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Abstract: Problem statement: To design, implement, and test an algorithm fdvieg the square
jigsaw puzzle problem, which has many application$mage processing, pattern recognition, and
computer vision such as restoration of archeoldgidiacts and image descramblifgpproach: The
algorithm used the gray level profiles of bordexets for local matching of the puzzle pieces, which
was performed using dynamic programming to fadditaon-rigid alignment of pixels of two gray
level profiles. Unlike the classical best-first ggg the algorithm simultaneously located the nieayh

of a puzzle piece during the search using the lwedlvn Hungarian procedure, which is an optimal
assignment procedure. To improve the search fdolzafsolution, every puzzle piece was considered
as starting piece at various starting locatidResults: Experiments using four well-known images
demonstrated the effectiveness of the proposedoapprover the classical piece-by-piece matching
approach. The performance evaluation was based rewaprecision performance measure. For all
four test images, the proposed algorithm achieve@%d precision rate for puzzles up to 8x8.
Conclusion: The proposed search mechanism based on simulsadiogation of puzzle pieces using
the Hungarian procedure provided better performamae piece-by-piece used in classical methods.

Key words; Jigsaw puzzle solving, image descrambling, imag#oration, square puzzle assembly,
dynamic programming and Hungarian method

INTRODUCTION
Invariance: An algorithm should be invariant to
Automatic solving of jigsaw puzzles suggestsrotating and translation of the puzzle pieces.

finding a subjectively correct spatial arrangemefnthe
puzzle pieces (or sub-images) in order to reassembl Robustness. An algorithm should perform well when
larger and complete image. Over the past threeddsca some pieces are missing, extra, or overlapping.
the jigsaw puzzle problem has attracted researdtmrs  Scalability: An algorithm’s performance should be
various fields including pattern recognition, imageinvariant as the number of puzzle pieces increases.
processing, computer vision, combinatorial optiridza
and many other fields of mathematics. Automaticzfriz Generality: Can be applied to different types of
solving has many application domains and can peovidimages such as binary, grayscale and colored images
interesting solutions to some problems. For inganc
speech scrambling in the frequency domain is uguallComputational complexity: An algorithm should be
made by dividing the spectrogram into pieces amelp,t computationally efficient in order to be suitabler f
rearranging them in such a way that the speectotéen real-time applications.
recognized when the inverse transformation is agpli
Clearly, puzzle solving is suited for speech desbtiang One of the earliest attempts to solve the jigsaw
in this case. Other examples of application domainguzzle problem was due by Freeman and G&tder
include assembly of cracked art paintings, restotadf  more than four decades ago. Most existing techsique

archeological artifacts and image descrambling. for solving jig-saw puzzles assume curved canonical
Below are some criteria that govern the selectiorshapes, which have concavities and convexitieshef
of a puzzle solving algorithm for a specific apption: puzzle piecds’. This assumption usually leads to a

clear distinction between border and internal psece
Accuracy: An algorithm should assemble puzzles with awhich reduces the search space for the solution and
high degree of accuracy. makes it tractable. A few other techniques work on

1941



Am. J. Applied Sci., 6 (11): 1941-1947, 2009

puzzle pieces with arbitrary shapes and treaSince all puzzle pieces have the same square shape,
assembling pieces as partial shape matchingo priori knowledge can be used to differentiate
problent*®. Toyamaet al.™ proposed a method for between border and internal pieces. In additioris it
solving rectangular puzzle of binary images using anot possible to use partial shape matching. Insteed
genetic algorithm approach. Regarding the featuregray level profiles of border pixels at the foueqé sides
considered for piece matching, some methods uss othare employed for matching the puzzle pieces.
information in addition to shape such as cofSt or In our method, the local search is enhanced by
texturd. using the Hungarian methd#, which is an optimal

Local matching of puzzle pieces, althoughassignment procedure. Unlike most previous methods
essential, is usually not sufficient to solve thezezle  where local search is proceeded in a piece-by-piece
problem efficiently. A global search that seeks themanner, all neighbors of a puzzle piece are located
minimum sum of distances simultaneously during the puzzle assembly. This can
across the entire assembly of the puzzle pieces ise viewed as an alternative to backtracking in the
required. However, such global search is knowndo bsense that both approaches avoid the best-firse pie
NP-complete problel. To overcome this difficulty, order to obtain a local minimum in a larger
some methods rely on the high discrimination abit ~ neighborhood. In our method, the global search is
the local matching function which makes the basihs performed implicitly by repeating the search with
attraction of the global solution quite large esplye  different starting pieces at various locations vahicore
when the number of pieces is moderate (belowikely enables finding the global solution. This
1000>*®.  Other methods use local search withapproach can be applied to arbitrary types of featu
backtracking to avoid local minima and improve thesuch as color or texture and to arbitrary shapetipu
global seardl. When the border pieces can be pieces, which constitutes a main direction of auufe
identified, their arrangement becomes similar te th research in this area.
well-known travelm? salesman problem due to their

Fe. Genetic algorithms, which | i |
cvolutionaly optimization approach, has aiso besmdy i Eg!&g’
INY.. _A

to solve the jigsaw puzzle probl&mh
.
PRLP &
/5% N

square jigsaw puzzle problem as shown in Fig. 1. Al
puzzle pieces have square shape; therefore, ibtis n
possible to identify the border pieces. For matghin
pieces, the gray level pro-files of borders at ther
piece sides are employed. The main contribution of
the work presented in this study is the enhag{cﬂ?ment
of the local search by using the Hungarian méfthod \ :
which is an optimal assignment procedure. Unlike in “ J..-k ‘n.
most previous methods where local search is precked @

in a piece-by-piece manner, all neighbors of a |guzz
piece are located simultaneously during the puzzle ]Il I.’r ’ﬁm
assembly. The algorithm searches for the solutidh w

different starting pieces at various locationsrtgpiliove h ‘.& . ..
the global search. This search mechanism can be
applied to any type of features such as color xtute

and to arbitrary shaped puzzle pieces.

In this study, we present a method for solving the

Problem description: Given an m x n location grid of
mn subimages of square puzzle pieces of an imhge, t
aimis to place a puzzle piece at each locatichefyrid
such that the arranged pieces subjectively readsemb ;
an original image. In this study, grayscale images ‘ (b)

considered and puzzle pieces are obtained arlificia

Although no rotation of the puzzle pieces is alldwthe  Fig. 1: An example of 8x8 puzzle. (a) the original
search for a global minimum is still NP-complete. Lena image and (b) a scrambled version
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MATERIALSAND METHODS The columns of DT represent the points of one
sequence and the rows represent the points oftltiee. o
Local matching via dynamic programming: Here, a Initially, the elements of DT are set as:
dynamic programming approach for matching border

gray level profiles of puzzle pieces is presented. 0  max(@n w+ 1x
A border gray level profile can be viewed as a-one DT, (n,m)= m< min(N,n+ w- 1 1)
dimensional sequence where matching two sequesces i o0 otherwise

based on finding the optimal (i.e., least cost)

correspondence between their points. Consider th@here,n,mi<1, N> w is a predefined diagonal width
border gray level profiles of Fig. 2. Panel (a) WBo for DT as illustrated in Fig. 4 and max(a, b) and min(a,
the profiles of two neighboring borders. Unlike the b) are the maximum and minimum values of a and b,
non-neighboring profiles in panel (b), neighboring respectively. Only the elements of DT that fall hirit
profiles usually exhibit similarity in the overadhape , gare up-dated during the DTW search. In our
with small deformations and displacement. Therefare implementation, w is set to approximately 10% ad th
dissimilarity distance that handles such transfdiona sequence length, as™h This initialization of DT

is employed, which is based on Dynamic Time Warpingayoids computing the distances between all thetgoin
(DTW)H%*2. Unlike the Euclidean distance that providesof two sequences and restricts the distance cotiputa
one-to-one alignment, nonlinear alignment can beg only those points which are more likely corraspo
achieved by the DTW, where one point on the seqiengg each other. Therefore, the computational coniylex
can be aligned to one or more points on anothefg largely reduced while more  meaningful
sequence, as illustrated in Fig. 3. correspondences are obtained.

Let A(n) and B(n) be two sequences of border  gtarting at the first points for sequences A and B
pro-files, where M<1, N> isthe index of the distance table DT is updated, through the dialgo
the sequence points. Then, an NxN distance tableyindow of width w, left-to-right and up-to-bottom
DT, is constructed to find the optimal starting from the upper-left element, as shownimq &.
correspondence betwettepoints of thewo sequences. The first row and first column elements are initiet
as the absolute difference between the correspgndin
points. Then, the rest of the zero-valued elemehisT

g are updated as:

E DT(n-1,m)

3 DT(n,m)=|A(n)- B(m}+ min{ DT(n- 1,m- 1 (2)
§ DT(n,m-1)

The least cost path through the distance talileeis
g 10 g % 5 T & value of element DT (N, N), which corresponds te th
Point index () best matching between the two sequences.
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Fig. 3: An illustration of aligning the points ofvo
Fig. 2: Two examples of border gray level profiles: sequences using (a) the Euclidean distance and
(a) neighboring and (b) non-neighboring (b) the DTW algorithm
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Fig. 4: DTW table. See text for details Fig. 5: An illustrative example of Algorithm 1
_ execution steps on 4 x 4 puzzle. See text for
The proposed algorithm: A pseudo code of the details

proposed algorithm PuzzleSolve() is shown in

Algorithm 1. The algorithm accepts as inputs a grou h . L ! .
of square puzzle pieces P and the dimensions of thkhe Hungariarfunction is passed with a matrix H of the

rectangular grid m xn where the pieces will beted. distances between.nd all qther puzzles inl, i.e., t.he

Since each square piece has 4 sides, glements of the i-th row in D (each element is a
connectedness is used where internal, border amgtrco duadruple) are arranged as rows of H. The pieces
locations have 4, 3 and 2 neighbors, respectivaly. selected by the assignment procedure assign are
first, the algorithm initializes a distance matfixwhich ~ located in L and removed from I. Next, the algarith
stores the pairwise distances between the puzetepi selects a nonzero location in Lp(klp), with greatest
The distance D(i, j) is a quadruple representing th number of zero (or empty) neighbors N. When
right, left, top and bottom neighboring relations multiple locations exist, the location with minimum
between pieces i and j. Lef Bnd Lj be thegrayscale sum of neighbor distances is selected. Intuitively,
profiles of the right side of piece Bnd the left side of the number of pieces located at once increases, a
piece B, respectively. Then, the first element®@i, ~ global minimum is more likely achieved. The
j) = DT (N, N), which is computed using equation Hungarian procedure is applied to assign piecefen
(1),where N is the number of pixels in each sidenof €mpty neighbors as described earlier except thit on
square puzzle piece. Note that Eq. 1 also represenglements of D corresponding to the empty locatimes
the second element of D(j,i). Top and bottom disés  considered, i.e., the columns of H correspond ® th
are computed in the same manner using the top armero neighbors. This process is repeated until |
bottom gray scale pro-files of the puzzle pieces. becomes empty (all pieces are located).

The algorithm repeats the search for every puzzle An example illustrating the execution sequence of
piece at every internal location as the startimg@iand  the algorithm is shown in Fig. 5, which represeits
returns the solution that yields the minimum sum ofand the numbers in the table reflect the sequeffice o
border distances. There are mn puzzle pieces, (R-2) assigning each location. At first, the startingcgids
2) internal locations and 2 mn-m-n borders in thd.g  |gcated in (2, 2) (denoted by S). Then, the first
The requirement for repeating the search comes frofyecution of the Hungarian procedure assigns the
the fact that_it is not p_ossible to discriminat&vﬁt@n neighboring locations denoted by 1. At this tintere
border and internal pieces due to their square &shapy e tyo nonzero locations in L that have three zero
natur.e. At every searph W'th. sta.rthg. .p|.ece _‘ﬂ neighbors, (3, 2) and (2, 3). The former is sebcte
location (k, I), the Io_cat|on matrix L is initiakd with  gince it has lower sum of distances with its netghb
zeros and a group lincludes all pieces excepTRen,  then the neighbors of the piece located in (3ar2)
the Hungarian methdd which is an optimal assigned (denoted by 2). Note that only right, &fd
assignment procedure, locates four pieces at thgaom distances are considered in the distancexmat
neighboringlocations to Psuch that the sum of border | gince the top neighbor is already located. The
distances betweenj Rnd its neighbors is minimum. algorithm continues until all locations are assijne
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RESULTSAND DISCUSSION This measure is suitable for error-tolerant
applications and overcomes the drawback of
To test our algorithm, four well-known images are“correct/false” decision used for evaluating most
used, namely, Lena, Cameraman, Taxi and Circuit asurrent methods. Figure 7 shows three demonstsation
shown in Fig. 1 and 6. All images are in gray scaleof this performance measure.
format with 8 bit quantization. The images are A classical method for solving the jigsaw puzzle
artificially divided into square pieces of variosges problem is to proceed the search in a piece-byepiec
ranging from 4 x 4-10 x 10. To measure the accuodcy manner as follows. After a starting piece is lodate
the algorithm, a new precision measure is proposeil's best match is located at a neighboring loaatio
which is given as: following left-to-right, top-to-bottom direction. his
process is repeated with every puzzle piece as the
starting piece and the minimum global solution is
selected. We use the same distance measure for the
classical method since the aim is to test the mego

Where: _ search mechanism.
C = The number of correctly located pieces

T = The total number of puzzle pieces

Precision=$ 3)

Precision = 85.9%

(b)

.

Precision = 4.7%

©

Fig. 6: Test images. (a) cameramg); taxi; (C) circuit Fig. 7: Demonstration of precision measure
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Table 1: Precision (%) of the proposed and claksiwethods at P ={R}is a group of mn square puzzle pieces.

different puzzle sizes on the Lena image . . . . L
Lis anis an m x n matrix of located pieces ipdic

Puzzle size Proposed Classical . . . ..
ad 100 P 100.0 D is an mnxmn distance matrix where D(i, j)
5x5 100 100.0 is_ a quadruple of right, left, top and bottom
6x6 100 100.0 distances between Bnd R .
;:; igg ?g'g hungarian(Z ) is an optimal assignment function
9x9 100 0.0 that assigns the rows to the columns of the cost
10x10 53 0.0 matrix Z.
1: c-0
Table 2: Precision (%) of the proposed and claksisathods at 2. for every internal location of the puzzle grid ()
different puzzle sizes on the cameraman image ) do
Puzzle size Proposed Classical 3: f d
a4 100 100.0 ' or every fpdo
5x5 100 100.0 4: C—c+l
6x6 100 100.0 5: | P—{P}
7x7 100 91.8 : !
8x8 100 18.8 6: L0
9x9 100 0.0 ) i
10x10 59 3.0 & Lk, ) i
8: Hall D(i, j), j O I arranged as rows.
Table 3: Precision (%) of the proposed and clabsicethods at 9 [assign, cost] = hungarian(H)
different puzzle sizes on the taxi image 10: L(k, I£1), L(k+1, )~ I(assign)
Puzzle size Proposed Classical 11: I—1 - {l(assign)}
gig 188 188-8 12: while 1= @ do
66 100 100.0 13: [kp, Ip] —nonzero location in L with
77 100 87.8 greatest number of zero neighbors N.
8x8 100 25.0 . i i -
o9 100 >4 14: H<_e.lements of D(L(s: Ip), 1), ] O lac
10x10 64 0.0 cording to N, arranged as rows.
15: [assign, cost] = hungarian(H)
Table 4: Precision (%) of the proposed and clabsicethods at  16: L(N)- I(assign)
different puzzle sizes on the circuit image 17: l—1 — {I(assign)}
Puzzle size Proposed Classical 1g: end while
g:‘s‘ 188'8 188'8 19: cost(c}sum of all 2 mn-m-n border
6x6 100.0 100.0 distances between the arranged puzzles in L.
7x7 100.0 776 20: S{c}-L
8x8 100.0 9.4 21: end for
9x9 95.1 0.0 22: end for
10x10 44.0 0.0 23: ImgOut— S{r} such that cost(r) = min(cost).

o 24: return ImgOut
Table 1-4 show the precisions of the proposed

algorithm and the classical method on the four test CONCLUSION

images, at various numbers of puzzle pieces. Giearl

the proposed algorithm outperforms the classical This study presented an algorithm for solving

method with a good margin. However, the performancequare jigsaw puzzles. The main contribution of the

of the proposed algorithm deteriorates as the nuwibe algorithm is focused on the search mechanism wisich

puzzles exceeds 100. based on simultaneous allocation of puzzle piesgsyu
the Hungarian procedure, rather than piece-by-piece

Algorithm 1: Pseudo code of the puzzle solvingused in classical methods. For matching puzzles,

algorithm: dynamic time warping is used to mea-sure the
dissimilarity of the gray scale profiles of border
ImgOut= PuzzleSolve(P , m, n) pixels. Global solution is more likely obtained by
repeating the search with different starting pieees
Initialization: various  locations. The  proposed algorithm
m and n are the numbers of rows and columns oflemonstrated better performance over the classical
the puzzle grid, respectively. approach using four standard test images.
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As most puzzle solving methods in the literature,7.
the main limitation of our algorithm is the inabjlito
solve puzzles with large number of pieces. Ourr&itu
research in this area includes using other featsueh 8.
as color and texture for matching puzzle pieces.
Another future direction is to apply the Hungarian
procedure along with a partial shape matching
technique for solving arbitrary shaped puzzles. 9.
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