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Abstract: The Radial basis Function neural network (RBFNN) model has been developed for the 
prediction of nonlinear response for paddle Cantilever with built-in edges and different sizes, thickness 
and uniform loads. Learning data was performed by using a nonlinear finite element program, 
incremental stages of the nonlinear finite element analysis were generated by using 25 schemes of built 
paddle Cantilevers with different thickness and uniform distributed loads. The neural network model 
has 5 input nodes representing the uniform distributed load and paddle size, length, width and 
thickness, eight nodes at hidden layer and one output node representing the max. deflection response 
(1500×1 represent the deflection response of load). Regression analysis between finite element results 
and values predicted by the neural network model shows the least error. 
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INTRODUCTION 

 
 Modeling and simulation are indispensable when 
dealing with complex engineering systems. It makes it 
possible to do essential assessment before systems are 
built, it can alleviate the need for expensive 
experiments and it can provide support in all stages of a 
project from conceptual design, through commissioning 
and operation. Cantilever sensors are the most 
important electric machinery in all the fields of 
industry. Cantilever sensors are based on relatively well 
known and simple transduction principle. A simple 
cantilever beam can be used as a sensor for biomedical, 
chemical and environmental applications. When micro-
fabricated multilayered cantilever beam is exposed to 
sensing environment, it bends because of single or a 
combination of external forces like electrostatic, 
electric, magnetic, mass, nuclear radiation or mere 
mass. Similarly, it can bend because of intrinsic stresses 
generated due to chemical, physical or thermal means 
within the upper layer of cantilever itself. 
 As recent research efforts advance in several 
converging areas of science and technology, cantilever-
based sensors have been proved to be quite versatile 
and sensitive devices and have been used mainly in the 
trace detection of bio-chemical materials. The 
cantilever method of bio-chemical sensing does not 
require any fluorescence tagging, therefore gets many 
attentions[1,2]. Micromachined silicon cantilever beams 
have been applied in fluid flow volume sensing[3,4].  

 In addition, the actual mechanism for detection of 
the cantilever deflections is also very important. The 
amount of deflections of a cantilever beam can be 
detected by several read-out systems, including optical 
detection, capacitive detection, tunneling detection and 
interferometer detection. The optical level technique 
and the piezoresistive method are usually used to detect 
cantilever beam deflection. In general, the deflection is 
caused by its interaction with measured under 
circumstances of stress, a small force and a change of 
mass or temperature. However, for more complex 
structures, finite element modeling is useful to analyze 
and optimize these structures[5].  
 This research the present work will explore the use 
of Redial Base Function Neural Network (RBFNN) 
modeling of the paddle cantilevers in conjugation with 
finite element analysis (FEA) software. The model is 
constructed through the use of the neural network 
design (nntool) toolbox in MATLAB.  
 

THEORETICAL MODEL ANALYSIS 
 
 In this section, the simple and paddle cantilever 
sensors as shown in Fig. 1-2 were modeled using the 
static equations of mechanics. To calculate the amount 
of deflection at the tip of a cantilever beam, the 
differential equation of a cantilever beam for a small 
deflection is given by[6]. 
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Fig.1: Simple cantilever, a: Single force applied at the 
free end, b: Uniformly distribute force a long the 
beam 

 

 
 
Fig. 2: Paddle cantilever 
 
where M is the bending moment, E is Young’s 
modulus, y (x) is the deflection along the cantilever 
beam and I is the area moment of the cross section with 
respect to the neutral axis of the cantilever. M = Px 
when a single force P is applied on the free end of the 
cantilever. M = qx2/2 under a flowing fluid situation, 

where q is a force element at the position x along the 
cantilever beam and is proportional to the surface area 
facing towards the flowing fluid and drag force. The 
drag force is proportional to the fluid density, the drag 
coefficient of the cantilever and the flow velocity 
squared in a turbulent flow or flow velocity in a laminar 
flow. 
 When the x-axis origin is selected at the free end of 
the cantilever beam, the boundary conditions are given 
by 
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 Now we integrate the differential equation for 
cantilever deflection and use the above mentioned 
boundary conditions. 
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 Eventually, the deflection of the cantilever beam 
when a single force is applied at the free end of the 
cantilever is given as:  
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RBFNN FOR PADDLE CANTILEVER 
DEFLECTION 

 
 From the examples ANN captures the domain 
knowledge. ANN can handle continuous as well as 
discrete data and have good generalization capability as 
with fuzzy expert systems. An ANN is a computational 
model of the brain. They assume that computation is 
distributed over several simple units called neurons, 
which are interconnected and operate in parallel thus 
known as parallel distributed processing systems or 
connectionist systems. Implicit knowledge is built into 
a neural network by training it. Several types of ANN 
structures and training algorithms have been proposed. 
 The basic form of RBF architecture involves 
entirely three different layers. The input layers is made 
n, of source nodes while the second layer is hidden 
layer of high enough dimension which senses a 
different purpose from that in a multilayer perception. 
The output layer supplies the response of the network to 
the activation patterns applied to the input layer. The 
tram formation from the input layer to hidden is 
nonlinear whereas the transformation from the hidden 
from unit to the output layer is linear. 
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Fig. 3: RBFANN for paddle cantilever 
 
The transfer function for a radial basis neuron is: 
 

radbas (n) = e-n2 
 
 This function calculates a layer's output from its 
net input. 
 For effective predicting of paddle cantilever, the 
selection of proper inputs and outputs of ANN, 
structure of the network and training of it using 
appropriate data should be done with utmost care. In the 
present study, inputs are selected as uniform distributed 
load, paddle cantilever size, length, width and 
thickness. The NN outputs have been termed as one 
output node representing the max. deflection response 
(1500×1  represent  the  deflection  response  of  load) 
Fig. 3. 
 

COMPUTER MODELING 
 
 The cantilever beam was modeled using ANSYS 
software. Figure 4 is screen snapshot of how ANSYS 
modeled the paddle cantilever beam. Modeling begins 
by choosing an element type, a beam, truss element, 
frame, solid, shell, etc. Solid 92 was chosen as the 
element type because it was a three-dimensional 
element and had the capability of six degrees-of-
movement at each node point. Node locations were 
entered in Cartesian coordinates and these were used to 
construct an area and then a volume. The volume was 
then meshed, which fills in node points throughout the 
entire volume for the finite element analysis. Before a 
solution is run, loading of the beam which includes both 
constraints and actual loads must be added. In Fig. 3, 
the left side two ends of paddle cantilever of the beam 
were completely restrained in all degrees of freedom. A 
gravitational force was applied and then the solution 
was  implemented.  Figure  5  shows  the  structure in 
its  deformed  and  unreformed shape after analysis. 
The  maximum  deflection of the beam occurred at the 
beam tip. 

 
 
Fig. 4: Shows the structure in its deformed shape after 

analysis 
 

 
 
Fig. 5: Shows the structure in its deformed and 

unreformed shape after analysis 
  
Using this ANSYS software the simple and paddle 
cantilever were modeled for a series of structures and 
found the sensitivities and also compared with 
theoretical calculated sensitivities, this will be covered 
in detail in analysis and results section.  
 

ANALYSIS AND RESULTS 
 
 To train ANN models with the results of the finite 
element analyses, network architecture was required; 
first the entire training data file was randomly divided 
into training and testing data sets. About 90% of the 
data 1350 patterns, were used to train the different 
network architectures where remaining 150 patterns 
were used for testing to verify the prediction ability of 
each trained NN model. Since RBFNNs Learn relations 
and approximate function mapping limited by the 
extent of the training data, the best use of the trained 
RBFNN models can be achieved in interpolation.  
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Table1: Max. Deflection for a Set of Paddle Cantilever Sensors and 
Dimensions (10-6m) 

    Vertical  Vertical  
   Ksp Deflection Deflection 
L w t (Nm-1) FEM RBFNN 
200 25 2.5 1.831 5.933 5.822 
250 25 2.5 0.938 3.848 3.721 
300 25 2.5 0.5425 2.695 2.562 
350 25 2.5 0.3417 1.993 1.926 
300 30 2.5 0.6510 2.695 2.599 
350 30 2.5 0.4100 1.993 1.901 
400 30 2.5 0.2747 1.533 1.492 
450 30 2.5 0.1929 1.215 1.197 
400 40 2.5 0.3662 1.533 1.487 
450 40 2.5 0.2572 1.215 1.197 
500 40 2.5 0.1875 0.987 1.001 
550 40 2.5 0.1409 0.818 0.795 

 

 
 
Fig. 6: Shows maximum deflections by finite element 

against corresponding RBFNN prediction 
 
Table 1 shows comparison sample of max. deflection 
for a set of paddle cantilever sensors has been 
calculated by RBFNN and FEM techniques. The 
Young’s modulus E coefficient of silicon is taken as 
1.5*1011 N m−2 in our design. 
 From the analysis of the results in Table 1, it is 
observed that the accuracy of the RBFNN method was 
slightly superior when compared to the FEM techniques 
on account of mean average error (MAE). Figure 6 
shows a plot of finite element maximum deflections 
against corresponding ANN prediction. A linear 
correlation can be observed and the correlation 
coefficient was found Table 1. 
 The computational time is the least, for the (ANN) 
prediction is much less as compared with the FEM, 
from Table 1 we can see that the computational time for  
 
 
 
 
 

ANN after training is 0.0016 sec which is less than that 
for FEM (1.83 sec), it means RBFNN can often obtain 
results in almost negligible time as compared to similar 
works using the FE methods. The efficiency of RBFNN 
depends upon its accuracy, speed and memory 
requirements. 
 

CONCLUSIONS 
 
 In the present study the Radial Basis Function 
(RBFNN) has been explored for predicting nonlinear 
response of uniformly loaded paddle cantilever. The 
simulation data from ANSYS software has been used 
for training and testing. The Simulation results show 
that RBF can be very successively used for reduction of 
the effort and time required determining the load-
deflection response of paddle cantilever as the FE 
methods usually deal with only a single problem for 
each run. This means that it can solve many problems 
that have mathematical and time difficulties. 
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