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Abstract: The multivariate fuzzy-c-means classifier is used to model extended weight of evidence (WofE) 
considering predictor maps. Approaches to mineral potential mapping based on WofE modeling generally use 
binary maps, whereas, real-world geospatial data are mostly multi-class or fuzzy-class in nature. The 
consequent reclassification of fuzzy-class maps into binary maps is a simplification that might result in a loss 
of information. This research thus describes an extended WofE modeling for predicative mapping of gold 
deposit potential in Tourd-chah Shirin metallogenic zone, Semnan province, in north of Iran to demonstrate 
optimization of mineral potential information by using fuzzy-class predictor maps, as applied to the study 
area. The optimization of an extended WofE model using fuzzy-class predictor maps for the study area results 
in demarcation of the high, moderate and low favorability zones. Optimization was also obtained by 
constraining simple WofE model using only binary predictor maps with different levels of uncertainty for 
study area. A comparison between the results of the extended WofE model and field data indicates that little 
correlation exists between these two results.  
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INTRODUCTION 

  
 A Geographical Information System (GIS) is a 
computer based system which integrates the data input; 
data storage and management, data manipulation and 
analysis and data output for both spatial and attribute 
data to support decision-making activities 
Malczewski[5]. After over 40 years of development, GIS 
have been applied to serve important roles in many 
fields, such as environmental monitoring, resources 
management, applications in commerce and business 
fields and different utilities. The ultimate purpose of 
GIS is to make evaluations or predictions with different 
specific data integration models to combine spatial and 
attribute data from various sources to provide support 
for decision-makers. 
 According to Bonham-Carter[1], the data integration 
models in GIS are divided into two categories, data-
driven and knowledge-driven model based on different 
methods for estimation of weights of different 
evidential maps. In data-driven models, the weights are 
calculated by using statistical methods and data of 
evidences in a training area to estimate the spatial 
relationships between the evidential maps and the final 
response maps. Data-driven models include Logistic 

Regression, Weights of Evidence, Neural Network and 
so on and the weights in those models are calculated 
from training data. While, the weights are estimated 
based on experts opinions in knowledge-driven models. 
The knowledge-driven models include Fuzzy Logic, 
Dempster-Shafer Belief Theory and their weights are 
given with experts' opinions. 
 Weights of evidence model is used to predict a 
hypothesis about occurrence of an event based on 
combining known evidence in a study area where 
sufficient data are available to estimate the relative 
importance of each evidence by statistical methods. In 
the case of mineral resources assessment, the evidence 
consists of a set evidential datasets (maps) and the 
models are used to predict the hypothesis about the 
occurrence of a given type of deposit in a study area. 
The weights are estimated from the measured 
association between known mineral occurrences and the 
values on the evidential maps. Based on combination of 
the evidential maps selected, the final result is extracted 
as a mineral potential map with a single index 
representing probability of occurrence of the given type 
of mineral deposit. 
 The purpose of this research is to demonstrate 
working of weighs of evidence model with using an 
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application in the predication of Gold mineral 
occurrence in the Moalleman zone in Iran. The 
objectives of this research are: (1) to study the model 
for  prediction of gold deposits in the study area and (2) 
to evaluate analysis result of application of this model.  
 In this research, a procedure for prediction of gold 
deposits using weights of evidence model in GIS and 
fuzzy c-means clustering together to integrate different 
evidential datasets, such as geological data, geophysical 
data, remote sensing and so on, described the results are 
evaluated.  
 

APPLICATION TO GOLD POTENTIAL 
MAPPING IN TORUD-CHAH 

SHIRAN PROVINCEC 
 
 The Torud-Chah Shiran range lies in the central to 
eastern portion of the Alborz mountain system, a 
mountain chain of complex tectonic, magmatic and 
stratigraphic history (summarized by Alavi, 1996). On 
the basis of regional tectonic considerations, Alavi[9] 
suggested that the Torud-Chah Shiran range and 
volcanic rocks in the adjacent areas are related to 
Eocene magmatism in the Central Iran magmatic zone 
to the south and not to the volcanic rocks of the Alborz 
magmatic belt to the west. The distribution of Tertiary 
igneous rocks shows that the western portion of the 
Alborz arc merges with another Tertiary calc-alkaline 
magmatic belt, the Urumieh-Dokhtar zone, which runs 
parallel to the main northwest-trending Zagros thrust. 
Recently, Hassanzadeh[10] suggested that the two belts 
were once a single arc but separated by intra-arc 
extension that started in the late Eocene. Based on the 
latter view, the Alborz magmatic belt includes Torud-
Chah Shiran and represents the northern half of the 
proto-arc. This arc is characterized by thick 
accumulations of early to middle Eocene submarine 
green tuffs (equivalent to the Karaj Formation of central 
and western Alborz), followed by late Eocene, to 
possibly early Oligocene, submarine to subaerial lava 
flows which locally include nepheline-normative and 
shoshonitic rocks. A series of silica-saturated volcanic 
rocks occur locally. The intra-arc spreading formed 
sedimentary basins between the Alborz range and 
Central Iran, an area characterized by Oligocene mafic-
alkaline magmatism Hassanzadeh[10]. Chemical 
compositions of volcanic rocks presented below 
indicate that Torud-Chah Shiran rocks have a typical 
arc signature, consistent with this proposed 
interpretation. 
 The Torud-Chah Shirin mountain range hosts many 
mineral showings and abandoned mines, particularly 
epithermal base metal veins. In addition to Gandy (Au-

Ag-Pb-Zn) and Abolhassani (Pb-Zn-Ag-Au), other 
occurrences include Cheshmeh Hafez (Pb-Zn), Chalu 
(Cu), Chahmosa (Cu) and Pousideh (Cu). Other types 
of deposits in this range include placer gold, an 
underground mine for turquoise at Baghu, skarn 
deposits and Pb-Zn deposits in carbonate rocks. Gold is 
probably the product of weathering of nearby quartz 
sulfide veins hosted by andesitic volcanic rocks. The 
presence of tourmaline in the wall rocks of these veins 
may indicate proximity to a porphyry system. An 
abandoned iron skarn deposit is located at the contact of 
Cretaceous limestones andesitic lava flows and a quartz 
monzonite stock 2 km northwest of the study area. 
Reshm and Khanjar are abandoned Pb-Zn mines 
located 15 and 10 km. respectively, west of the study 
area. Ore in these localities occurred principally as 
veins in Cretaceous dolomitic limestones and consisted 
of quartz, calcite, galena, sphalerite and pyrite 
Shamanian[11]. 
 

COMPUTATION OF WOFE 
 
 A weight of evidence analysis is used to quantify 
the spatial correlations between the geological features, 
representative of deposit recognition criteria and know 
mineral occurrence (20 mineral occurrences for study 
area). Four maps representing geological map, 
hydrothermal alteration, geophysical and structural 
features are created and used for weights of evidence 
analysis. Distance maps showing buffer zone for faults 
at distances 100-500 m (in increments of 100 m) and 
for alteration at distances 500-2000 m (in increments of 
500 m) away from the outline of geological features are 
constructed and weights of evidence (W+, W−), contrast 
C and studentized value of C are calculated to select the 
optimum distance that have the best spatial correlation 
with the known mineral occurrences. 
 Weights of evidence analysis of the four evidential 
maps are shown in Table 1. 
 

CLUSTERING STUDENT(C) BY FUZZY 
C-MEANS METHOD 

 
 After calculation of weights of evidence for 
evidential maps, intersected four evidential maps with 
use of Arc Info to generate a map by 795 features of 
polygons. Each polygon has four values (Sig C) from 
each evidential map (Table 2 shows some of values). In  
order to generate a potential map of gold from study 
area, classifications student C in 7 classes (Table 2) 
(repetitive clustering of the data using different number 
of clusters to reach an optimal solution) were carried 
out by means of FCM Bezdek[2]. 
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 The polygons by the membership values close to 1 
are strong representatives of the high probability, result 
shown in Fig. 1. Also favourability map generated by 
binary predictor maps shown in Fig. 2.  
 
Table 1: Weights of evidence analysis of evidential maps 
Faults 
------------------------------------------------------------------------------------ 
Buffer Area     Student 
(meter) (km2) Point w+ w− C C 
500 62.10 2 0.370 -0.09 0.471 0.593 
400 74.40 1 0.043 -0.51 0.550 0.528 
300 94.10 4 0.666 -0.27 0.939 1.472 
200 120.4 1 0.159 -0.10 0.260 0.250 
100 142.4 3 0.050 -0.01 0.060 0.062 
Alteration 
2000 88.30 0 0.000 0.182 0.000 0.000 
1500 99.00 6 0.279 -0.160 0.439 0.874 
1000 111.6 2 0.001 -0.140 0.150 0.300 
500 130.6 12 0.728 -0.640 1.369 2.918 
Geology 
Name 
dp 14.7 2 1.320 -0.080 1.403 1.753 
E sp 29.0 3 1.009 -0.110 1.122 1.697 
Etv 199.9 11 0.325 -0.320 0.648 1.365 
E v,br 16.0 1 0.458 -0.020 0.478 0.451 
Ela 3.0 0 0.000 0.000 0.000 0.000 
Etr 57.7 2 0.160 -0.020 0.180 0.237 
Geophysics 
Intensity 
90% 95.5 2 0.985 -0.070 1.057 1.408 
80% 421.7 10 1.112 -0.490 1.598 3.630 
70% 186.8 9 1.846 -0.500 2.345 5.237 
50% 4.4 0 0.000 -0.010 0.000 0.000 
40% 313.9 0 0.000 0.118 0.000 0.000 

 High favorability areas in potential map based on 
fuzzy-class,  which occupy 4% of the study area, 
contain 68% of the known base-metal deposits. While 
High favorability areas in potential map based on 
binary  Predictor   maps, which occupy 18% of the 
study area, contain 52% of the known base-metal 
deposits. 
 

 
 
Fig. 1: Potential map of gold mineral, generated by 

Fuzzy c-means method 
 
Table 2: Some of classifications of Sig C in 7 classes by Fuzzy c-means clustering (C (i), i = 1...7) 
Polygon Number Sig C Alteration Sig C geology Sig C Faults Sig C Geophysics C1 C2 C3
 C4 C5 C6 C7 
1 2.91 0.45 1.47 0.00 0.05 0.02 0.01 0.02 0.87 0.02 0.01 
2 2.91 0.45 1.47 3.63 0.05 0.04 0.41 0.15 0.07 0.16 0.12 
3 2.91 1.69 0.06 3.63 0.09 0.32 0.07 0.10 0.16 0.15 0.11 
4 2.91 1.69 0.06 0.00 0.08 0.20 0.09 0.11 0.12 0.18 0.22 
5 2.91 1.69 1.47 1.40 0.10 0.52 0.04 0.07 0.18 0.09 0.00 
6 2.91 1.69 1.47 0.00 0.04 0.07 0.13 0.08 0.06 0.11 0.51 
7 2.91 0.23 0.06 1.40 0.11 0.08 0.05 0.16 0.35 0.20 0.05 
8 2.91 0.23 0.25 1.40 0.08 0.07 0.10 0.22 0.16 0.29 0.08 
9 2.91 0.23 1.47 1.40 0.07 0.04 0.01 0.03 0.80 0.02 0.03 
10 2.91 0.23 1.47 3.63 0.05 0.15 0.36 0.14 0.07 0.16 0.07 
11 2.91 0.45 0.06 0.84 0.13 0.05 0.06 0.25 0.31 0.20 0.00 
12 2.91 0.45 0.06 1.40 0.00 0.00 0.00 0.00 0.00 0.02 0.98 
13 2.91 0.45 1.47 0.00 0.17 0.04 0.02 0.07 0.63 0.06 0.01 
14 2.91 0.45 0.25 3.63 0.06 0.04 0.50 0.17 0.07 0.15 0.01 
15 2.91 1.69 0.25 1.40 0.04 0.07 0.13 0.08 0.06 0.11 0.51 
16 2.91 0.23 0.25 3.63 0.08 0.07 0.10 0.14 0.16 0.20 0.25 
17 2.91 0.45 0.06 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.98 
18 2.91 0.00 0.06 0.00 0.11 0.06 0.05 0.18 0.34 0.19 0.07 
19 2.91 0.45 0.06 0.00 0.11 0.06 0.05 0.19 0.36 0.18 0.05 
… … … … … ... ... ... ... … … … 
793 0.3 1.36 1.47 1.40 0.02 0.01 0.78 0.07 0.02 0.06 0.04 
794 0.3 0.45 0.25 5.23 0.03 0.88 0.01 0.02 0.03 0.02 0.01 
795 0.3 0.00 0.52 5.23 0.02 0.02 0.75 0.06 0.02 0.07 0.08 
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Fig. 2: Potential map generated by binary predictor 

maps 
 
 As this results in the fuzzy map decrease 
favorability area and increase percent of known mineral 
deposits in high favorability area than potential map 
based on binary predictor maps. Similarly, confidence 
value shows fuzzy map is reliable for mineral 
exploration in study area. 
 

CONCLUSION 
 
 According to the requirements on weights of 
evidence model, each evidential map need convert to 
binary pattern (commonly method for generate a binary 
pattern use of highest student C value in each map for 
cutoff), which cause losing some useful information in 
the continuous evidences after data converting. To 
remove this problem, we have used fuzzy weights of 
evidence method, based on a fuzzy membership 
function and WofE. This fuzzy weights of evidence 
method minimize losing information due to data 
conversion, also optimize the potential map. 
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