of the 
puzzle pieces (or sub-images) in order to reassemble a 
larger and complete image. Over the past three decades, 
the jigsaw puzzle problem has attracted researchers from 
various fields including pattern recognition, image 
processing, computer vision, combinatorial optimization 
and many other fields of mathematics. Automatic puzzle 
solving has many application domains and can provide 
interesting solutions to some problems. For instance, 
speech scrambling in the frequency domain is usually 
made by dividing the spectrogram into pieces and, then, 
rearranging them in such a way that the speech cannot be 
recognized when the inverse transformation is applied. 
Clearly, puzzle solving is suited for speech descrambling 
in this case. Other examples of application domains 
include assembly of cracked art paintings, restoration of 
archeological artifacts and image descrambling. 
 Below are some criteria that govern the selection 
of a puzzle solving algorithm for a specific application: 
 
Accuracy: An algorithm should assemble puzzles with a 
high degree of accuracy. 

 
Invariance: An algorithm should be invariant to 
rotating and translation of the puzzle pieces. 
 
Robustness: An algorithm should perform well when 
some pieces are missing, extra, or overlapping. 
Scalability: An algorithm’s performance should be 
invariant as the number of puzzle pieces increases. 
 
Generality: Can be applied to different types of 
images such as binary, grayscale and colored images. 
 
Computational complexity: An algorithm should be 
computationally efficient in order to be suitable for 
real-time applications. 
 
 One of the earliest attempts to solve the jigsaw 
puzzle problem was due by Freeman and Garder[3] 
more than four decades ago. Most existing techniques 
for solving jig-saw puzzles assume curved canonical 
shapes, which have concavities and convexities, of the 
puzzle pieces[14]. This assumption usually leads to a 
clear distinction between border and internal pieces 
which reduces the search space for the solution and 
makes it tractable. A few other techniques work on 
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puzzle pieces with arbitrary shapes and treat 
assembling pieces as partial shape matching 
problem[4,6]. Toyama et al.[11] proposed a method for 
solving rectangular puzzle of binary images using a 
genetic algorithm approach. Regarding the features 
considered for piece matching, some methods use other 
information in addition to shape such as color[1,13] or 
texture[9]. 
 Local matching of puzzle pieces, although 
essential, is usually not sufficient to solve the puzzle 
problem efficiently. A global search that seeks the 
minimum sum of distances 
across the entire assembly of the puzzle pieces is 
required. However, such global search is known to be 
NP-complete problem[2]. To overcome this difficulty, 
some methods rely on the high discrimination ability of 
the local matching function which makes the basins of 
attraction of the global solution quite large especially 
when the number of pieces is moderate (below 
100)[5,15]. Other methods use local search with 
backtracking to avoid local minima and improve the 
global search[4]. When the border pieces can be 
identified, their arrangement becomes similar to the 
well-known traveling salesman problem due to their 
closed loop nature[1,14]. Genetic algorithms, which is an 
evolutionary optimization approach, has also been used 
to solve the jigsaw puzzle problem[11]. 
 In this study, we present a method for solving the 
square jigsaw puzzle problem as shown in Fig. 1. All 
puzzle pieces have square shape; therefore, it is not 
possible to identify the border pieces. For matching 
pieces, the gray level pro-files of borders at the four 
piece sides are employed. The main contribution of 
the work presented in this study is the enhancement 
of the local search by using the Hungarian method[7], 
which is an optimal assignment procedure. Unlike in 
most previous methods where local search is proceeded 
in a piece-by-piece manner, all neighbors of a puzzle 
piece are located simultaneously during the puzzle 
assembly. The algorithm searches for the solution with 
different starting pieces at various locations to improve 
the global search. This search mechanism can be 
applied to any type of features such as color or texture 
and to arbitrary shaped puzzle pieces. 
 
Problem description: Given an m × n location grid of 
mn subimages of square puzzle pieces of an image, the 
aim is to place a puzzle piece at each location of the grid 
such that the arranged pieces subjectively reassemble 
an original image. In this study, grayscale images are 
considered and puzzle pieces are obtained artificially. 
Although no rotation of the puzzle pieces is allowed, the 
search for a global minimum is still NP-complete. 

Since all puzzle pieces have the same square shape, 
no priori knowledge can be used to differentiate 
between border and internal pieces. In addition, it is 
not possible to use partial shape matching. Instead, the 
gray level profiles of border pixels at the four piece sides 
are employed for matching the puzzle pieces. 
 In our method, the local search is enhanced by 
using the Hungarian method[7,8], which is an optimal 
assignment procedure. Unlike most previous methods 
where local search is proceeded in a piece-by-piece 
manner, all neighbors of a puzzle piece are located 
simultaneously during the puzzle assembly. This can 
be viewed as an alternative to backtracking in the 
sense that both approaches avoid the best-first piece in 
order to obtain a local minimum in a larger 
neighborhood. In our method, the global search is 
performed implicitly by repeating the search with 
different starting pieces at various locations which more 
likely enables finding the global solution. This 
approach can be applied to arbitrary types of features 
such as color or texture and to arbitrary shaped puzzle 
pieces, which constitutes a main direction of our future 
research in this area. 
 

 
(a) 

 

 
(b) 

 
Fig. 1: An example of 8×8 puzzle. (a) the original 

Lena image and (b) a scrambled version 
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MATERIALS AND METHODS 
 
Local matching via dynamic programming: Here, a 
dynamic programming approach for matching border 
gray level profiles of puzzle pieces is presented. 
 A border gray level profile can be viewed as a one-
dimensional sequence where matching two sequences is 
based on finding the optimal (i.e., least cost) 
correspondence between their points. Consider the 
border gray level profiles of Fig. 2. Panel (a) shows 
the profiles of two neighboring borders. Unlike the 
non-neighboring profiles in panel (b), neighboring 
profiles usually exhibit similarity in the overall shape 
with small deformations and displacement. Therefore, a 
dissimilarity distance that handles such transformations 
is employed, which is based on Dynamic Time Warping 
(DTW)[10,12]. Unlike the Euclidean distance that provides 
one-to-one alignment, nonlinear alignment can be 
achieved by the DTW, where one point on the sequence 
can be aligned to one or more points on another 
sequence, as illustrated in Fig. 3. 
 Let A(n) and B(n) be two sequences of border 
pro-files,    where   n∈<1, N>     is the    index    of 
the sequence points. Then, an N×N distance table, 
DT, is constructed to find the  optimal 
correspondence between the points of the two sequences. 
 

 
(a) 

 

 
(b) 

 
Fig. 2: Two examples of border gray level profiles: 

(a) neighboring and (b) non-neighboring 

The columns of DT represent the points of one 
sequence and the rows represent the points of the other. 
Initially, the elements of DT are set as: 
 

initial

0 max(1,n w 1)

DT (n,m) m min(N,n w 1)

otherwise

− + ≤
= ≤ + −
∞

 (1) 

 
where, n,m∈<1, N>, w is a predefined diagonal width 
for DT as illustrated in Fig. 4 and max(a, b) and min(a, 
b) are the maximum and minimum values of a and b, 
respectively. Only the elements of DT that fall within 
w are up-dated during the DTW search. In our 
implementation, w is set to approximately 10% of the 
sequence length, as in[10]. This initialization of DT 
avoids computing the distances between all the points 
of two sequences and restricts the distance computation 
to only those points which are more likely correspond 
to each other. Therefore, the computational complexity 
is largely reduced while more meaningful 
correspondences are obtained. 
 Starting at the first points for sequences A and B, 
the distance table DT is updated, through the diagonal 
window of width w, left-to-right and up-to-bottom 
starting from the upper-left element, as shown in Fig. 4. 
The first row and first column elements are initialized 
as the absolute difference between the corresponding 
points. Then, the rest of the zero-valued elements of DT 
are updated as: 
 

DT(n 1,m)

DT(n,m) A(n) B(m) min DT(n 1,m 1)

DT(n,m 1)

−
= − + − −
 −

 (2) 

 
 The least cost path through the distance table is the 
value of element DT (N, N), which corresponds to the 
best matching between the two sequences. 
 

 
 
Fig. 3: An illustration of aligning the points of two 

sequences using (a) the Euclidean distance and 
(b) the DTW algorithm 
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Fig. 4: DTW table. See text for details 
 
The proposed algorithm: A pseudo code of the 
proposed algorithm PuzzleSolve() is shown in 
Algorithm 1. The algorithm accepts as inputs a group 
of square puzzle pieces P and the dimensions of the 
rectangular grid m × n where the pieces will be located. 
 Since each square piece has 4 sides, 4-
connectedness is used where internal, border and corner 
locations have 4, 3 and 2 neighbors, respectively. At 
first, the algorithm initializes a distance matrix D which 
stores the pairwise distances between the puzzle pieces. 
The distance D(i, j) is a quadruple representing the 
right, left, top and bottom neighboring relations 
between pieces i and j. Let Ri and Lj be the grayscale 
profiles of the right side of piece Pi and the left side of 
piece Pj, respectively. Then, the first element of D(i, 
j ) = DT (N, N ), which is computed using equation 
(1),where N is the number of pixels in each side of a 
square puzzle piece. Note that Eq. 1 also represents 
the second element of D(j, i). Top and bottom distances 
are computed in the same manner using the top and 
bottom gray scale pro-files of the puzzle pieces. 
 The algorithm repeats the search for every puzzle 
piece at every internal location as the starting piece and 
returns the solution that yields the minimum sum of 
border distances. There are mn puzzle pieces, (m-2)(n-
2) internal locations and 2 mn-m-n borders in the grid. 
The requirement for repeating the search comes from 
the fact that it is not possible to discriminate between 
border and internal pieces due to their square shape 
nature. At every search with starting piece Pi at 
location (k, l), the location matrix L is initialized with 
zeros and a group I includes all pieces except Pi. Then, 
the Hungarian method[7], which is an optimal 
assignment procedure, locates four pieces at the 
neighboring locations to Pi such that the sum of border 
distances  between  Pi  and  its  neighbors is minimum. 

 
 
Fig. 5: An illustrative example of Algorithm 1 

execution steps on 4 × 4 puzzle. See text for 
details 

 
The Hungarian function is passed with a matrix H of the 
distances between Pi and all other puzzles in I, i.e., the 
elements of the i-th row in D (each element is a 
quadruple) are arranged as rows of H. The pieces 
selected by the assignment procedure assign are 
located in L and removed from I. Next, the algorithm 
selects a nonzero location in L, (kp,  lp), with greatest 
number of zero (or empty) neighbors N. When 
multiple locations exist, the location with minimum 
sum of neighbor distances is selected. Intuitively, as 
the number of pieces located at once increases, a 
global minimum is more likely achieved. The 
Hungarian procedure is applied to assign pieces in the 
empty neighbors as described earlier except that only 
elements of D corresponding to the empty locations are 
considered, i.e., the columns of H correspond to the 
zero neighbors. This process is repeated until I 
becomes empty (all pieces are located). 
 An example illustrating the execution sequence of 
the algorithm is shown in Fig. 5, which represents L 
and the numbers in the table reflect the sequence of 
assigning each location. At first, the starting piece is 
located in (2, 2) (denoted by S). Then, the first 
execution of the Hungarian procedure assigns the 
neighboring locations denoted by 1. At this time, there 
are two nonzero locations in L that have three zero 
neighbors, (3, 2) and (2, 3). The former is selected 
since it has lower sum of distances with its neighbors. 
Then, the neighbors of the piece located in (3, 2) are 
assigned (denoted by 2). Note that only right, left and 
bottom distances are considered in the distance matrix 
H since the top neighbor is already located. The 
algorithm continues until all locations are assigned. 
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RESULTS AND DISCUSSION 
 
 To test our algorithm, four well-known images are 
used, namely, Lena, Cameraman, Taxi and Circuit as 
shown in Fig. 1 and 6. All images are in gray scale 
format with 8 bit quantization. The images are 
artificially divided into square pieces of various sizes 
ranging from 4 × 4-10 × 10. To measure the accuracy of 
the algorithm, a new precision measure is proposed 
which is given as: 
 

C
Precision

T
=  (3) 

 
Where: 
C = The number of correctly located pieces  
T = The total number of puzzle pieces 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 6: Test images. (a) cameraman; (b) taxi; (c) circuit 

 This measure is suitable for error-tolerant 
applications and overcomes the drawback of 
“correct/false” decision used for evaluating most 
current methods. Figure 7 shows three demonstrations 
of this performance measure. 
 A classical method for solving the jigsaw puzzle 
problem is to proceed the search in a piece-by-piece 
manner as follows. After a starting piece is located, 
it’s best match is located at a neighboring location 
following left-to-right, top-to-bottom direction. This 
process is repeated with every puzzle piece as the 
starting piece and the minimum global solution is 
selected. We use the same distance measure for the 
classical method since the aim is to test the proposed 
search mechanism. 

 

 
Precision = 85.9% 

 

 
Precision = 46.8% 

 

 
Precision = 4.7% 

 
Fig. 7: Demonstration of precision measure 
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Table 1: Precision (%) of the proposed and classical methods at 
different puzzle sizes on the Lena image 

Puzzle size Proposed Classical 
4×4 100 100.0 
5×5 100 100.0 
6×6 100 100.0 
7×7 100 89.8 
8×8 100 12.5 
9×9 100 0.0 
10×10 53 0.0 
 
Table 2: Precision (%) of the proposed and classical methods at 

different puzzle sizes on the cameraman image 
Puzzle size Proposed Classical 
4×4 100 100.0 
5×5 100 100.0 
6×6 100 100.0 
7×7 100 91.8 
8×8 100 18.8 
9×9 100 0.0 
10×10 59 3.0 

 
Table 3: Precision (%) of the proposed and classical methods at 

different puzzle sizes on the taxi image 
Puzzle size Proposed Classical 
4×4 100 100.0 
5×5 100 100.0 
6×6 100 100.0 
7×7 100 87.8 
8×8 100 25.0 
9×9 100 7.4 
10×10 64 0.0 

 
Table 4: Precision (%) of the proposed and classical methods at 

different puzzle sizes on the circuit image 
Puzzle size Proposed Classical 
4 × 4 100.0 100.0 
5 × 5 100.0 100.0 
6 × 6 100.0 100.0 
7 × 7 100.0 77.6 
8 × 8 100.0 9.4 
9 × 9 95.1 0.0 
10 × 10 44.0 0.0 

 
 Table 1-4 show the precisions of the proposed 
algorithm and the classical method on the four test 
images, at various numbers of puzzle pieces. Clearly, 
the proposed algorithm outperforms the classical 
method with a good margin. However, the performance 
of the proposed algorithm deteriorates as the number of 
puzzles exceeds 100. 
 
Algorithm 1: Pseudo code of the puzzle solving 
algorithm: 
 
I mgOut = PuzzleSolve(P , m, n) 
 
Initialization: 
 m and n are the numbers of rows and columns of 

the puzzle grid, respectively. 

 P = {Pi} is a group of mn square puzzle pieces. 
 L is an is an m × n matrix of located pieces indices. 
 D is an m n × m n  distance matrix where D(i, j) 

is a quadruple of right, left, top and bottom 
distances between Pi and Pj . 

 hungarian(Z ) is an optimal assignment function 
that assigns the rows to the columns of the cost 
matrix Z . 

1: c←0 
2: for every internal location of the puzzle grid (k, l) 

do 
3:  for every Pi do 
4:   c←c+1 
5:   I←P−{Pi}  
6:   L←0 

7:   L(k, l)̄ ←i 
8:   H←all D(i, j), j ∈ I arranged as rows. 
9:   [assign, cost] = hungarian(H) 
10:   L(k, l±1), L(k±1, l)←I(assign) 
11:   I←I − {I(assign)} 
12:   while I           ≠ Ø do 
13:    [kp, lp]←nonzero location in L with 

greatest number of zero neighbors N. 
14:    H←elements of D(L(kp, lp), j), j ∈ I ac-

cording to N , arranged as rows. 
15:    [assign, cost] = hungarian(H) 
16:    L(N )←I(assign) 
17:    I  ←I – {I(assign)} 
18:   end while 
19:   cost(c)←sum of all 2 mn-m-n border 

distances between the arranged puzzles in L. 
20:   S{c}←L 
21:  end for 
22: end for 
23: ImgOut ← S{r} such that cost(r) = min(cost). 
24: return I mgOut 
 

CONCLUSION 
 
 This study presented an algorithm for solving 
square jigsaw puzzles. The main contribution of the 
algorithm is focused on the search mechanism which is 
based on simultaneous allocation of puzzle pieces using 
the Hungarian procedure, rather than piece-by-piece 
used in classical methods. For matching puzzles, 
dynamic time warping is used to mea-sure the 
dissimilarity of the gray scale profiles of border 
pixels. Global solution is more likely obtained by 
repeating the search with different starting pieces at 
various locations. The proposed algorithm 
demonstrated better performance over the classical 
approach using four standard test images. 
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 As most puzzle solving methods in the literature, 
the main limitation of our algorithm is the inability to 
solve puzzles with large number of pieces. Our future 
research in this area includes using other features such 
as color and texture for matching puzzle pieces. 
Another future direction is to apply the Hungarian 
procedure along with a partial shape matching 
technique for solving arbitrary shaped puzzles. 
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