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Abstract: One of the important equations in numerical solution of Navier Stokes equations is the 
pressure correction equation. In this article, a new method for constructing the coefficients of this 
equation for colocated unstructured meshes is proposed. This method is based on momentum 
interpolation. The method is compared with the approach adopted in literature. The complete 
discretization of the Navier Stokes equations using finite volume method is presented. An algorithm 
similar to SIMPLE is used to evaluate the rate of convergence on two sample problem. The results 
show that by using rectangular grids, two methods have the same performance, but when triangular 
meshes are applied, the new method increases the rate of convergence.  
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INTRODUCTION 
 
 In the last two decades, solution of Navier Stokes 
equations using colocated arrangement has received 
great interests. On the other hand, unstructured grids are 
popular for solution of flow field in complex 
geometries. Colocated arrangement has some obvious 
advantages over staggered grids especially in case of 
non-orthogonal meshes. In colocated arrangement, all 
variables share the same location, hence only one set of 
volumes is considered. Also, by applying the colocated 
grids, the convection contribution to the coefficients in 
discretized equations, are the same for all variables. 
Finally, Cartesian velocity components can be used in 
conjunction with non-orthogonal grids for complex 
geometries which result simpler discretized equations. 
 After the original work by Rhie and Chow[1], 
Peric[2] generalized the same idea for three dimensional 
flows and calculated several two and three dimensional 
flow situations. Majumdar[3] studied the role of under 
relaxation parameter in momentum interpolation for 
calculation of flow with colocated grids. Lien[4] used 
the colocated arrangement for unstructured grids 
successfully. He applied the momentum interpolation as 
a concept for derivation of pressure correction equation. 
However, different authors have different ideas to 
construct the pressure correction equation. For example 
the approach used by Thomadakis et al.[5] for 
constructing the coefficients is quiet different from that 

used by Lien[4]. Here the emphasis is on the fact that 
these coefficients can affect the numerical solution. 
Therefore, a new form of the coefficients is proposed 
and it's rate of convergence and performance is 
examined. 
 In this study, two examples are solved by 
structured and unstructured grids: 
 
• Laminar flow in a lid-driven square cavity 
• Two dimensional parallel flow  
  

FLOW EQUATIONS 
 
 For incompressible Newtonian fluid flows, the 
conservation equation for mass and momentum are as: 
 
    .( V) 0∇ ρ =

� �
 (1) 

 

  p
( u) .( V u) .( u)

t x

→ → → →∂ ∂ρ + ∇ ρ = ∇ µ∇ −
∂ ∂

 (2) 

 

  p
( v) .( V v) .( v)

t y

→ → → →∂ ∂ρ + ∇ ρ = ∇ µ∇ −
∂ ∂

 (3) 

 
 In above equation, u and v are Cartesian 
components of velocity vector.  
 Transport equation for a general variable, such as 
ϕ, can be written as: 
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Fig. 1: Data Structure for triangular mesh 
 

  j
j j j

( ) ( u ) ( ) q
t x x x ϕ

∂ ∂ ∂ ∂ϕρϕ + ρ ϕ = Γ +
∂ ∂ ∂ ∂

 (4) 

 
DATA STRUCTURE 

 
 As mentioned before, colocated arrangement for 
velocity components and pressure within an arbitrary 
finite volume is adopted here. The basic idea of this 
data structure is shown in Fig. 1. As shown, forming 
points are the vertices of control volume and the center 
of control volume is assumed for storage of all 
variables. 
 In Fig. 1, each cell has some adjacent cells with 
two or three shared nodes. For example, in triangular 
meshes, the adjacent cells have two shared nodes and in 
tetrahedral meshes, they have three shared nodes. 
 The forming points and adjacent of a cell are 
numbered in the counterclockwise direction suitable for 
divergence theorem. 
 

FINITE VOLUME DISCRETIZATION 
 
 By integrating the Eq. 5, over a control volume, 
using divergence theorem, the general transport 
equation in integral form is obtained: 
 

 
S S

d V dS dS q d
t ϕ

Ω Ω

∂ ρϕ Ω + ρϕ ⋅ = Γ∇ϕ ⋅ + Ω
∂ � � � �

�� ��� �� ���
 (5) 

 
where, S

�
 is the surface vector with the Cartesian 

components, namely Sx, Sy. This integral form consists 
of four parts; transient term, convection term, diffusion 
and source term. 
 On triangular meshes, the convective term can be 
approximated as: 
 

   
3

si si
i 1S

V dS C
=

ρϕ ⋅ = ϕ��
�� ���

 (6) 

 
 The parameter Csi is the mass flux over the i'th 

surface of control volume. The mass fluxes are: 

0 

i 
i i S C t − i S C r − 0 

i i S C r − 

S i 

M  

i S C t − 0 
N 

P 

i S C h − 0 

i i S C h − 

 
 
Fig. 2: Auxiliary control volume of Eq. 25 
 
   si si xi si yiC (u S v S )= ρ +  (7) 
 
 Variables usi and vsi are the components of 
velocities at the i th face of the control volume. 
 The value of ϕ on the faces (i.e. ϕsi) can be 
approximated by the following second-order upwind 
scheme[1]: 
 

 0 0 c0 si si
si

i i ci si si

( ) r if C 0
( ) r if C 0

−

−

�ϕ + ∇ϕ ⋅ >�ϕ = �
ϕ + ∇ϕ ⋅ <��

� �

� �  (8) 

 
 The vectors of 

0c sir −
�  and ci sir −

�  are shown in Fig. 2. 

In Fig. 2, C0 is the Center of the control volume Ω and 
Ci is the centre of its i'th adjacent cell  
 Diffusion term can be approximated as follows: 
 

  
3

si si i
i 1S S

dS dS ( ) S
n n=

∂ϕ ∂ϕΓ∇ϕ⋅ = Γ = Γ
∂ ∂�� �

�� ���
 (9) 

 
 The normal gradient of any variable can be 
approximated as below: 
 

i i 0 i

0 i 0 i

i i C S 0 0 C SP N
si

C C C C

( ) .t ( ( ) .t )
( )

n h h
− −

− −

ϕ + ∇ϕ − ϕ + ∇ϕ∂ϕ ϕ − ϕ= =
∂

������ ������� �

 (10) 

 
where, hC0-Ci is the summation of distances hC0-Si and 
hCi-Si in Fig. (2). Inserting Eq. 10 in Eq. 9, results: 
 

 0 i 0 i

i i 0 i

0 i

3 3
si i si i

i 0
i 1 i 1C C C CS

3
si i

i C S 0 C S
i 1 C C

S S
.dS ( ) ( ( ))

h h

S
( )(( ) .t ( ) .t )
h

= =− −

− −
= −

Γ ΓΓ∇ϕ = ϕ − ϕ

Γ+ ∇ϕ − ∇ϕ

� ��

�

�� ���

������ ������� �
 (11) 

 
 The Si is the magnitude of face vector iS

��
. 

 The pressure source terms can be approximated by 
using Green’s theorem. For example: 
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3

x si xi p
i 1S

p
d pdS p S S

x ϕ
=Ω

∂− Ω = − = − = −
∂ �� �  (12) 

 
 The transient term is approximated as: 
 

  n 10 0
0 0d

t t t
−

Ω

∂ ρΩ ρΩρϕ Ω = ϕ − ϕ
∂ ∆ ∆�  (13) 

 
 In which, superscript (n-1) is used previous time 
step. 
 Insertion of the above discretized terms in the 
integral form of transport equation, gives: 
 

 
3

n 10
0 0 i i 0 p d c

i 1

A A S S S
t

−
ϕ ϕ ϕ

=

ρΩϕ = ϕ + ϕ − + −
∆�  (14) 

 
where, 
 

  
0 i

4
si i

i si
i 1 C C

S
A ( C ,0 )

h= −

Γ
� �= − +	 
�  (15) 

 

  
0 i

4
0 si i

0 si
i 1 C C

S
A ( C ,0 )

t h= −

ρΩ Γ
� �= + +	 
∆ �  (16) 

 
 The pressure source term can be obtained from: 
 

 i i 0 i

4
0 i i C S 0 C S

p i
i 1

p p ( p) .r ( p) .r
S ( )S

2
− −

ϕ ϕ
=

+ + ∇ + ∇
=�

������ ������� �

 (17) 

 
 Convection and diffusion source terms are: 
 

i i 0 i

0 i

0 i i i

4
si i

d i C S 0 C S
i 1 C C

4

c si 0 C S si i C S
i 1

S
 S ( )(( ) .t ( ) .t )

h

S ( C ,0 ( ) .r C ,0 ( ) .r )

ϕ − −
= −

ϕ − −
=

Γ= ∇ϕ − ∇ϕ

� � � �= ∇ϕ − − ∇ϕ	 
 	 


�

�

������ ������� �

������ ������� �
 (18) 

 
 In above equations �si is diffusion coefficient at i'th 
face and Si is the magnitude of a face vector and Sϕi 
denotes that component of face vector which is parallel 
with ϕ. For example in calculation of Spu, the term Sϕi is 
Sxi and for calculation of Spv, the term Sϕi is Syi.  
 

PRESSURE CORRECTION EQUATION 
 
 The pressure correction equation is derived from 
integral form of the continuity equation. This integral 
form of can be written as: 
 

3

si si xi si yi si zi
i 1S

V dS C (u S v S w S ) 0
=

ρ ⋅ = = ρ + + =� ��
��

 (19) 

 The pressure and velocity link is very important. 
According to the momentum interpolation method, the 
face velocities are approximated as: 
 

 

0 0
si 0 0 i i

0 0

si si
0

1 p p
u u ( ) u ( )

2 A x A x

p
( ) ( )
A x

� �Ω ∂ Ω ∂= + + +� �∂ ∂	 


Ω ∂−
∂

 (20) 

 
 By considering below notations (Eq. 15): 
 

  

3
n 10

L L 0 d c
L 1

0
0

A u S S
tû
A

−
ϕ ϕ

=

ρΩ+ ϕ + −
∆=

�
 (21) 

 
 Using momentum interpolation concept, the face 
velocity can be written as: 
 

   [ ]si 0 i si si
0

1 pˆ ˆu u u ( ) ( )
2 A x

Ω ∂= + −
∂

 (22) 

 
 Different approximations can be employed for 
estimating the face value for 

si
0

( )
A
Ω  in the above 

equations. 
 Lien[4], proposed the face value of 

si
0

( )
A
Ω  is 

estimated as below: 
 

  
0 i

si
si si C C i

0 0 0 0 i

2
( ) , h S
A (A ) (A ) −

� �Ω Ω= Ω =� �+	 

 (23) 

 
 Here, we propose another approximation, i.e.: 
 

        i

0

0

0

si

0

)
A

)(1()
A

()
A

(
Ωβ−+Ωβ=Ω

 (24) 

 The weight factor (β) is defined by: 
 

    C0 Si

C0 Si Ci Si

r

r r

−

− −

β =
+

������

������ �����  (25) 

 
 By replacing the above approximations, the 
integral form of continuity equation can be written as: 
 

3
0

0 i si si xi
i 1 0uS

3
0

0 i si si yi
i 1 0u

pˆ ˆV dS [0.5(u u ) ( ) ( ) ]S
A x

pˆ ˆ[0.5(v v ) ( ) ( ) ]S 0
A y

=

=

Ω ∂ρ ⋅ = ρ + − +
∂

Ω ∂ρ + − =
∂

��

�

�� ���

 (26) 

 In the other form: 
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3

0 i xi 0 i yi
i 1S

3
0

i si si
i 1 0u

ˆ ˆ ˆ ˆV dS 0.5 [(u u )S (v v )S ]

p
S ( ) ( ) 0

A n

=

=

ρ ⋅ = ρ + + + −

Ω ∂ρ =
∂

��

�

�� ���

 (27) 

 
And by introducing perturb mass flux (C'Si) as: 
 

   0
Si i si si

0u

p
C S ( ) ( )

A n
′Ω ∂′ = ρ

∂
 (28) 

 
 The continuity equation becomes: 
 

   
3

*
Si Si

i 1

(C C ) 0
=

′+ =�  (29) 

 
 Therefore, the final form of pressure correction is: 
 

   
3 3

' ' *
0p 0 ip i si

i 1 i 1

A p A p C
= =

= −� �  (30) 

 
Where: 
 

 
0 i

i
ip Si

C C 0

S
A ( ) for i 1,2,3

h A−

ρ Ω= =  (31) 

 
And: 
 
   0p 1p 2p 3pA A A A= + +  (32) 

 
 According to the Lien [4] Proposal, The Aip 
coefficients are: 
 

 
2

i
ip

0 0 0 i

2 S
A for i 1,2,3

(A ) (A )
ρ= =
+

 (33) 

 
  And according to Eq. 24, The New form for Aip 
coefficients can be written as:  
 

  
0 i

i
ip 0 i

C C 0 0

S
A ( ( ) (1 )( ) )

h A A

for i 1,2,3
−

ρ Ω Ω= β + − β

=
 (34) 

 
 New pressure and velocity field can be calculated 
from:  
 
    * 'p p p= + α  (35) 

   * 0
0 0 0

0 0

p
u u ( )

(A ) x
′Ω ∂= −

∂
 (36) 

 
and 
 

   * 0
0 0 0

0 0

p
v v ( )

(A ) y
′Ω ∂= −

∂
 (37) 

 
where, α is under relaxation factor for p'. In this study, 
the value of 0.3 is used as relaxation factor for p'.  
 The algorithm of solution is: 
 
• Guessing the pressure field p 
• Calculation of mass flux (Eq. 7) 
• Calculation of coefficients (Eq. 15, 16, 17) 
• Calculation of velocities (Eq. 14) 
• Calculation of pressure correction (Eq. 30, 36) 
• Calculation of u and v from their starred values 

using the velocity correction formulas (Eq. 36, 37) 
• Assuming the corrected pressure as a new guessed 

pressure and returning to step (2), then repeating 
the whole procedure until a converged solution is 
obtained 

 
 This is quite similar to SIMPLE method used by 
Patankar[6] for staggered grids. 
 

CONVERGENCE CRITERIA'S AND 
DEFINITION OF RESIDUALS 

 
 After discretization, the residual for a general 
variable ϕ at a cell can be written as: 
 

number of cells 3
n 10

i i 0 p d c 0 0
m 1 i 1

number of cells

0 0
m 1

R

( A S S S A )
t

A

ϕ

−
ϕ ϕ ϕ ϕ ϕ

= =

ϕ
=

ρΩϕ + ϕ − + − − ϕ
∆=

ϕ

� �

�

 (38) 

 
 A different definition is used for residual of 
continuity equation, which is defined by: 
 

    
3

i sj
j 1

b C
=

=�  (39) 

 
 In above equation bi is mass imbalance over the i'th 
cell. According to above equation, the total mass 
imbalance is defined as: 
 

    
number of cells

i
i 1

b b
=

= �  (40) 
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APPLICATIONS 
 
Lid driven cavity: The first case for comparison of two 
different pressure correction equations is a 1×1m2 lid 
driven   cavity.   The    velocity   at   upper edge is 
0.001 m sec−1 and the fluid is water (with the viscosity 
of 0.001 Ns m−2 and the density of 1000 kg m−3). The 
Reynolds number is 1000 based on the cavity length. 
 To solve the problem, two different meshes are 
generated (Fig. 3). The problem is solved using two 
different pressure correction equations mentioned in 
previous section . 
 The pressure contours and the streamlines for 
structured grid are shown in Fig. 4. These results are 
achieved by using the new method (based on Eq. 34) 
for pressure correction equation. 
 In Fig. 5a, dimensionless profiles of u component 
of   velocity vector   at   the   midline   of  the cavity (at 
x = 0.5) for both structured and unstructured meshes are 
compared   with   Ghia   et   al. results[7]. The results are 
 

 
 

(a) 
 

 
(b) 

 
Fig. 3: Rectangular and triangular meshes used for 

calculation of cavity flow a: rectangular mesh 
40×40(1600 cells) b: triangular mesh (1644 
cells)  

achieved using Eq. 34. There is a satisfactory 
agreement between the results, but in triangular mesh 
results deviation is more. Some error resources such as 
non-orthogonality are important for triangular meshes. 
Using deferred correction term can reduce the effects of 
non-orthogonality[8]. 
 In Fig. 5b, profiles of u component of velocity 
vector are plotted for different methods on structured 
grids. Figure 5b also shows that the results are equal for 
two methods. 
 Total mass imbalance (defined by equation 40), vs. 
the number of iterations are plotted for different cases 
in Fig. 6a and b. The important feature of these results 
is that, the values of total mass imbalance (b) can be 
interpreted as a good criterion for overall convergence 
of the  problem.  The only difficulty in this way is that 
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Fig. 4: Pressure contours and streamlines of cavity flow 

at Re = 1000 Using rectangular mesh (by using 
Eq. 34) a: pressure contours, b: streamlines 
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Fig. 5: Comparison of dimensionless u velocity on 

rectangular mesh, a: with data of Ghia et al.[7] 

(Re = 1000), b: between Lien[4] method and new 
proposed method 

 
the value of total mass imbalance can vary over a wide 
range for different problems, especially in unstructured 
grids. As shown in this Fig. 6a, the value of total mass 
imbalance are equal for two methods in rectangular 
meshes, but new method needs less number of 
iterations to converge in triangular meshes (Fig. 6b).  
 It can be understood that the rate of convergence 
by using new method (Eq. 34) is more, in the case of 
triangular meshes. The study of the results for parallel 
flow between two plates will be presented in the 
subsequent section as another sample problem. 
 
Two-dimensional parallel flow: This case has an 
analytical solution in fully developed region. The 
geometry and properties of the fluid are shown in Fig. 
7.  
 For solving the problem, two types of rectangular 
and triangular meshes are generated. The specifications 
of the meshes are given in Table 1. 
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Fig. 6: Comparison of total mass imbalance b (defined 

by equation 40) a: for rectangular grid b: for 
triangular grid 

 

ρ = 1 kg m−3

U∞ = 0.3 m sec−1

µ = 2×10−5 Pa sec−1 0.01 m

0.2 m

 
 
Fig. 7: Geometry and the properties of fluid 
 
Table1: Specifications of rectangular and triangular meshes, prepared 

for calculation of two dimensional parallel flows 
Type of Mesh No. of intervals No. of intervals Total No. 
 in x direction in y direction of CV 
Rectangular 80 50 4000 
Triangular 400 20 18144 

 
 In Fig. 8, contours of u and v components of the 
velocity are shown. These results are achieved using 
rectangular mesh and new method pressure correction 
equation. 
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Fig. 8: Contours of u and v component of velocity using rectangular mesh A: contours of u component B: contours 

of v component 
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Fig. 9: Profiles of dimensionless x component of velocity vector in developing region compared with results of 

MacDonald  et  al. [9].   a:  at x = 0.5H;                                                       b: at x = 2H 
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Fig. 10: Comparison of total mass imbalance (b) (defined by equation 40) for flow between parallel plate  

a: for rectangular grid                                                     b: for triangular grid 
 
 Figure 9 shows the profile of u component of 
velocity vector, compared with MacDonald et al. 

results[9] in two sections of developing region. This 
results show the correctness of written code. 
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 Total mass imbalance (defined by equation 40), vs. 
the number of iterations are plotted for different cases 
in Fig. 10a, b.  
 As shown in this Fig. 10a, the value of total mass 
imbalance are equal for two methods in rectangular 
meshes, but in triangular meshes new method needs 
less number of iterations to converge (Fig. 10b). 
 

SUMMARY AND CONCLUSION 
 
 By studying two sample problems, it is evident that 
new method (defined by Eq. 34) can decrease the 
residuals faster than by Lien[4] proposed method. Two 
methods are approximately equal when rectangular 
meshes are used (Fig. 6a, 10a), but by using triangular 
meshes, new method needs less number of iterations to 
converge (Fig. 6b, 10b). This phenomenon is due to 
non-orthogonality of triangular meshes in which, weak 
pressure correction can’t damp the oscillation generated 
during the solution procedure. Therefore the method of 
construction of coefficients in Pressure correction 
equation can affect the rate of convergence. It must be 
emphasized that, using new method, the calculation 
time is less, because the residual of continuity equation 
and total mass imbalance decrease faster for this 
approach (Fig. 6b, 10b). 
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