
American Journal of Applied Sciences 9 (8): 1273-1282, 2012 
ISSN 1546-9239 
© 2012 Science Publications 

Corresponding Author: Massimo Guarascio, Department of Chemistry, Materials and Environmental Engineering (DICMA), 
Faculty of Engineering, University of Rome La Sapienza, via Eudossiana 18, 00184 Rome, Italy 

 173 

 
Evaluation of the Stability of Underground 

Rock Pillars through a Probabilistic Approach 
 

1Massimo Guarascio and 2Pierpaolo Oreste 
1Department of Chemistry, Materials and Environmental Engineering (DICMA), 

Faculty of Engineering, University of Rome La Sapienza, via Eudossiana 18, 00184 Rome, Italy 
2Department of Environmental, Land and Infrastructural Engineering (DIATI), 

Faculty of Engineering, Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Turin, Italy 
 

Abstract: Problem statement: When the room and pillar mining method is adopted, the 
dimensioning of the rock pillars is one of the most important aspects that need to be faced from the 
engineering point of view. The available calculation methods are usually simplified and involve the 
areas of influence method for the evaluation of the mean axial stress induced in the pillar and the 
empirical formula to estimate the global strength of the pillar. Approach: A new probabilistic 
approach is proposed in this study concerning the evaluation of the degree of safety of a pillar, as far 
as rupture of the rock is concerned. This approach is based on the exact evaluation of the stress state 
inside the pillar and it takes into due consideration the typical uncertainty of the geomechanical 
parameters of the rock mass that makes up the pillar. Results and Conclusion: The pillar can 
therefore be dimensioned through an analysis of the cumulative probability distribution of the point 
safety factor in one or more points inside it. 
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INTRODUCTION 

 
 The determination of the safety degree of an 
underground rock pillar during room and pillar mining 
is one of the most interesting problems of rock 
engineering and rock mechanics and is also one of the 
most frequently studied ones. The correct dimensioning 
of a rock pillar should in fact guarantee safety, as far as 
stability is concerned, in order to avoid the detachment 
of portions of rock from the pillar itself, or even its total 
collapse, which would result in very serious 
consequences for the personnel working underground 
and create problems for the continuation of the 
underground works (Oreste, 2008; Sadrnejad, 2006). 
 The stress induced in pillars has usually been 
estimated by the area of influence method, for the 
sake of simplicity. This method allows the mean 
axial stress of the pillar section to be determined and 
the efforts of scholars have therefore been 
concentrated on defining a mean rupture stress 
(strength) of a pillar in function of the type of rock, 
the dimensions and the shape of the pillar itself. 
 The relationship of the two values (the strength of 
the pillar divided by the mean induced axial stress) 

leads to the definition of the global safety factor of the 
pillar, which is then used for its dimensioning. 
 The simplistic area of influence method can today 
be considered inadequate as an instrument for the 
dimensioning of rock pillars through a single global 
value of the safety factor: more sophisticated 
calculation methods that can indicate the stress 
conditions at each point inside the pillar and which 
can therefore determine the value of point safety 
factors in the rock mass that makes up the pillar, are 
therefore necessary. 
 Moreover, the uncertainty of the exact knowledge 
of the characteristics of a rock mass makes the use of a 
probabilistic type approach necessary, in particular as 
far as the strength values are concerned. The data 
obtained from a geomechanical characterisation (A’ssim 
and Xing, 2010) should in fact be considered as an 
estimation that can sometimes have a high degree of 
uncertainty. Apart from this, the definition of the 
strength of the rock mass, on the basis of data from 
laboratory and/or in situ tests (Jamaludin et al., 
2006; Huat, 2005), is usually made on the basis of 
empirical type correlations that always have a certain 
degree of reliability. 
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 An efficient way of working should therefore not 
only involve a point evaluation of the stress state inside 
the pillar, but should also adopt a probabilistic approach 
(Oreste, 2005a; 2005b; 2006) in order to be able to 
correctly represent the strength characteristics of the 
rock mass that makes up the pillar. 
 The dimensioning of the pillars should therefore 
not be based on deterministic values of the safety 
factor, but on the probabilistic distribution of the point 
safety factors inside the pillar, which are able to offer 
better indications on the degree of safety of the pillar 
and on the reliability of the obtained evaluations. 
 A probabilistic analysis technique of the 
distribution of the safety factors inside a pillar is 
illustrated in this work. This technique is based on the 
knowledge of the tri-dimensional stress state inside the 
pillar and on the strength characteristics of the rock, 
which are known with a certain degree of uncertainty. 
 

MATERIALS AND METHODS 
 
Analyses of the stress state in a pillar: The stress state 
inside a pillar can be calculated with a high degree of 
precision through the use of tri-dimensional numerical 
modelling (Fig. 1). Finite Element Methods (FEM) or 
Finite Difference Methods (DFM) is usually used for 
this purpose. 
 The calculation gives the complete stress state, 
composed of six stress values (three normal stress 
values and three shear stress values): σx, σy, σz,  τxy, 
τxz, τyz for each numerical element of the model (Fig. 
2). It is possible to determine the principal stresses 
and, in particular, the maximum principal stress (σmax 

= σ1) and minimum principal stress (σmin = σ3) from 
these six stresses (Fig. 3). The maximum and 
minimum principal stresses are of great interest for the 
evaluation of the degree of safety of the rock, as far as 
its rupture is concerned. 
 The principal stresses are obtained by resolving the 
following third degree equation: 
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 If the solution is unique (the three principal stresses 
are equal): 

 
 
Fig. 1: Representation of the geometry of a tri-

dimensional numerical model. Thanks to the 
symmetry of the model, only 1/8 of the pillar 
(¼ of its upper portion) is represented directly 
in the model together with ¼ of the rock on the 
roof of the mining rooms 

 

 
 
Fig. 2: Complete tri-dimensional stress state obtained 

from the calculation for each numerical element of 
the model 
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Fig. 3: Determination of the three principal stresses 

(maximum: σmax; intermediate: σint; minimum: 
σmin) on the basis of the complete knowledge of 
the stress state in a numerical element 
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and the principal stresses are equal to: 
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 Otherwise (the three principal stresses are different 
from each other): 
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RESULTS 

 
The numerical calculation of a rock pillar for a case 
history: The numerical calculation of a pillar in 
gypsum in an underground mine close to Turin (Italy) 
has been carried out as an example. 
 The mining method that is adopted is the 
systematic room and pillar method with regular 
arrangement of the pillars and mining of the rock with 
explosives. The underground pillars have plain 
dimensions of 7.5×7.5 m. The width of the room is also 
equal to about 7.5 m. The pillars are 7 m high. The 
lithostatic stress state 'v0σ  at the mining level is equal to 

0.475 MPa. 
 The geomechanical characterisation of the rock 
mass has suggested variable results in the different 
zones of the deposit. The mean values obtained from 
the most representative parameters are: 
 
GSI = (Geological Strength Index): 73 
σci = (uniaxial compressive strength of the intact 

rock): 14 MPa 
mi = (Hoek and Brown constant for intact rock): 13 
 
 The dispersion of the data obtained from both 
laboratory and in situ tests, above all those concerning 
σci, is very high and the indicated mean values are 
therefore poorly representative, if taken individually. 
For this reason, a probabilistic approach was adopted to 
characterise the rock mass. A Gaussian probabilistic 
distribution (normal distribution) was hypothesised for 
each of the three aforementioned parameters. The 
following values of the standard deviation have been 
obtained from the many results of the laboratory tests 
on intact rock and from the in situ surveys: 
 
σGSI: 2, σσci: 1 MPa, σmi: 0.5 
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 Given the symmetry of the problem, only 1/8 of the 
pillar (¼ of upper part) and ¼ of the rock on the roof of 
the rooms have been represented directly in the 
numerical model (Fig. 1). The FLA-3D calculation 
method, which adopts a finite difference approach, was 
used (Itasca, 2006). 
 Gravity acceleration was not inserted into the 
calculation as the hypothesis of deep voids was made, 
due to the fact that the variations in the lithostatic stress 
in the excavation area are negligible compared to its 
mean value. This hypothesis is generally considered 
valid when the depth of the voids is greater than 4-5 
times their equivalent diameter. 
 The lithostatic stress state was therefore applied to 
the upper edge of the model and kept constant for all 
the elements. 
 The edges of the model are all artificial: 

 
• The lower edge is horizontal and passes through 

the mid height point of the pillar, in order to represent 
only the upper portion of the pillar in the model 

• The four lateral edges are vertical and 
perpendicular to each other; they are four symmetry 
planes: the first two pass through the median of the 
square section of the pillar and the other two pass 
through the medium of the mining rooms 

• The upper edge is the only one that is not 
constrained to the perpendicular movements and it 
is positioned at a certain distance from the top of the 
pillar (twice the mid-height of the pillar) so that its 
presence does not disturb the development of the 
stresses and strains inside the pillar to any great extent 

 
 The rock mass has been considered to have linear, 
elastic behaviour throughout the numerical model, with 
the same mechanical properties for both the rock that 
makes up the pillar and for the rock that constitutes the 
roof of the mining room. In this way, the value of the 
elastic modulus of the rock does not influence the stress 
state in the pillar. 
 The Poisson ratio v of the rock has been taken 
equal to 0.33 and an edometric value has been 
hypothesised for the natural lateral thrust coefficient k 
which depends on the Poisson ratio (k = 0.5). 
 Since the numerical model is only made up of 
linear-elastic behaviour elements, the stresses induced 
in the rock are linearly dependent on the vertical stress 
applied to the upper edge of the numerical model, 
which has conventionally been taken equal to 1 MPa. 
 All the used numerical elements are cubic in shape 
with sides of 0.25 m. 

 The hypothesised calculation steps were as 
follows: 
 
• Setting up of the numerical model 
• Definition of the stress-strain law of the rock 
• Attribution of the mechanical properties of the rock 
• Definition of the boundary conditions 
• Initialization of the lithostatic stresses 
• Annulment of the displacements and of the nodal 

velocities 
• Simulation of the excavation of the room, 

annulling the numerical elements around the rock 
pillar 

 
 The pillar elements were arranged on 9 horizontal 
alignments belonging to three different levels: the first 
three alignments (1-3) were arranged on a level (level 
1) close to the lower edge of the model (at mid-height 
of the pillar), the last three (7-9) on a level (level 3) 
close to the pillar-room roof connection zone (summit 
portion of the pillar) and the three intermediate 
alignments (4-6) were arranged on an intermediate 
level (level 2) between the two previous ones. The 
three alignments were arranged at each level in the 
following way: one central, passing close to the pillar 
axis (alignments 1, 4 and 7), one peripheral, passing 
close to the lateral edge of the pillar (alignments 3, 6 
and 9) and the third one between the other two (2, 5 
and 8) (Fig. 4). 
 The results of the calculation on the 9 alignments 
indicated in Fig. 4 are reported in Fig. 5 and 6, in 
principal stress terms. The '1σ / '

pσ  or '
3σ / '

pσ  ratio, that 

is, the value of the maximum or minimum principal 
stress, scaled according to the mean axial stress in the 
pillar ( '

pσ ), is indicated on the ordinate of the graphs. 

 For square section pillars and with a square mesh 
layout, we obtain: 

 

( )2

p' '
p v0 2

p

w l

w

+
σ = σ ⋅  

 
Where: 

'
pσ  = Mean vertical stress in the pillar 
'
v0σ  = Lithostatic vertical stress at the depth of the 

chamber roof 
wp = Width of the pillar 
l = Width of the chamber (same value in the two 

horizontal directions x and y) 
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Fig. 4: Position of the nine alignments considered inside the pillar 
 

 
 

Fig. 5: Trend of the major principal stress along alignments 1-6 
 

 
 

Fig. 6: Trend of the major principal stresses along alignments 7-9 
 

 
 

Fig. 7: Trend of the minor principal stresses along alignments 1-6 
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Fig. 8: Trend of the minor principal stresses along alignments 7-9 
 
 From an analysis of Fig. 5-6, it is possible to note how 
the major principal stresses at mid-height of the pillar 
(alignments 1-3) reach a value, in the portion close to the 
pillar axis, of about 0.96 times the mean vertical stress '

pσ , 

a value of 0.95·'
pσ  at half of one of its sides and a value 

of about 0.96· '
pσ in the corners. At a height of ¾· hp (that 

is, at a distance of ¼·hp from the top of the pillar, 
alignments 4-6), the major principal stress in the zone 
close to the pillar axis has a value of about 0.89·'

pσ ; this 

stress increases at mid-height of the side (0.97·'
pσ ) and 

rises to 1.06· '
pσ  in the corner. Finally, the major principal 

stress close to the pillar axis is very low (about 0.76· '
pσ ) 

at the summit of the pillar (at a distance of about 1/8·hp 
from the roof, alignments 7-9), while it grows 
considerably moving towards the peripheral zones of the 
pillar: 1.14· '

pσ  at half the side and 1.49·'pσ  in the corner. 
 
The minor principal stresses are reported in Fig. 7-
8: From an examination of the figures, it emerges that 
there is a non negligible confinement stress state in a 
central portion of the pillar section, with a tendency to 
reduce rapidly towards the edges of the pillar, where the 
confinement stress is cancelled out. The maximum 
value of the minimum principal stress at mid-height of 
the pillar can be found in correspondence to the pillar 
axis, where it reaches a value of 0.16·'

pσ . 

 The minor principal stresses in the summit portion 
of the pillar (at a distance of about 1/8·hp from the 
roof), are very large (reaching values of 0.26·'

pσ ) and 

they rapidly reduce to zero in the cortical zone. 
 

DISCUSSION 
 
Evaluation of the point safety factors through a 
probabilistic approach: When the stress state of each 

point of a pillar is available, it is necessary to proceed 
with a comparison between such a value and the 
strength of the rock mass in the same points in order to 
be able to obtain the trend of the local safety factor 
inside the pillar. 
 The strength of the rock mass is generally known 
referring to correlations that are well known in the 
literature and which are valid for each application 
context. 
 The evaluation of the strength of a rock mass is 
currently usually determined by means of the Hoek and 
Brown (1982; 1997) strength criterion (Hoek et al., 
2002) on the basis of the GSI geomechanical quality 
index (Hoek and Brown, 1997; Cai et al., 2004): 
 

a'
' ' ' 3
1,str 3 ci b '

ci

m s
 σσ = σ + σ ⋅ ⋅ + σ 

 

 
where, '

1,strσ  is the strength of the rock mass in the 

presence of the lateral confinement stress '
3σ ; mb and s 

are the strength parameters from the Hoek and Brown 
strength criterion: 
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mi is a coefficient that is obtained from triaxial load 
tests on rock samples in the laboratory and it is possible 
to estimate it, as a first approximation, in function of 
the type of rock (Hoek and Brown, 1997); 'ciσ  is the 
uniaxial compressive strength of the intact rock 
measured in the laboratory on cylindrical rock samples. 
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Fig. 9: Determination of the value of an uncertain parameter x of the rock through the Montecarlo Method. The 

extraction of a random number between 0 and 1 makes it possible to obtain a value of the uncertain parameter 
of the rock xi on the basis of the knowledge of the cumulative probability distribution 

 

 
 

Fig. 10: Cumulative probability distribution of the point safety factor in the rock, at mid-height of the pillar axis (j = 
1). The probability of the safety factor being less than 1.05 has been found to be equal to 0 on a sample of  
100, 000 safety factor values obtained from an analysis with the Montecarlo Method 

 
From the Hoek and Brown strength criterion, it is 
possible to see how the strength of the rock mass in a 
point depends on the GSI, on the mi parameter, on the 
uniaxial compressive strength of the intact rock ('

ciσ ), 

but also on the existing lateral confinement stress (the 
minor principal stress '

3σ ). The same rock mass shows 

different values of strength in different internal points 
of the pillar in function of the lateral confinement stress 
( '

3σ ) that is present in these points. 

 Knowing the stress state of a point in the rock mass 
(inside the rock pillar), it is possible to evaluate the 
local safety factor through the following simple 
relation: 
 

'
1,str

s '
1

F
σ

=
σ

 

 
 If the descriptive parameters of the rock are known, 
through a probabilistic approach (for example, through 



Am. J. Applied Sci., 9 (8): 1273-1282, 2012 
 

180 

the type of distribution, the mean and the variance), the 
point safety factor can also be described at a point 
inside the pillar through a probabilistic distribution. 
 The simplest way of obtaining the probabilistic 
distribution of the point safety factors is by referring to 
the Montecarlo Method. 
 This method consists in randomly extracting the 
parameters (on the basis of their individual probabilistic 
distributions) and selecting a Fs value that belongs to a 
gradually increasing sample of data (the calculation is 
stopped when the statistical tests lead to a stable 
sample). 
 The following phases should be followed: 

 
• Calculation of the stress state inside the pillar at 

several previously identified representative points 
(for example, the center of each element of the 
numerical model adopted to analyse the stress 
state) and in particular the values of the maximum 
( '

1, jσ ) and minimum ( '
3, jσ ) principal stresses in 

each reference point (j) 
• Description of the uncertain parameters of the rock 

through probabilistic distributions (through the 
type of distribution and  at least the mean and the 
mean quadratic deviation); 

• Calculation of the Cumulative Distribution 
Function (CDF) for each uncertain parameter, 
starting from its probabilistic distribution, through 
numerical integration 

• Extraction of a random number between 0 and 1 
for each of the uncertain parameters of the rock and 
from this determination of a value for each 
uncertain parameter through the CDF (Fig. 9); in 
the specific case being studied, the extraction of 
three consecutive random numbers allows three 
different GSI values (GSIi), the uniaxial 
compression strength σci (σci,i) and the parameter 
mi (mi,i) to be obtained 

• Evaluation of the point safety factor Fsi,j at each 
point j, using the stress state obtained at point a) 
and the values of the uncertain parameters of the 
rock obtained at point d) 

• Repeatition points d-e until all the Fsi samples 
referring to the representative point in the pillar are 
stabilised from the statistic point of view 

• Description of the probabilistic distribution of Fsi 
for each point through the cumulative curve 

 
The application of the procedure to the case history: 
In the case under study, Gaussian probabilistic 

distributions (normal) were hypothesised for the three 
uncertain parameters. The CDFs are therefore 
calculated, by means of integration, through the 
following equation: 

 
2

m

x

v x1x
2

x

x

1
CDF e dv

2

 −
− ⋅  σ 

−∞

 
 = ⋅ ⋅
 ⋅ π ⋅σ
 
∫  

 
Where: 
 x = The value of the uncertain parameter 
xm and σx = The mean and the standard deviation of 

the uncertain parameter 
v = Ntegration variable 

 
 The results of the calculation obtained adopting the 
above indicated procedure, considering the mean values 
and the standard deviations reported above for the three 
uncertain parameters of the rock (GSI, σci, mi), are 
shown in Fig. 10-12, as examples, in terms of 
cumulative distribution of the point safety factor in the 
rock, at three particular mid-height points of the pillar 
section: on the central axis of the pillar (j = 1); at half of 
its side (j = 2) and at the corner (j = 3). 
 From an analysis of the diagrams, such as those 
reported in Fig. 10-12, it is possible to determine the 
probability that the point safety factor descends below a 
pre-fixed value (for example, 1.05) in one or more points 
inside the pillar. 
 Should the results not be satisfactory, due to the 
elevated probability that one or more safety factors are 
below a pre-fixed value, or because the safety factors 
are too high, the calculations should be repeated 
considering different dimensions of the pillar until a 
final convergence that can be considered acceptable is 
reached. It is then possible to proceed with the 
dimensioning of a pillar on the basis of not just one or 
more deterministic values of the safety factor of the 
points inside the pillar, but rather on the probabilistic 
distribution of the safety factors, which are able to point 
out the reliability of the estimation of the safety factor 
to the designer in relation to the uncertainty of the 
initial geomechanical parameters of the rock. 
 In this way, the designer can make more informed 
choices (for example, the dimensions of the rock 
pillars), considering the initial uncertainties of the 
available data in a more appropriate manner. 



Am. J. Applied Sci., 9 (8): 1273-1282, 2012 
 

181 

 
 
Fig. 11: Cumulative probability distribution of the point safety factor in the rock, at half of the pillar side, in a section 

at mid-height (j = 2). The probability of the safety factor being below 1.05 has been found to be equal to 2 on a 
sample of 100,000 safety factor values obtained from an analysis with the Montecarlo Method 

 

 
 
Fig. 12: Cumulative probability distribution of the point safety factor in the rock at a corner, in a mid-height section 

(j = 3). The probability of the safety factor being below 1.05 has been found to be equal to 5 on a sample of 
100,000 safety factor values obtained from an analysis with the Montecarlo Method 

 
CONCLUSION 

 
 The dimensioning of rock pillars in the room and 
pillar mining method is one of the most interesting 
problems in rock engineering. 
 Nowadays, simplified analytical formulations are 
usually adopted for both the evaluation of the mean 
axial stress in the pillar and for the evaluation of the 
pillar strength. The uncertainty concerning the 
determination of the strength of pillars generally leads 
to the adoption of high safety factors. 
 A probabilistic approach for the dimensioning of 
rock pillars has been proposed in this work. This 
approach considers the exact development of the 
stresses inside the pillar and the typical uncertainty of 
the geomechanical parameters of the rock mass. The 

approach, which is based on the Montecarlo Method, is 
able to obtain the cumulative distribution of the point 
safety factors in one or more points inside the pillar. 
 Reference has been made to the well known Hoek 
and Brown strength criterion and the GSI index that 
describes the frequency and conditions of natural 
discontinuities in order to obtain the local strength of the 
rock mass. 
 Thanks to the proposed approach, it is possible to 
proceed with the dimensioning of a pillar, not on the 
basis only of one or more deterministic values of the 
safety factor in the points inside the pillar, but rather on 
probabilistic distributions which are able to indicate the 
reliability of the estimation of the degree of safety to 
the designer in relation to the uncertainty of the initial 
geomechnanical parameters of the rock. 
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