
American Journal of Applied Sciences 9 (8): 1166-1181, 2012 
ISSN 1546-9239 
© 2012 Science Publications 

Corresponding Author: Ahmed Ben Achballah, Department of Electrical Engineering, National Institute of Applied Sciences and Technology, 
Polytechnic School of Tunisia, Advanced Systems Laboratory, B.P. 676, 1080 Tunis Cedex, Tunisia 

1166 

 
Design of Field Programmable Gate Array 

Based Emulators for Motor Control Applications 
 

Ahmed Ben Achballah, Slim Ben Othman and Slim Ben Saoud 
 Department of Electrical Engineering,  

National Institute of Applied Sciences and Technology,  
Polytechnic School of Tunisia, Advanced Systems Laboratory, 

B.P. 676, 1080 Tunis Cedex, Tunisia 
 

Abstract: Problem statement: Field Programmable Gate Array (FPGA) circuits play a significant 
role in major recent embedded process control designs. However, exploiting these platforms requires 
deep hardware conception skills and remains an important time consuming stage in a design flow. 
High Level Synthesis technique avoids this bottleneck and increases design productivity as witnessed 
by industry specialists. Approach: This study proposes to apply this technique for the conception and 
implementation of a Real Time Direct Current Machine (RTDCM) emulator for an embedded control 
application. Results: Several FPGA-based configuration scenarios are studied. A series of tests 
including design and timing-precision analysis were conducted to discuss and validate the obtained 
hardware architectures. Conclusion/Recommendations: The proposed methodology has accelerated 
the design time besides it has provided an extra time to refine the hardware core of the DCM emulator. 
The high level synthesis technique can be applied to the control field especially to test with low cost 
and short delays newest algorithms and motor models. 
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INTRODUCTION 

 
 The high integration scale of FPGAs and their high-
speed processing time with the reconfigurability option 
make this type of circuits an attractive solution for 
many types of applications (Rodriguez-Andina et al., 
2007). FPGA based systems and simulators are found 
in various domains like defense (Gonzalez et al., 2008), 
medical (Monmasson and Cirstea, 2007), renewable 
energy (Ouhrouche, 2009), physics and the control of 
industrial process (Salem et al., 2010; Idkhajine et al., 
2008; Naouar et al., 2007). However, implementing 
complex algorithms in FPGA-based systems can be a 
laborious work. This study is still realized by circuit-
vendor specific tools in many cases and requires deep 
design skills, so it remains the most time consuming 
operation in a design flow (Gupta et al., 2004; Paiz et 
al., 2008).  
 Modern design tools give the possibility to 
designers to overcome reconfigurable circuit limits and 
to shorten the product availability in the markets. Some 
of these tools are called high level compilers, 
frameworks and also synthesizers, derived from the 
word “High Level Synthesis”. This technique consists 

of the translation of an algorithm from a high level 
language like C to an equivalent hardware language like 
VHDL or Verilog that represents a circuit description 
(Coussy and Morawiec, 2008; Pellerin and Thibault, 
2005). The resulting hardware descriptions can be 
implemented directly into circuits like FPGAs. 
Hardware engineers may not modify them and so 
economize in the design process time (Martin and 
Smith, 2009). Such time gain can be used in the test and 
the on-chip verification steps.  A recent study in the 
industrial field demonstrates that HLS technique is 
necessary to increase productivity and diminish the gap 
between the increasing integration of chips and the 
number of designers needed to work on them (Coussy 
and Morawiec, 2008). The same study shows that 
hardware engineers who tried the HLS technique 
wouldn’t leave it because of its performance and 
practical obtained results. By this way, the industry of 
electrical process control, which is yet beneficiary from 
FPGAs advanced platforms, is now benefiting from 
advancements of EDA tools and techniques including 
HLS. The application of such advantages (circuitry 
and tools) in the process control field is generally 
concentrated on implementing more efficient 
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complex algorithms and on testing them in real 
conditions with an association with a motor model. 
This technique is often called Hardware in the Loop 
simulation (HiL) (Dufour et al., 2007). The proposed 
FPGA-based simulators are various and depend on 
parameters like (1) The degree of algorithms‟ 
complexity (controller and motor model) (2) 
Computing accuracy (3) Timing constraints.  
 These parameters oblige designers to follow 
different design flows (Martin and Smith, 2009) and to 
find alternative solutions especially against timing 
constraints like Real-Time Operating System (RTOS), 
Multi-Processors System On Chip (MPSoC) or the 
hardware implementation of several parts of the electrical 
process (e.g., controller unit). Still also, some design 
methodologies which are dedicated to the hardware 
design field, are more and more adopted and applied to 
the process control one like hardware-software CoDesign 
using languages like SystemC or SpecC (Salewski and 
Kowalewski, 2008).  
 In this study, we explore HLS technique because, 
as we know, it was not already applied to the embedded 
control domain. In fact, we investigate the efficiency of 
using the benefits of this technique to automatically 
generate a hardware module of the RT DCM emulator 
circuit. The purposes behind this case study are (1) to 
evaluate this technique with a basic electrical motor 
model design (2) to extract the advantages and the 
disadvantages of applying HLS techniques to the 
control domain.  
 
Related works: FPGA based systems approaches on 
the industrial control field were often based on similar 
tools and environments. Among them, Xilinx System 
Generator (XSG) from Xilinx Inc., DSP Builder from 
Altera and SymplifyDSP from Synopsys were very 
solicited from the research community. 
  Monmasson and Cirstea (2007), the XSG tool was 
used to implement an FPGA-based controller for AC 
drives and where two case studies were presented. 
Reference (Paiz et al., 2008) introduced an enhanced 
simulation board dedicated to the rapid prototyping of 
digital controllers and also used one of the cited tools 
above to generate hardware descriptions from high 
level descriptions.  
 The literature also contains alternative approaches, 
Opal-RT team proposed a Real-Time simulation 
platform RT-XSG (including model’s libraries) to 
perform Hardware-in-the-Loop (HiL) simulation of 
electrical drives but it still depends on XSG tool to 
complete the synthesis and the implementation of the 
targeted FPGA circuit (Dufour et al., 2008). HiL testing 
phase is essential in the validation process of control 
units and motor drives. In addition, prior works are 

focused on two major axes (1) FPGA implementation 
of complex control algorithms for performance 
purposes (2) Validation of electrical controllers and/or 
motors at earlier stages of production for cost reasons 
(Martin and Smith, 2009). These approaches don’t 
consider the validation and the diagnosis of the electrical 
process after the production stage.  
 To resolve this problem, the emulation approach 
can be a solution for testing control algorithms. This 
concept is assured by the addition of a new validation 
stage between simulation and experimentation. After 
the validation of the control unit, commands can be 
directly applied to the real motor avoiding its 
destruction which could be expensive and factor of 
delayed delivery of the product (Braham et al., 1997). 
Once the emulation performed successfully, the 
designed emulator can be used for diagnostic 
applications. The development of such emulators is 
essentially faced with the execution time problems 
since its main function is to reproduce real systems 
behavioral that are highly dynamic. 
  Such approaches were already developed by 
(Othman et al., 2008; Salem et al., 2008). The last two 
studies have been applied to the Real-Time emulation 
of an embedded controller for a DC Machine but they 
have been conducted using a pure software solution or a 
mixed one (software and hardware). Despite the fact that 
the emulator execution time in last two approaches was 
competitive, it doesn’t allow the recuperation of 
instantaneous values (below 1 µs computing steps) and 
so, not enough closer to a real motor functioning. This 
limitation can induce more penalties due to the evolution 
of control algorithms and the complexity of some electric 
machine models.  
 For this reason, our approach is to design a 
hardware module which operates as a co-processor to 
the on-chip processor. This will economize software 
delays such as (1) The sequential execution of software 
instructions inside the processor (2) Interruptions and 
context switching latencies and as a result, accelerate 
the emulator computing time to meet timing constraints. 
Because the hardware computing is faster than the 
software one, the purpose of the emulator hardware 
implementation is to obtain less than 1 µs computing 
steps (called hor). With this computing time, the 
emulator can intimately reproduce the functioning of 
a real motor. Also, recent digital motor controllers 
can have a sampling rate below 10 µs, so it was 
inevitable for us to maintain a competitive 
computing time for the simulated Direct Current 
Machine (DCM) (Dufour et al., 2007).  
 Meanwhile, the design stage has to be quick, 
flexible and reproducible in case of eventual 
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modifications on the emulator model. HLS technique 
is a good candidate to ensure the last cited conditions. 
In what remains, we will detail our approach by the 
application of this technique to the emulation concept 
of a DCM process, followed by the obtained results 
and the discussion.  
 
Emulation concept: Emulating electrical systems are 
to reproduce their functionalities with the most accurate 
model in a virtual manner. The goals behind such 
approach is allowing designers to validate control units 
and to diagnose them after in terms of precision and 
efficiency (Achballah et al., 2010; Saoud et al., 1996). 
These two stages are described in the following two 
paragraphs.  
 
Validation stage: In an emulation approach, the 
validation stage came as the first step to elaborate. In 
fact, the controller is associated to a motor emulator 
that represents the real motor and controller commands 
are validated against it. This maneuver is executed 
before the association of the controller with the real 
motor. The connection between these two elements has 
to be similar to the real one and assure a realistic data 
exchange. The controller sends command signals to the 
emulator that, in his turn, reproduces information about 
the motor state as they are issued from sensors. When 
the control device is validated it can be switched for 
application to the physical motor as (Fig. 1).  
 
Diagnosis stage: Simultaneously, the same commands 
applied to the real process are also applied to the 
emulator. The output signals of the emulator constantly 
compare to the real motor ones. Using the received data 
from both terminals, we can analyze the behavior of the 
real system and detect irregular functioning (Fig. 2).  
Note that if the emulator’s output is speed; it has to be 
limited because the emulator is not looped back.  
 
Realization constraints: The realization of real time 
emulators is closely related to the adopted design 
methodology and the used technology. In fact, these 
two factors have a direct impact on the performances of 
the designed emulator. The first one, if not enough 
specified, can induce to an inadequate architecture to 
the technology that will encapsulate the emulator later.  
Also, it can conduct to a complicated design flow that 
can increase the conception time. The second factor, the 
used technology, depends itself on many other 
parameters. Among them we can cite hardware platforms 
(microcontrollers, DSPs, FPGAs, ASICs) or CAD tools 
(design, simulation, on-chip verification. 

 
 
Fig. 1:  Structure of the validation application 
 

 
 
Fig. 2:  Structure of the diagnostic application 
 
The implementation process is faced to a one major 
constraint which is the execution time of the emulator’s 
algorithm. This factor will allow the evaluation of the 
emulator’s performances including its capability to 
reproduce the real process. In the following, we will 
introduce the emulated process considered in this case 
study. 
 

MATERIALS AND METHODS 
  
DCM Process: we have chosen to study a direct 
current motor case because it is a simple electrical 
machine model. The purpose behind this study is to test 
the HLS approach in the control domain field 
(Achballah et al., 2010). 
 The model we propose is by two elements which 
are the control unit and a DC motor emulator. In 
addition, a chopper is utilized to aliment the emulator 
with Vh voltage. Two parameters are furnished by the 
emulator to the controller which are the motor current 
(Im) and speed (Ωm). Another parameter is also 
considered by the control unit which is reference speed 
ΩRef entered by users to supply the adequate duty 
cycle alpha to the chopper module. The system is 
demonstrated in Fig. 3 while its parameters are resumed 
in Table 1. To compute the system state, we use basic 
mathematical models for a DC electric motor; the 
chopper (Eq. 1), the current (Eq. 2) and the rotation 
speed (Eq. 3). The equation parameters are 
recapitalized in Table 2. 
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Fig. 3: General diagram of the DCM process 
 

 
 

Fig. 4:  DFG execution of the emulator 
 
Vh (2.alpha 1).Vin= −                                                   (1) 
 
dim 1

(Vh Em Rm.Im)
dt Lm

= − −                                      (2) 

 
d m 1

(Cem Cr)
dt J

Ω = −
 

(3) 

 
Where: 
 
Em=Km. Ωm 
Cem=Km.Im 

Cr=KI. ΩM2. Sign (Ωm)+K2. Ωm+K3. Sign (Ωm) 

 
DCM emulator algorithm: The equivalent algorithm 
of the studied process is performed using mathematical 
models (Eq. 1-3) with second order Runge-Kutta 
sampling method. It is given by (Eq. 4-6): 
 
Vh(k) (2 alpha(k) 1) Vin= ∗ − ∗  (4) 

 
Im(k 1) a Im(k) m(k) Vh(k)β γ+ = ∗ + ∗ Ω + ∗  (5) 
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Table 1: Control unit parameters  
Parameter     Nomenclature  
Vin  Supply voltage  
Vh  Chopper‟s output voltage  
Em  Back-electromotive force  
Im  Machine current  
Ωm  Machine rotation speed  
Cem  Electromagnetic torque  
Cr  Resistant torque  
Lm  Inductance  
Rm  Resistance  
J  Inertia  
Km  Electromagnetic torque coefficient  
K1, K2, K3  Resistant torque coefficient  
 
Table 2: Equations parameters nomenclature  
Parameter  Value  
Current controller gains kp, kpi  1.1737, -1.0150  
Speed controller gains kp, kpi  0.142, -0.1111  
Iref Limits  ± 13 A  
Current sampling time  300 µs  
Speed sampling time  20 ms  
PWM frequency  16 kHz Design 2 (page 12)  
Dead time  not used  

 
Table 3: DCM Algorithm parameters  
Parameter  Value  
α  0.9995  
β  -9.1977e-005  
γ  4.9987e-004  
λ  1.4603e-004  
µ  1  
ν  0  
Vin  60 Volts  
hor  350 ns (page 7)  

 
[ ]m(k 1) Im(k) m(k) v sign m(k)λ μΩ + = ∗ + ∗ Ω + ∗ Ω  (6) 

 
where α, β, γ, λ, µ and ν are calculated from system 
parameters and the computing step hor. The equivalent 
data flow graph (DFG) of the emulator’s algorithm is 
shown in Fig. 4 (for ν = 0).  
 Although the dependence between the algorithm 
equations variables (D1-D2), parallelism can be 
extracted from the execution flow (P1 and P2) to reduce 
computing time. This concerns the multiplications in 
Eq. 5 and 6 where the computation can be assured by 
independent hardware multipliers for each one. 
 The result is a faster execution time but this will 
increase the area consumption in the targeted FPGA 
circuit especially when the computing is realized with 
floating point arithmetic. For this case study, we will 
focus on generating parallelized architectures to gain in 
speed because it is our primary concern. However, we 
will evaluate the quality of the obtained circuits in term 
of area consumption.  
 The algorithm parameters used after for the 
simulation and more lately in the hardware 
implementation tests are provided in Table 3. 

HLS Approach an overview: To face the increasing 
integration capacity of chips and the customer’s 
insatiable demand of complex applications, 
development of Electronic Design Automation (EDA) 
tools and methodologies have to find innovative 
solutions (Pellerin and Thibault, 2005). HLS technique 
is one of among available solutions which were kept by 
both academicians and industrials.  
 As a proof, we can invoke some recent experiments 
conducted by three leading industrial companies and 
explaining that HLS tools have to be considered in the 
future for cost and productivity reasons (Coussy and 
Morawiec, 2008). However, this success is the result of 
many critiques that followed HLS tools since their 
arrival on the market (Martin and Smith, 2009).  
 In fact, the efficiency of such environments in 
terms of area consumption, the control of hardware 
generation flow and the quality of the final design was 
enormously discussed. By this way, several studies 
were conducted to evaluate different HLS environments 
against diverse criteria. As an example we cite the 
BDTI program.  
 Nowadays, HLS tools are more and more mature to 
be considered by industrial society. We just cite a few of 
them, CoDeveloper from ImpulseC, DK Suite, 
CatapultC... The field of application varies depending on 
the purpose behind the use of such technique. One of the 
scientific fields which benefitted from HLS tools is the 
signal processing domain, where parallelism is 
massively extracted and then allows the computing 
acceleration, sometimes hundreds of times.  
 Unfortunately, control algorithms and machine 
models have the characteristics to be variable-
dependent and so, could be difficult to automatically 
extract parallelism from them. In our case study, we 
will investigate the use of CoDeveloper as HLS 
environment to generate a hardware module of a DCM 
emulator. In the following paragraphs, we will 
introduce this tool and expose obtained preliminary 
simulation results. 
 
CoDeveloper high level synthesis tool and flow: 
CoDeveloper is an HLS tool developed by Impulse 
Accelerated Technology. It is based on ImpulseC language 
which is its input language based itself on Stream-C 
environment developed in the Los Alamos labs. 
 To utilize CoDeveloper, developers have to follow 
its programming approach which is based on 
Communication Sequential Processes (CSP). In other 
terms, a set of C functions that represent software or 
hardware modules connected with data channels 
(Fig. 5). Data channels are composed of data 
streams, signals or registers. 
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Fig. 5:  CSP programming model of ImpulseC 
 

 

 
Fig. 6:  Processes partition of the DCM emulator 
 
 Software processes are used as generators to furnish 
simulation scenarios or as consumers to collect 
resulting data from the simulation. They can also play 
the role of drivers if the hardware module is associated 
with a processor. In the other side, hardware modules 
are converted to a hardware description in an xHDL 
language. CoDeveloper includes three internal tools 
which are: 
 
• Application Monitor simulates the design. 
• CoValidator generates xHDL testbench files. 
• StageMaster explores the design for a step by step 

verification. 
 
CSP programming model of the DCM emulator: To 
generate VHDL description from C codes, designers 
have to follow the CSP programming model and to 
convert their C application to ImpulseC syntax. In this 
case, the emulator application was divided into 3 
processes as explained in Fig. 6. The linking between 
them is assured by 32 bits width data streams. This 
choice is based on two parameters (1) All data are in 
floating point format (2) The emulator module will be 
implemented as a co-processor to the MB processor 
with FSL connections (Achballah et al., 2010). 

 
 
Fig. 7:  Hardware module of the DCM emulator 
 

 
(a) 

 

 
(b) 

 

Fig. 8: PC-based Speed (a) and Current (b) responses of 
the DCM emulator 

 
Table 4: CoDeveloper report of the emulator hardware process  
Hardware resources   Timing analysis  
------------------------------------ ---------------------------------------- 
Operators  Used  Total stages  Max. Delay  
   (In clock cycles)  
Floating-point           55         32  
Adders/Subs tractors  4 
(32 bits)  
Floating-point  
Multipliers (32 bits) 5  
Estimated DSPs 
 (18×18 Multipliers)   20  



Am. J. Applied Sci., 9 (8): 1166-1181, 2012 
 

1172 

 
 

Fig. 9:  Simulation measures of the computing time for the DCM emulator circuit 
 

 The software processes (Producer and Consumer) 
are necessary to simulate the hardware process 
(Emulator) with the Application Monitor tool. The 
hardware generation is realized according to this 
configuration (1) Xilinx MicroBlaze FSL (VHDL) (2) 
Double-precision types and operators. The obtained 
circuit after the HLS of the hardware process from 
ImpulseC code is shown in Fig. 7.  
 CoDeveloper generates also an estimation report of 
hardware resources consumption and timing analysis. 
This report is summarized in Table 4.  
 
Simulation results: We proceed to the simulation of 
the DCM emulator circuit. This simulation concerns: 
 
• The accuracy of computed values (Im and Ωm 

represented respectively by “im-data” and “wm-
data”) and which is verified by Application 
Monitor tool. 

• Timing analysis to measure the execution time of 
the DCM emulator circuit and which is verified 
by ModelSim tool.  

 
Computing results: the alpha level used in this 
simulation is 0.5- 0.7 at zero. Theoretically, it induces a 
stationary rotation speed of 130.1308 rad/s. In this stage 
of simulation, the current and the speed curves are 
expressed in terms of iteration points and all calculations 

are realized in floating point format. The emulator 
responses are plotted in Fig. 8.  
 
Execution time results: the execution time of the DCM 
emulator was measured using “ready flags” among other 
useful signals which are automatically generated by 
CoDeveloper (Fig. 7 for port details). We just name two 
of them:  
 
• xxx_rdy: indicates that input or output data 

xxx_data are ready in the corresponding streams  
• xxx_en: can be used to control the data transferring 

in the streams  
 
 In this measure, we obtained 350 ns computing 
steps for the DCM emulator. By applying a system 
clock of 100 MHz, this time corresponds to which was 
provided in the estimation report in Table 4 
(Approximately 32 clock cycles). This time will also 
allow the high fidelity reproducing of a real motor 
functioning. The simulation measurement results are 
illustrated in Fig. 9.  
 

RESULTS 
 
 We present experimental results and analysis 
obtained from the implementation of the RT DCM 
emulator in the FPGA circuit. To evaluate the system 
two tests are considered. The first is on-chip 
verifications of execution time and computing results.
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Fig. 10: System architecture (Design 1) 

For the second test, the DCM controller is added to 
the system to complete the HiL platform and where 
the speed and current responses are studied. Finally, an 
extra validation test is also realized and where a 
controller failure is inserted into the emulating system. 
  
FPGA platform characteristics: The FPGA platform 
utilized in the following tests is based on Xilinx Virtex 
II Pro XC2VP30 chip. It's a multitude of feature among 
them the ability to host software processes such as 
MicroBlaze (MB) or also the possibility to exploit 
hardware processors already available such as the 
PowerPC processor. It contains up to 30000 logic 
blocks offering the possibility to incorporate in the 
design many custom IPs. There are a miscellaneous set 
of predefined IPs in the Xilinx library such as GPIOs, 
timers, memory blocks and many others. On the 
communication side, designers have the choice between 
different communication buses like On Chip Peripheral 
Bus (OPB) or the Processor Local Bus (PLB). It is also 
possible to utilize point to point links via Fast Simplex 
Links (FSL). It is a 32 bits width connection and the 
data time access consumes between 1-2 clock cycles. 
In the tests conducted later, FSL point to point links 
are used for performance reasons to connect the 
hardware module of the DCM emulator as a 
coprocessor to the MB processor. 

Design 1: Open loop system test:  
System architecture: When the HLS methodology is 
used in a design flow, designers may use the resulting 
hardware modules without any modification. However, 
this doesn’t exclude the possibility to refine the final 
circuit. In this case study, we added to the hardware 
module of the emulator some ports supported by GPIO 
external pins. In fact, they are linking internal debug 
signals which are automatically generated by 
CoDeveloper to the logic analyzer. These new 
connections were very helpful; they allow us the real 
time to watch data transfer, to elaborate timing 
measurement and eventually to detect emulator 
abnormal functioning.  
 After this port modification, the emulator hardware 
module is associated with the MB processor via FSL 
links and the complete system is implemented in the 
FPGA card. The hardware architecture is summarized in 
Fig. 10. On the software side, the drivers used for 
read/write operations from/to the emulator circuit consist 
of simple Put/Get FSL instructions as shown below:  
 
• Putfsl (alpha, 0): alpha_data is sent to the emulator 

via FSL_0 
• Getfsl(Im,1): im_data and wm_data are 

getfsl(Wm,2) received by the processor via FSL_1 
and FSL_2 
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(a) 

 

 
(b) 

 
Fig. 11:  FPGA-based Speed (a) and Current (b) responses of the DCM emulator (open loop) 

 

 
 

Fig. 12: FPGA-based emulator execution time 
 

FPGA-based DCM emulator execution time and 
computing results: The communication between the 
FPGA board and the computer is assured by a serial 
connection via a UART module. It allows us to obtain 
data from the emulator and to analyze them. Im and 
Ωm data were, first saved in a local memory and just 
after the end of the saving operation, sent to the 
console PC and stored in an output file to be analyzed 
(Fig. 10). Internally, the alpha level used is 0.5-0.7 at 
zero and sent to the emulator via the FSL-0 link. We 
have recuperated a 4k values issued from an 
incremental iteration of the DCM emulator 

algorithm. This results in the evolution curves 
illustrated in Fig. 11.  
 An important characteristic of an emulator is the 
capability to reproduce the motor model. We can 
recognize the perfect coherence between curves in Fig. 8 
and 11. The FPGA-based simulation matches closely the 
PC-based simulation (realized by Application Monitor). 
The execution time is measured with the logic analyzer 
from GPIO pins. Figure 12 shows a screenshot of the 
measure operation. 
 We can see in the figure above the execution time 
corresponds to which was measured in the simulation 
stage (page 7). 
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Fig. 13: DCM process diagram with PWM module 
 
Design 2:  
Hardware-in-the-Loop test System architecture: In 
this design, we have evaluated a digital controller for 
DC motor. For more accuracy and to be closer to a real 
DC machine process, we have added a PWM module 
which controls the chopper by two opposite and logic 
signals (C0 and C1). Figure 13 shows the system 
architecture after this modification.  
 As it is shown in Fig. 13, the inputs of the emulator 
have changed because it will no longer be connected 
directly to a data bus that furnishes the duty cycle 
alpha. In this design, the emulator will acquire C0 and 
C1 signals (1 bit width each one). In the algorithm side, 
Eq. 4 is replaced by this equivalent code developed 
inside the emulator for the chopper where the new input 
ports are considered:  
 

( ) ( )( )

( ) ( )( )

if C0  1  and C1  0  Vh  Vin ;

else

{ if C0  0  and C1  1  Vh  Vin ;

else (Vh  0;  }

== == =

== == = −

=

 

 
 The substitution of Eq. 4 of the last code induces 
some ramifications in the hardware module of the 
emulator. HLS technique makes these modifications 
possible and quicker because it enables a faster switch 
between configurations without any dependency on a 
hardware design specialist. This point will be detailed 
later in discussion. 
  To complete the HiL test, a controller was added to 
the system design. The controlling algorithm is 
computed in a software manner. It is assured by two 
interruptions, respectively for current and speed 
controls and which are executed in the MicroBlaze 
processor. The hardware architecture for design 2 is 
globally similar to design 1 except for some 

modifications which are caused by the addition of the 
control unit. They are listed below:  
 
• Suppression of FSL-0 data bus  
• The addition of the PWM module as a slave OPB 

(alpha is sent to this module via this connection)  
• Connection of C0 and C1 ports to the PWM 

through external pins  
• The addition of 2 Timers to schedule the 

interruption functions of current and speed 
controllers  

• Addition of an Interrupt Controller  
 
HiL test results: The emulation system was executed 
in 1.5 seconds on the FPGA card with a speed reference 
ΩRef of 100 rad/s. The emulator rotation speed and 
current responses are shown in Fig. 14. 
 We can see in Fig. 14 that reference speed (100 
rad/s) was correctly reached in stationary mode. For the 
current curve, there are many fluctuations that are not 
present in the speed curve. They are the result of these 
factors:  
 
• The current is more sensitive to the addition of the 

PWM module in this design than the speed  
 
 For the saving operation, we opted for a (MB + 
emulator) architecture where the MB processor is 
charged of gathering data from the emulator. We 
scheduled an interruption which occurs each 15µ 
(fastest time with the MB processor) to save values in 
local memory. Due to the emulator’s execution time of 
1µs, we were able to save one value from fifteen each 
saving operation. This is why the obtained results will 
only permit the validation of the shape of the current 
curve in Fig. 14. A more complex and enhanced 
solutions are conceivable in the future for better 
saving operation. 
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(a) 

 

 
(b) 

 

Fig. 14: FPGA-based speed (a) and current (b) responses of the DCM emulator (closed loop) 
 
 Note that execution time mentioned in the 
preceding point 2) is 1 µs although we noticed in the 
simulation (page 9) and on-chip measure (page 10) that 
this time is about 350 ns. In fact, the execution time of 
the emulator was slowed down to meet the objective of 
1 µs fixed at the beginning of the study. Technically, it 
consists of the addition of a timer with a logic output 
signal with a period of 1 µs. This signal is connected to 
the enable ports of the emulator (xxx_en, see Fig. 7) 
to control its functioning. These results are exploited 
in the following paragraph to demonstrate the 
advantages behind the hardware implementation of 
the DCM emulator. 
 
Controller failures insertion and detection: in this 
test, three controller failures (Fault1, 2, 3) were realized 

and inserted into the controller unit. They correspond to 
15, 30 and 60 µs of PWM module inactivation time 
where C0 and C1 signals were held to zero logic value 
as shown in Fig. 15. This operation is equivalent to a 
typical controller fault that is the execution stopping 
of the control algorithm. These faults are common in 
the automotive domain where the lack of supply 
voltages occurs frequently and in short delays. This 
exercise was very useful because it permitted, at the 
same time, the validation of all the system 
components (Emulator, Controller, Interconnections, 
Timers, PWM module) in real time functioning. The 
resulting current curves for each fault were plotted 
and compared to the normal one in Fig. 16.  



Am. J. Applied Sci., 9 (8): 1166-1181, 2012 
 

1177 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 15: Occurrence and clearance of fault 1 (a), 2 (b) and 3 (c) 

 
Results in Fig. 16 shows that each current curve has 
adopted its proper trajectory when the faults were 
cleared. This is because the faults were inserted into 
closed loop mode so the emulator and its controller 

were affected, but the most important resides in the 
fact that this difference in current responses 
demonstrates that these controller faults were 
detected by the DCM emulator. 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 
Fig. 16:  Emulator currents responses after faults insertion -15 µs (a), 30 µs (b), 60 µs (c) 
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This test was sufficient to explain that the detection 
of such rapid command faults (a few microseconds) 
is a direct result of the RT DCM emulator high 
computing speed. 
 

DISCUSSION 
 
 In this paragraph, we will discuss two major points 
developed throughout this case study: 
  
• Advantages and disadvantages behind the 

application of HLS to the DC control domain  
• The results obtained from the hardware 

implementation of the DCM emulator  
 
 Generally, HLS technique accelerates the design 
flow by avoiding hardware conception bottlenecks in 
two phases of the hardware conception stage:  
 
• At the beginning of the design: If the application 

is new, designers have to concept all the system 
and cannot make benefits from older experiences 
or using  the previous  available Intellectual 
Property (IP) cores  

 
 At the end of the design: If the final circuit has to 
be modified it may induce the re-design of important 
parts of the system. 
 For the design of the emulator, we took advantage 
from both of the phases cited above. Table 5 shows a 
comparison between HLS based design and hand coded 

VHDL for the emulator module used in this case study 
for the first design and after the modifications done in 
Design 2 (page 9). The design acceleration obtained by 
HLS is important and promising. However, when we 
consult the hardware synthesis result in Table 6 we 
can clearly conclude that area consumption for the 
emulator core is excessive. Moreover, it may overload 
the targeted FPGA circuit in case of more complex 
models (e.g., AC motors). In this study, although the 
area consumption was not a critical constraint like the 
computing time, we propose some improvements which 
can help to avoid this issue. These optimizations will 
induce the design of a more refined hardware 
description which considers hardware constraints and 
keeps a competitive execution time: 
 
• The optimization of the considered algorithm 

(Algorithm dependent)  
• The conversion of the algorithm computing from 

floating representation to fixed point (Good)  
• The use of tool-specific optimization commands 

such as CO PIPELINE (Average) 
 
Table 5: Design time comparison  
 First attempts Modifications in 
  (New design)  the final design  
Hand coded VHDL (Estimation)  4 days  2 days  
HLS approach  2 hours  10 mn  
Design acceleration  48 ×  80 ×  

 
Table 6: Hardware synthesis report  
Components  
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------   
Hw Resources  Micro blaze DC Motor emulator PMW Timers Others FPGA 
  (Design 2)    resources utilization 
Slices  1765  2366  198  552  373  38 %  
Slice flip flops  1886  3377  225  490  128  22 %  
4 inputs LUTs  2720  2884  235  398  403  24 %  
Mult 18×18  7  16  -  -  -  17 %  

 
Table 7: Classification of the previous results for the DCM emulator  
 System architecture   
 ------------------------------------------------------------------------------- DC Motor emulator Acceleration versus 
Reference Configuration Hw/Sw Partitioning Execution time 350 ns 
 MPSoC (3 Micro 3 Interruptions (2 
 (Othman et al., 2008) Blaze processors)  controllers + emulator)  138 µs 394×  
  each one running  
   in its proper processor  
 (Salem et al., 2008) Single PowerPC 3 tasks (2 controllers 22 µs 63×  
  + µC/OS-II RTOS + emulator)      
(Salem et al., 2010) Single MicroBlaze +  3 tasks (2 controllers 900 ns 2.5×  
 µC/OS-II RTOS + FPU unit + emulator) 
  
This work  Single MicroBlaze + 2 Interruptions 350 ns                               - 
  Co-processor + PWM (hw) (2 controllers) + 
                                                                                                                      hardware emulator
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The computing time obtained from moving the 
emulator software algorithm to a hardware 
implementation is useful in the DC control domain. In 
fact, it offered a more accurate model for the validation 
and diagnosis of DC motor controllers by permitting 
tests that were not realizable with software emulators. 
To conclude, we expose a resume of our previous 
results in this domain (Table 7). 
 

CONCLUSION 
 
 In this study, a hardware conception and 
implementation of a Real Time Direct Current Machine 
emulator was realized. Conception stage was conducted 
using HLS technique benefits to avoid VHDL manual 
work and to accelerate the design flow. As a result, a 
high accurate emulating system with a very low sampling 
rate that allows the high fidelity representation of a real 
DC Motor. Timing analysis, hardware simulation and on-
chip verifications demonstrates that the use of this 
emulating system as a practical validation stage for 
recent DC digital controllers is possible.  
 As mentioned throughout this case study, control 
algorithms and electrical motor models become more 
and more complex, so the application of HLS technique 
in this domain can be limited in the future especially by 
the size of generated hardware IPs. Paradoxically, the 
area consumption may not be a limitation in the near 
future thanks to the next-generation of FPGA platforms 
which offers a multitude of advantages among them the 
high integration capacity and the reduced power 
consumption. As an example, we cite devices based on 
40 nm and 28 nm technologies which are already 
commercialized. Besides, a hardware implementation of 
all the DCM process, including the controller is feasible 
in the future.  
 Moreover, the application of HLS technique to a 
more complex electrical machine model like 
Asynchronous Machine is also conceivable. However, 
as it was shown in discussion paragraph, this technique 
should be used carefully with control algorithms and 
the compromise between accelerating the workflow 
time and the quality of the final design (Area 
consumption versus computing speed) has to be studied 
in advanced stages of design to avoid unsuitable results.  
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