
American Journal of Applied Sciences 6 (11): 1941-1947, 2009
ISSN 1546-9239
© 2009 Science Publications

1941

Solving Square Jigsaw Puzzles Using Dynamic Programming and the

Hungarian Procedure

Naif Alajlan
Advanced Lab for Intelligent Systems Research, Department of Computer Engineering,

King Saud University, P.O. Box 51178, Riyadh 11543, Saudi Arabia

Abstract: Problem statement: To design, implement, and test an algorithm for solving the square
jigsaw puzzle problem, which has many applications in image processing, pattern recognition, and
computer vision such as restoration of archeological artifacts and image descrambling. Approach: The
algorithm used the gray level profiles of border pixels for local matching of the puzzle pieces, which
was performed using dynamic programming to facilitate non-rigid alignment of pixels of two gray
level profiles. Unlike the classical best-first search, the algorithm simultaneously located the neighbors
of a puzzle piece during the search using the well-known Hungarian procedure, which is an optimal
assignment procedure. To improve the search for a global solution, every puzzle piece was considered
as starting piece at various starting locations. Results: Experiments using four well-known images
demonstrated the effectiveness of the proposed approach over the classical piece-by-piece matching
approach. The performance evaluation was based on a new precision performance measure. For all
four test images, the proposed algorithm achieved 100% precision rate for puzzles up to 8×8.
Conclusion: The proposed search mechanism based on simultaneous allocation of puzzle pieces using
the Hungarian procedure provided better performance than piece-by-piece used in classical methods.

Key words: Jigsaw puzzle solving, image descrambling, image restoration, square puzzle assembly,

dynamic programming and Hungarian method

INTRODUCTION

 Automatic solving of jigsaw puzzles suggests
finding a subjectively correct spatial arrangement of the
puzzle pieces (or sub-images) in order to reassemble a
larger and complete image. Over the past three decades,
the jigsaw puzzle problem has attracted researchers from
various fields including pattern recognition, image
processing, computer vision, combinatorial optimization
and many other fields of mathematics. Automatic puzzle
solving has many application domains and can provide
interesting solutions to some problems. For instance,
speech scrambling in the frequency domain is usually
made by dividing the spectrogram into pieces and, then,
rearranging them in such a way that the speech cannot be
recognized when the inverse transformation is applied.
Clearly, puzzle solving is suited for speech descrambling
in this case. Other examples of application domains
include assembly of cracked art paintings, restoration of
archeological artifacts and image descrambling.
 Below are some criteria that govern the selection
of a puzzle solving algorithm for a specific application:

Accuracy: An algorithm should assemble puzzles with a
high degree of accuracy.

Invariance: An algorithm should be invariant to
rotating and translation of the puzzle pieces.

Robustness: An algorithm should perform well when
some pieces are missing, extra, or overlapping.
Scalability: An algorithm’s performance should be
invariant as the number of puzzle pieces increases.

Generality: Can be applied to different types of
images such as binary, grayscale and colored images.

Computational complexity: An algorithm should be
computationally efficient in order to be suitable for
real-time applications.

 One of the earliest attempts to solve the jigsaw
puzzle problem was due by Freeman and Garder[3]
more than four decades ago. Most existing techniques
for solving jig-saw puzzles assume curved canonical
shapes, which have concavities and convexities, of the
puzzle pieces[14]. This assumption usually leads to a
clear distinction between border and internal pieces
which reduces the search space for the solution and
makes it tractable. A few other techniques work on

Am. J. Applied Sci., 6 (11): 1941-1947, 2009

1942

puzzle pieces with arbitrary shapes and treat
assembling pieces as partial shape matching
problem[4,6]. Toyama et al.[11] proposed a method for
solving rectangular puzzle of binary images using a
genetic algorithm approach. Regarding the features
considered for piece matching, some methods use other
information in addition to shape such as color[1,13] or
texture[9].
 Local matching of puzzle pieces, although
essential, is usually not sufficient to solve the puzzle
problem efficiently. A global search that seeks the
minimum sum of distances
across the entire assembly of the puzzle pieces is
required. However, such global search is known to be
NP-complete problem[2]. To overcome this difficulty,
some methods rely on the high discrimination ability of
the local matching function which makes the basins of
attraction of the global solution quite large especially
when the number of pieces is moderate (below
100)[5,15]. Other methods use local search with
backtracking to avoid local minima and improve the
global search[4]. When the border pieces can be
identified, their arrangement becomes similar to the
well-known traveling salesman problem due to their
closed loop nature[1,14]. Genetic algorithms, which is an
evolutionary optimization approach, has also been used
to solve the jigsaw puzzle problem[11].
 In this study, we present a method for solving the
square jigsaw puzzle problem as shown in Fig. 1. All
puzzle pieces have square shape; therefore, it is not
possible to identify the border pieces. For matching
pieces, the gray level pro-files of borders at the four
piece sides are employed. The main contribution of
the work presented in this study is the enhancement
of the local search by using the Hungarian method[7],
which is an optimal assignment procedure. Unlike in
most previous methods where local search is proceeded
in a piece-by-piece manner, all neighbors of a puzzle
piece are located simultaneously during the puzzle
assembly. The algorithm searches for the solution with
different starting pieces at various locations to improve
the global search. This search mechanism can be
applied to any type of features such as color or texture
and to arbitrary shaped puzzle pieces.

Problem description: Given an m × n location grid of
mn subimages of square puzzle pieces of an image, the
aim is to place a puzzle piece at each location of the grid
such that the arranged pieces subjectively reassemble
an original image. In this study, grayscale images are
considered and puzzle pieces are obtained artificially.
Although no rotation of the puzzle pieces is allowed, the
search for a global minimum is still NP-complete.

Since all puzzle pieces have the same square shape,
no priori knowledge can be used to differentiate
between border and internal pieces. In addition, it is
not possible to use partial shape matching. Instead, the
gray level profiles of border pixels at the four piece sides
are employed for matching the puzzle pieces.
 In our method, the local search is enhanced by
using the Hungarian method[7,8], which is an optimal
assignment procedure. Unlike most previous methods
where local search is proceeded in a piece-by-piece
manner, all neighbors of a puzzle piece are located
simultaneously during the puzzle assembly. This can
be viewed as an alternative to backtracking in the
sense that both approaches avoid the best-first piece in
order to obtain a local minimum in a larger
neighborhood. In our method, the global search is
performed implicitly by repeating the search with
different starting pieces at various locations which more
likely enables finding the global solution. This
approach can be applied to arbitrary types of features
such as color or texture and to arbitrary shaped puzzle
pieces, which constitutes a main direction of our future
research in this area.

(a)

(b)

Fig. 1: An example of 8×8 puzzle. (a) the original

Lena image and (b) a scrambled version

Am. J. Applied Sci., 6 (11): 1941-1947, 2009

1943

MATERIALS AND METHODS

Local matching via dynamic programming: Here, a
dynamic programming approach for matching border
gray level profiles of puzzle pieces is presented.
 A border gray level profile can be viewed as a one-
dimensional sequence where matching two sequences is
based on finding the optimal (i.e., least cost)
correspondence between their points. Consider the
border gray level profiles of Fig. 2. Panel (a) shows
the profiles of two neighboring borders. Unlike the
non-neighboring profiles in panel (b), neighboring
profiles usually exhibit similarity in the overall shape
with small deformations and displacement. Therefore, a
dissimilarity distance that handles such transformations
is employed, which is based on Dynamic Time Warping
(DTW)[10,12]. Unlike the Euclidean distance that provides
one-to-one alignment, nonlinear alignment can be
achieved by the DTW, where one point on the sequence
can be aligned to one or more points on another
sequence, as illustrated in Fig. 3.
 Let A(n) and B(n) be two sequences of border
pro-files, where n∈<1, N> is the index of
the sequence points. Then, an N×N distance table,
DT, is constructed to find the optimal
correspondence between the points of the two sequences.

(a)

(b)

Fig. 2: Two examples of border gray level profiles:

(a) neighboring and (b) non-neighboring

The columns of DT represent the points of one
sequence and the rows represent the points of the other.
Initially, the elements of DT are set as:

initial

0 max(1,n w 1)

DT (n,m) m min(N,n w 1)

otherwise

− + ≤
= ≤ + −
∞

 (1)

where, n,m∈<1, N>, w is a predefined diagonal width
for DT as illustrated in Fig. 4 and max(a, b) and min(a,
b) are the maximum and minimum values of a and b,
respectively. Only the elements of DT that fall within
w are up-dated during the DTW search. In our
implementation, w is set to approximately 10% of the
sequence length, as in[10]. This initialization of DT
avoids computing the distances between all the points
of two sequences and restricts the distance computation
to only those points which are more likely correspond
to each other. Therefore, the computational complexity
is largely reduced while more meaningful
correspondences are obtained.
 Starting at the first points for sequences A and B,
the distance table DT is updated, through the diagonal
window of width w, left-to-right and up-to-bottom
starting from the upper-left element, as shown in Fig. 4.
The first row and first column elements are initialized
as the absolute difference between the corresponding
points. Then, the rest of the zero-valued elements of DT
are updated as:

DT(n 1,m)

DT(n,m) A(n) B(m) min DT(n 1,m 1)

DT(n,m 1)

−
= − + − −
 −

 (2)

 The least cost path through the distance table is the
value of element DT (N, N), which corresponds to the
best matching between the two sequences.

Fig. 3: An illustration of aligning the points of two

sequences using (a) the Euclidean distance and
(b) the DTW algorithm

Am. J. Applied Sci., 6 (11): 1941-1947, 2009

1944

Fig. 4: DTW table. See text for details

The proposed algorithm: A pseudo code of the
proposed algorithm PuzzleSolve() is shown in
Algorithm 1. The algorithm accepts as inputs a group
of square puzzle pieces P and the dimensions of the
rectangular grid m × n where the pieces will be located.
 Since each square piece has 4 sides, 4-
connectedness is used where internal, border and corner
locations have 4, 3 and 2 neighbors, respectively. At
first, the algorithm initializes a distance matrix D which
stores the pairwise distances between the puzzle pieces.
The distance D(i, j) is a quadruple representing the
right, left, top and bottom neighboring relations
between pieces i and j. Let Ri and Lj be the grayscale
profiles of the right side of piece Pi and the left side of
piece Pj, respectively. Then, the first element of D(i,
j) = DT (N, N), which is computed using equation
(1),where N is the number of pixels in each side of a
square puzzle piece. Note that Eq. 1 also represents
the second element of D(j, i). Top and bottom distances
are computed in the same manner using the top and
bottom gray scale pro-files of the puzzle pieces.
 The algorithm repeats the search for every puzzle
piece at every internal location as the starting piece and
returns the solution that yields the minimum sum of
border distances. There are mn puzzle pieces, (m-2)(n-
2) internal locations and 2 mn-m-n borders in the grid.
The requirement for repeating the search comes from
the fact that it is not possible to discriminate between
border and internal pieces due to their square shape
nature. At every search with starting piece Pi at
location (k, l), the location matrix L is initialized with
zeros and a group I includes all pieces except Pi. Then,
the Hungarian method[7], which is an optimal
assignment procedure, locates four pieces at the
neighboring locations to Pi such that the sum of border
distances between Pi and its neighbors is minimum.

Fig. 5: An illustrative example of Algorithm 1

execution steps on 4 × 4 puzzle. See text for
details

The Hungarian function is passed with a matrix H of the
distances between Pi and all other puzzles in I, i.e., the
elements of the i-th row in D (each element is a
quadruple) are arranged as rows of H. The pieces
selected by the assignment procedure assign are
located in L and removed from I. Next, the algorithm
selects a nonzero location in L, (kp, lp), with greatest
number of zero (or empty) neighbors N. When
multiple locations exist, the location with minimum
sum of neighbor distances is selected. Intuitively, as
the number of pieces located at once increases, a
global minimum is more likely achieved. The
Hungarian procedure is applied to assign pieces in the
empty neighbors as described earlier except that only
elements of D corresponding to the empty locations are
considered, i.e., the columns of H correspond to the
zero neighbors. This process is repeated until I
becomes empty (all pieces are located).
 An example illustrating the execution sequence of
the algorithm is shown in Fig. 5, which represents L
and the numbers in the table reflect the sequence of
assigning each location. At first, the starting piece is
located in (2, 2) (denoted by S). Then, the first
execution of the Hungarian procedure assigns the
neighboring locations denoted by 1. At this time, there
are two nonzero locations in L that have three zero
neighbors, (3, 2) and (2, 3). The former is selected
since it has lower sum of distances with its neighbors.
Then, the neighbors of the piece located in (3, 2) are
assigned (denoted by 2). Note that only right, left and
bottom distances are considered in the distance matrix
H since the top neighbor is already located. The
algorithm continues until all locations are assigned.

Am. J. Applied Sci., 6 (11): 1941-1947, 2009

1945

RESULTS AND DISCUSSION

 To test our algorithm, four well-known images are
used, namely, Lena, Cameraman, Taxi and Circuit as
shown in Fig. 1 and 6. All images are in gray scale
format with 8 bit quantization. The images are
artificially divided into square pieces of various sizes
ranging from 4 × 4-10 × 10. To measure the accuracy of
the algorithm, a new precision measure is proposed
which is given as:

C
Precision

T
= (3)

Where:
C = The number of correctly located pieces
T = The total number of puzzle pieces

(a)

(b)

(c)

Fig. 6: Test images. (a) cameraman; (b) taxi; (c) circuit

 This measure is suitable for error-tolerant
applications and overcomes the drawback of
“correct/false” decision used for evaluating most
current methods. Figure 7 shows three demonstrations
of this performance measure.
 A classical method for solving the jigsaw puzzle
problem is to proceed the search in a piece-by-piece
manner as follows. After a starting piece is located,
it’s best match is located at a neighboring location
following left-to-right, top-to-bottom direction. This
process is repeated with every puzzle piece as the
starting piece and the minimum global solution is
selected. We use the same distance measure for the
classical method since the aim is to test the proposed
search mechanism.

Precision = 85.9%

Precision = 46.8%

Precision = 4.7%

Fig. 7: Demonstration of precision measure

Am. J. Applied Sci., 6 (11): 1941-1947, 2009

1946

Table 1: Precision (%) of the proposed and classical methods at
different puzzle sizes on the Lena image

Puzzle size Proposed Classical
4×4 100 100.0
5×5 100 100.0
6×6 100 100.0
7×7 100 89.8
8×8 100 12.5
9×9 100 0.0
10×10 53 0.0

Table 2: Precision (%) of the proposed and classical methods at

different puzzle sizes on the cameraman image
Puzzle size Proposed Classical
4×4 100 100.0
5×5 100 100.0
6×6 100 100.0
7×7 100 91.8
8×8 100 18.8
9×9 100 0.0
10×10 59 3.0

Table 3: Precision (%) of the proposed and classical methods at

different puzzle sizes on the taxi image
Puzzle size Proposed Classical
4×4 100 100.0
5×5 100 100.0
6×6 100 100.0
7×7 100 87.8
8×8 100 25.0
9×9 100 7.4
10×10 64 0.0

Table 4: Precision (%) of the proposed and classical methods at

different puzzle sizes on the circuit image
Puzzle size Proposed Classical
4 × 4 100.0 100.0
5 × 5 100.0 100.0
6 × 6 100.0 100.0
7 × 7 100.0 77.6
8 × 8 100.0 9.4
9 × 9 95.1 0.0
10 × 10 44.0 0.0

 Table 1-4 show the precisions of the proposed
algorithm and the classical method on the four test
images, at various numbers of puzzle pieces. Clearly,
the proposed algorithm outperforms the classical
method with a good margin. However, the performance
of the proposed algorithm deteriorates as the number of
puzzles exceeds 100.

Algorithm 1: Pseudo code of the puzzle solving
algorithm:

I mgOut = PuzzleSolve(P , m, n)

Initialization:
 m and n are the numbers of rows and columns of

the puzzle grid, respectively.

 P = {Pi} is a group of mn square puzzle pieces.
 L is an is an m × n matrix of located pieces indices.
 D is an m n × m n distance matrix where D(i, j)

is a quadruple of right, left, top and bottom
distances between Pi and Pj .

 hungarian(Z) is an optimal assignment function
that assigns the rows to the columns of the cost
matrix Z .

1: c←0
2: for every internal location of the puzzle grid (k, l)

do
3: for every Pi do
4: c←c+1
5: I←P−{Pi}
6: L←0

7: L(k, l)̄ ←i
8: H←all D(i, j), j ∈ I arranged as rows.
9: [assign, cost] = hungarian(H)
10: L(k, l±1), L(k±1, l)←I(assign)
11: I←I − {I(assign)}
12: while I ≠ Ø do
13: [kp, lp]←nonzero location in L with

greatest number of zero neighbors N.
14: H←elements of D(L(kp, lp), j), j ∈ I ac-

cording to N , arranged as rows.
15: [assign, cost] = hungarian(H)
16: L(N)←I(assign)
17: I ←I – {I(assign)}
18: end while
19: cost(c)←sum of all 2 mn-m-n border

distances between the arranged puzzles in L.
20: S{c}←L
21: end for
22: end for
23: ImgOut ← S{r} such that cost(r) = min(cost).
24: return I mgOut

CONCLUSION

 This study presented an algorithm for solving
square jigsaw puzzles. The main contribution of the
algorithm is focused on the search mechanism which is
based on simultaneous allocation of puzzle pieces using
the Hungarian procedure, rather than piece-by-piece
used in classical methods. For matching puzzles,
dynamic time warping is used to mea-sure the
dissimilarity of the gray scale profiles of border
pixels. Global solution is more likely obtained by
repeating the search with different starting pieces at
various locations. The proposed algorithm
demonstrated better performance over the classical
approach using four standard test images.

Am. J. Applied Sci., 6 (11): 1941-1947, 2009

1947

 As most puzzle solving methods in the literature,
the main limitation of our algorithm is the inability to
solve puzzles with large number of pieces. Our future
research in this area includes using other features such
as color and texture for matching puzzle pieces.
Another future direction is to apply the Hungarian
procedure along with a partial shape matching
technique for solving arbitrary shaped puzzles.

ACKNOWLEDGEMENT

 The researcher would like to acknowledge the
support of the Advanced Lab for Intelligent Systems
Research at King Saud University.

REFERENCES

1. Chung, M.G., M.M. Fleck and D.A. Forsyth, 1998.

Jigsaw puzzle solver using shape and color.
Proceedings of IEEE 4th International Conference
on Signal Processing, Oct. 12-16, IEEE Xplore
Press, Beijing, China, pp: 877-880. DOI:
10.1109/ICOSP.1998.770751

2. Demaine, E.D. and M.L. Demaine, 2007. Jigsaw
puzzles, edge matching and polyomino packing:
Connections and complexity. Graphs Combinator,
23: 195-208. DOI: 10.1007/s00373-007-0713-4.

3. Freeman, H. and L. Garder, 1964. Apictorial
Jigsaw puzzles: The computer solution of a
problem in pattern recognition. IEEE Trans. Elect.
Comput., 13: 118-127. DOI:
10.1109/PGEC.1964.263780

4. Kong, W. and B.B. Kimia, 2001. On solving 2D
and 3D puzzles using curve matching. Proceedings
of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition,
(CVPR’01), IEEE Xplore Press, USA., pp: 583-590.
DOI: 10.1109/CVPR.2001.991015

5. Kosiba, D.A., P.M. Devaux, S. Balasubramanian,
T.L. Gandhi and K. Kasturi, 1994. An automatic
jigsaw puzzle solver. Proceedings of IEEE 12th
International Conference on Pattern Recognition,
Oct. 9-13, IEEE Xplore Press, Jerusalem, Israel,
pp: 616-618. DOI: 10.1109/ICPR.1994.576377

6. Makridis, M. and N. Papamarkos, 2006. A new
technique for solving a jigsaw puzzle. Proceedings
of IEEE International Conference on Image
Processing, Oct. 8-11, IEEE Xplore Press, Atlanta,
GA., pp: 2001-2004. DOI:
10.1109/ICIP.2006.312891

7. Munkres, J., 1957. Algorithms for assignment and
transportation problems. J. Soc. Ind. Applied
Math., 5: 32-38.

8. Papadimitriou, C. and K. Steiglitz, 1988.
Combinatorial Optimization: Algorithms and
Complexity. Prentice-Hall, Englewood Cliffs, New
Jersey, ISBN: 0-486-40258-4.

9. Sagiroglu, M.S. and A. Ercil, 2006. A texture
based matching approach for automated assembly
of puzzles. Proceedings of 18th International
Conference on Pattern Recognition, (PR’06), IEEE
Xplore Press, Hong Kong, pp: 1036-1041. DOI:
10.1109/ICPR.2006.184

10. Sakoe, H. and S. Chiba, 1978. Dynamic
programming algorithm optimization for spoken
word recognition. IEEE Trans. Acoust. Speech
Signal Process., 26: 43-49.

11. Toyama, F., Y. Fujiki, K. Shoji and J. Miyamichi,
2002. Assembly of puzzles using a genetic
algorithm. Proceedings of 16th IEEE International
Conference on Pattern Recognition, (PR’06), IEEE
Xplore Press, USA., pp: 389-392. DOI:
10.1109/ICPR.2002.1047477.

12. Wang, K. and T. Gasser, 1997. Alignment of curves
by dynamic time warping. Ann. Stat., 25: 1251-1276.

13. Weiss-Cohen, M. and Y. Halevi, 2005. Knowledge
retrieval for automatic solving of jigsaw puzzles.
Proceedings of International Conference on
Intelligent Agents, Web Technologies and Internet
Commerce and International Conference on
Computational Intelligence for Modeling, Control
and Automation, Nov. 28-30, IEEE Xplore Press,
Vienna, pp: 379-383. DOI:
10.1109/CIMCA.2005.1631498

14. Wolfson, H., E. Schonberg, A. Kalvin and Y. Lamdan,
1988. Soving jigsaw puzzles by computer. Ann.
Operat. Res., 12: 51-64. DOI:
10.1007/BF02186360

15. Yao, F.H. and G.F. Shao, 2003. A shape and image
merging technique to solve jigsaw puzzles. Patt.
Recog. Lett., 24: 1819-1835. DOI: 10.1016/S0167-
8655(03)00006-0

