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Abstract: Problem statement: When the room and pillar mining method is adoptéuk
dimensioning of the rock pillars is one of the mimsportant aspects that need to be faced from the
engineering point of view. The available calculatimethods are usually simplified and involve the
areas of influence method for the evaluation of iean axial stress induced in the pillar and the
empirical formula to estimate the global strengthtlee pillar. Approach: A new probabilistic
approach is proposed in this study concerning Waduation of the degree of safety of a pillar, as f
as rupture of the rock is concerned. This approsttased on the exact evaluation of the stress stat
inside the pillar and it takes into due considematthe typical uncertainty of the geomechanical
parameters of the rock mass that makes up ther.pilesults and Conclusion: The pillar can
therefore be dimensioned through an analysis ottheulative probability distribution of the point
safety factor in one or more points inside it.

Key words. Finite Element Methods (FEM), Finite Difference Metls (DFM), geomechanical
parameters, pillar mining method, cumulative pralitgtdistribution

INTRODUCTION leads to the definition of the global safety faabbrthe
pillar, which is then used for its dimensioning.

The determination of the safety degree of an  The simplistic area of influence method can today
underground rock pillar during room and pillar migi  be considered inadequate as an instrument for the
is one of the most interesting problems of rockdimensioning of rock pillars through a single glbba
engineering and rock mechanics and is also oneeof t value of the safety factor: more sophisticated
most frequently studied ones. The correct dimemsgpn calculation methods that can indicate the stress
of a rock pillar should in fact guarantee safetyfar as conditions at each point inside the pillar and whic
stability is concerned, in order to avoid the dbtaent  ¢@n therefore determine the value of point safety
of portions of rock from the pillar itself, or evés total Iﬁgtr(é;(s) r': r:gﬁersos?r mass that makes up the pitize,
collapse, which would result in very serious Moreover. the )Lj.ncertaint of the exact k led
consequences for the personnel working underground r y xact Knowledge
and create problems for the continuation of thegfr(;[EZbﬁlriggitfgstg;p?;:crhozke&a;?ﬂ?a:(:To;TE?:t:;
undgl_rﬁéoi?g;vsorilzsdg?:reedstﬁ,‘ zgﬁgéssii?edzi’aﬁgogée rI;ar as the strength values are concerned. The data

estimated by the area of influence method, for theobtained from a geomechanical characterisations{i's

sake of simplicity. This method allows the mean@"d Xing, 2010) should in fact be considered as an
axial stress of the pillar section to be determined ~ €Stimation that can sometimes have a high degree of
the efforts of scholars have therefore beepuncertainty. Apart from this, the definition of the
concentrated on defining a mean rupture stres§trength of the rock mass, on the basis of daten fro
(strength) of a pillar in function of the type adak, laboratory and/or in situ tests (Jamaludeh al.,
the dimensions and the shape of the pillar itself. 2006; Huat, 2005), is usually made on the basis of
The relationship of the two values (the strendth o empirical type correlations that always have aaiart
the pillar divided by the mean induced axial stressdegree of reliability.
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An efficient way of working should therefore not
only involve a point evaluation of the stress staside
the pillar, but should also adopt a probabilispp@ach
(Oreste, 2005a; 2005b; 2006) in order to be able to
correctly represent the strength characteristicghef
rock mass that makes up the pillar.

The dimensioning of the pillars should therefore
not be based on deterministic values of the safety
factor, but on the probabilistic distribution ofetipoint
safety factors inside the pillar, which are ableofter
better indications on the degree of safety of thiarp
and on the reliability of the obtained evaluations.

A probabilistic analysis technique of the
distribution of the safety factors inside a pilla
illustrated in this work. This technique is baseadthe
knowledge of the tri-dimensional stress state mgshe
pillar and on the strength characteristics of thekr
which are known with a certain degree of uncenaint

MATERIALSAND METHODS

Analyses of the stress statein a pillar: The stress state Fig. 1: Representation of the geometry of a tri-

inside a pillar can be calculated with a high degoé
precision through the use of tri-dimensional nucri
modelling (Fig. 1). Finite Element Methods (FEM) or
Finite Difference Methods (DFM) is usually used for
this purpose.

The calculation gives the complete stress state,
composed of six stress values (three normal stress
values and three shear stress valueg)oy,, 0, Ty,

T,z Ty, for each numerical element of the model (Fig.
2). It is possible to determine the principal stess
and, in particular, the maximum principal stregg

= 0;) and minimum principal stres@i, = 03) from
these six stresses (Fig. 3). The maximum and
minimum principal stresses are of great interestHe
evaluation of the degree of safety of the rockfaasas

its rupture is concerned.

The principal stresses are obtained by resollieg t
following third degree equation:

3 2 —
o’ -, o°+1,b-1,=0
Where:
l,=0,+0,+0,
l,=0,,+0,0
2 2 2
0-z-'-o-y E)-z_.rxy_.rxz_.[yz
l,=0, 0, 6,+200, 1,0,

2 2 2
-0, Byz -0, a.,-o, Bxy

dimensional numerical model. Thanks to the
symmetry of the model, only 1/8 of the pillar
(Y of its upper portion) is represented directly
in the model together with ¥ of the rock on the
roof of the mining rooms

-~

Fig. 2: Complete tri-dimensional stress state obthi

If the solution is unique (the three principaksses
are equal):
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from the calculation for each numerical element of
the model



Am. J. Applied Sci., 9 (8): 1273-1282, 2012

,
; = 1 2 o 1
0,=2 ‘5[@352—@ [eos+2 0,
= 1 2 ¢ T 1
A P =-2 ‘§EQ3D2_ |1) EO{EiEJ-FéDll

Where:

iDf_LLD]ll]]z"'iLuh

27 6
Jz

[;[Qsmz—ﬁ)

[N

¢ =arcco

RESULTS

The numerical calculation of a rock pillar for a case

history: The numerical calculation of a pillar in

gypsum in an underground mine close to Turin (Jtaly
/ o has been carried out as an example.

W The mining method that is adopted is the
systematic room and pillar method with regular

Fig. 3:Determination of the three principal stemss arrangement of the pillars and mining of the rodthw
(Maximum: Opmas intermediate:Gi,; minimum:  explosives. The underground pillars have plain

Omin) on the basis of the Comp|ete know|edge ofdimenSionS of 7.5x7.5 m. The width of the roomigpa

the stress state in a numerical element equal to about 7.5 m. The pillars are 7 m hlgh The
lithostatic stress state,, at the mining level is equal to
1 1 L 0.475 MPa.
I,==0% e I,==0% and the principal stresses are . I
2 3t gt P P The geomechanical characterisation of the rock
equal too, , ;= 31, mass has suggested variable results in the differen

zones of the deposit. The mean values obtained from

o i the most representative parameters are:
If two of the principal stresses are equal:

GSI = (Geological Strength Index): 73

EEQSEI —|2) 3+ Os = (uniaxial compressive strength of the intact
9 z rock): 14 MPa
2 m; = (Hoek and Brown constant for intact rock): 13
1 .1 1
[——I]1+f|]]1[ﬂ2—f[ﬂ3} =0
27 6 2

The dispersion of the data obtained from both
laboratory and in situ tests, above all those coring

and the principal stresses are equal to: aq, is very high and the indicated mean values are
therefore poorly representative, if taken indiviltjua
1, 1 1 1 For this reason, a probabilistic approach was atbfu
01=25{/?751‘351m2+3m3+§m1 characterise the rock mass. A Gaussian probabilisti

distribution (normal distribution) was hypothesised
each of the three aforementioned parameters. The
- lge T following values of the standard deviation haverbee
02 3 Dl |:I]ll:l] 2 m 3 m 1 .
’ 27 6 2 obtained from the many results of the laboratostste
on intact rock and from the in situ surveys:
Otherwise (the three principal stresses are differ
from each other): Ocsi 2,06ci: 1 MPa,0i: 0.5
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Given the symmetry of the problem, only 1/8 of the The hypothesised calculation steps were as

pillar (¥ of upper part) and ¥4 of the rock on tbhefrof follows:
the rooms have been represented directly in the
numerical model (Fig. 1) Thg FLA-3D calculation , Setting up of the numerical model
metgo?, Wh|c20a0dé)pts a finite difference appro@e#® .,  pefinition of the stress-strain law of the rock
use G( ta§ca, I). . . qi h » Attribution of the mechanical properties of thekoc

| lr?wty actze er:at|otnh was fngt mser.t(rj;-z Into ¢ g- Definition of the boundary conditions
calculation as the hypo e_3|§ 0 _eep VQ' S wasenad, Initialization of the lithostatic stresses
due to the fact that the variations in the lithtstatress .
) : - .» Annulment of the displacements and of the nodal
in the excavation area are negligible comparedtgo i velocities

mean value. This hypothesis is generally considered Simulation of the excavation of the room,

valid when the depth of the voids is greater thath 4 annulling the numerical elements around the rock
times their equivalent diameter. pillar 9

The lithostatic stress state was therefore appted
the upper edge of the model and kept constantlfor a
the elements.

The edges of the model are all artificial:

The pillar elements were arranged on 9 horizontal
alignments belonging to three different levels: finst
three alignments (1-3) were arranged on a levek(le
1) close to the lower edge of the model (at midzhei
Iaf the pillar), the last three (7-9) on a levelv@e 3)
close to the pillar-room roof connection zone (sutnm
and portion of the pillar) and the three intermediate

perpendicular to each other; they are foursymmetry?‘l'gr:mlemsI (4-6b) were aLranged on an mtermedu’;l]te
planes: the first two pass through the median ef th evel (level 2) between the two previous ones. The

square section of the pillar and the other two pasdrée alignments were arranged at each level in the
through the medium of the mining rooms fol!owmg way: one central, passing clolse to thikapi .
« The upper edge is the only one that is notdXis (alignments 1, 4 and 7), one peripheral, passi
constrained to the perpendicular movements and §l0se to the lateral edge of the pillar (alignmedit$
is positioned at a certain distance from the tofnef and 9) and the third one between the other twdb(2,
pillar (twice the mid-height of the pillar) so thids  and 8) (Fig. 4).
presence does not disturb the deve|opment of the The results of the calculation on the 9 alignments
stresses and strains inside the pillar to any geeant  indicated in Fig. 4 are reported in Fig. 5 and 16, |
principal stress terms. The,/o, or o,/c, ratio, that
The rock mass has been considered to have lineds, the value of the maximum or minimum principal
elastic behaviour throughout the numerical modéth w stress, scaled according to the mean axial stretisei
the same mechanical properties for both the roek th pillar (o), is indicated on the ordinate of the graphs.
makes up the pillar and for the rock that constiihe For square section pillars and with a square mesh
roof of the mining room. In this way, the valuetbg layout, we obtain:
elastic modulus of the rock does not influencedtiness

* The lower edge is horizontal and passes throug
the mid height point of the pillar, in order to regpent
only the upper portion of the pillar in the model

e The four lateral edges are vertical

state in the pillar. 2
The Poisson ratio v of the rock has been taken G =g Wp+|)

equal to 0.33 and an edometric value has been P Wl

hypothesised for the natural lateral thrust cogffit k

which depends on the Poisson ratio (k = 0.5). Where:

. Since _the num_erical model is only made up Ofc’ = Mean vertical stress in the pillar
linear-elastic behaviour elements, the stressesced P . . )
in the rock are linearly dependent on the vertitedss 0. = Lithostatic vertical stress at the depth of the
applied to the upper edge of the numerical model, chamber roof
which has conventionally been taken equal to 1 MPa. W, = Width of the pillar

All the used numerical elements are cubic in shapé Width of the chamber (same value in the two
with sides of 0.25 m. horizontal directions x and y)
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Fig. 4: Position of the nine alignments considensitle the pillar
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From an analysis of Fig. 5-6, it is possible ttertiow  point of a pillar is available, it is necessarypimceed
the major principal stresses at mid-height of tilarp with a comparison between such a value and the
(alignments 1-3) reach a value, in the portionecttmsthe  strength of the rock mass in the same points ierotal
pillar axis, of about 0.96 times the mean vertitadssa,, be able to obtain the trend of the local safetytdiac
inside the pillar.

The strength of the rock mass is generally known
of about 0.96s, in the corners. At a height of %- hp (that referring to correlations that are well known ireth
is, at a distance of Ya-hp from the top of the milla literature and which are valid for each application
alignments 4-6), the major principal stress in Home context.
close to the pillar axis has a value of about G89this The evaluation of the strength of a rock mass is
currently usually determined by means of the Hasd a
) o ) ) o Brown (1982; 1997) strength criterion (Hoek al.,
rises to 1.06a, in the corner. Finally, the major principal 2002) on the basis of the GSI geomechanical quality
stress close to the pillar axis is very low (abdm6-c,)  index (Hoek and Brown, 1997; Cetial., 2004):

at the summit of the pillar (at a distance of akb@thp , a
from the roof, alignments 7-9), while it grows 0'15“=0'3+0'ci[ﬁmb[&+5]
considerably moving towards the peripheral zonethef ' O
pillar: 1.14.¢, at half the side and 1.48; in the corner.

a value of 0.950'p at half of one of its sides and a value

stress increases at mid-height of the side (@,97and

]

whereg, . is the strength of the rock mass in the

The minor principal stresses are reported in Fig. 7- Presence of the lateral confinement stressm, and s

8: From an examination of the figures, it emerges tha
. i . ; are the strength parameters from the Hoek and Brown
there is a non negligible confinement stress dtate N
strength criterion:

central portion of the pillar section, with a tendg to
reduce rapidly towards the edges of the pillar, atibe
confinement stress is cancelled out. The maximum

GSI-100

- e . ) m,=m e 2
value of the minimum principal stress at mid-height eSI-100
the pillar can be found in correspondence to thiarpi s=e ¢
axis, where it reaches a value of 046- 1 1 [ 68
The minor principal stresses in the summit portion a:2+6EE ©-e 3]

of the pillar (at a distance of about 1/8fnom the
roof), are very large (reaching values of 029-and

) ] ) m; is a coefficient that is obtained from triaxialatb
they rapidly reduce to zero in the cortical zone.

tests on rock samples in the laboratory and ibssible
DISCUSSION to estimate it, as a first approximation, in fuoatiof
the type of rock (Hoek and Brown, 1997); is the
Evaluation of the point safety factors through a  uniaxial compressive strength of the intact rock
probabilistic approach: When the stress state of each measured in the laboratory on cylindrical rock skesp
178



Am. J. Applied Sci., 9 (8): 1273-1282, 2012
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Fig. 9: Determination of the value of an uncertparameter x of the rock through the Montecarlo MdthThe
extraction of a random number between 0 and 1 miakessible to obtain a value of the uncertairapaater
of the rock xon the basis of the knowledge of the cumulativabpbility distribution
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Fig. 10: Cumulative probability distribution of tip@int safety factor in the rock, at mid-heighttioé¢ pillar axis (j =
1). The probability of the safety factor being I¢isan 1.05 has been found to be equal to 0 on alsavh
100, 000 safety factor values obtained from anyaigkwvith the Montecarlo Method

From the Hoek and Brown strength criterion, it is Knowing the stress state of a point in the roclssna
possible to see how the strength of the rock mass i (inside the rock pillar), it is possible to evakiahe
point depends on the GSI, on the parameter, on the local safety factor through the following simple
uniaxial compressive strength of the intact rodk X, relation:

but also on the existing lateral confinement stiglss

. 0’ str
minor principal stresss, ). The same rock mass shows K :%
different values of strength in different interrm@dints !
of the pillar in function of the lateral confinenestress If the descriptive parameters of the rock are kmow
(o) that is present in these points. through a probabilistic approach (for example, tigio
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the type of distribution, the mean and the varignte  distributions (normal) were hypothesised for thee¢h
point safety factor can also be described at atpoiruncertain parameters. The CDFs are therefore
inside the pillar through a probabilistic distrilmut. calculated, by means of integration, through the

The simplest way of obtaining the probabilistic following equation:
distribution of the point safety factors is by meieg to
the Montecarlo Method.

This method consists in randomly extracting the
parameters (on the basis of their individual pralisiic
distributions) and selecting a falue that belongs to a
gradually increasing sample of data (the calcutat®o
stopped when the statistical tests lead to a stabigere:
sample).

The following phases should be followed:

=
N
—B~
<
a3
3
—
<

CDFX:I

2w,

X The value of the uncertain parameter
Xm ando, = The mean and the standard deviation of
the uncertain parameter

« Calculation of the stress state inside the pillar a,, Ntegration variable

several previously identified representative points
(for example, the center of each element of the
numerical model adopted to analyse the stress The results of the calculation obtained adoptimgy t

state) and in particular the values of the maximumabove indicated procedure, considering the mearesal
(0,;) and minimum @,;) principal stresses in and the standard deviations reported above fothifez
each reference point (j) uncertain parameters of the rock (G8f, m), are

« Description of the uncertain parameters of the rockshown in Fig. 10-12, as examples, in terms of
through probabilistic distributions (through the cumulative distribution of the point safety factarthe
type of distribution and at least the mean and theock, at three particular mid-height points of thidar

mean quadratic deviation); _ ~ section: on the central axis of the pillar (j = a)half of
» Calculation of the Cumulative Distribution s side (j = 2) and at the corner (j = 3).

Function (CDF) for each uncertain parameter,
starting from its probabilistic distribution, thrgh
numerical integration

» Extraction of a random number between 0 and
for each of the uncertain parameters of the rock an
from this determination of a value for each

uncertaln. _parameter .through .the CDF (Fig. .9); Nelevated probability that one or more safety factnre
the specific case being studied, the extraction oﬁ

. elow a pre-fixed value, or because the safetyofact
three consecutive random numbers  allows thre%\re too high, the calculations should be repeated
different GSI values (Gg| the uniaxial gn. P

. considering different dimensions of the pillar urdi
compression strength; (o)) and the parameter _ .
. ' final convergence that can be considered acceptable
m; (m;;) to be obtained

- Evaluation of the point safety factor,Fat each reached. It is then possible to proceed with the

point j, using the stress state obtained at pajnt ad|menS|on|ng of a pillar on the basis of not juse@r

and the values of the uncertain parameters of th10re deterministic values of the safety factor fé t
rock obtained at point d) points inside the pillar, but rather on the probstit

. Repeatition points d-e until all thegFsamples distribution of the safety factors, which are atolgpoint
referring to the representative point in the pitiae out the reliability of the estimation of the safdéactor

From an analysis of the diagrams, such as those
reported in Fig. 10-12, it is possible to determthe
probability that the point safety factor descendbw a

re-fixed value (for example, 1.05) in one or mpoints
inside the pillar.

Should the results not be satisfactory, due to the

stabilised from the statistic point of view to the designer in relation to the uncertainty bé t
- Description of the probabilistic distribution of;F initial geomechanical parameters of the rock.
for each point through the cumulative curve In this way, the designer can make more informed

choices (for example, the dimensions of the rock

The application of the procedure to the case history: ~ Pillars), considering the initial uncertainties dffie
In the case under study, Gaussian probabilisti@vailable data in a more appropriate manner.
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Fig. 11: Cumulative probability distribution of tip®int safety factor in the rock, at half of théigsiside, in a section
at mid-height (j = 2). The probability of the sgféhctor being below 1.05 has been found to beld¢quaon a
sample of 100,000 safety factor values obtaineah fio analysis with the Montecarlo Method
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0.8 |
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1.0 1.5 2.0 25 3.0

Fig. 12: Cumulative probability distribution of tipeint safety factor in the rock at a corner, imid-height section
(j = 3). The probability of the safety factor beibpglow 1.05 has been found to be equal to 5 ommgpleaof
100,000 safety factor values obtained from an aimbyith the Montecarlo Method

CONCLUSION approach, which is based on the Montecarlo Mett®d,
) o ) ) able to obtain the cumulative distribution of theirp
. The dimensioning of rock pillars in the room and gafety factors in one or more points inside thiapil
pillar mining method is one of the most interesting  Reference has been made to the well known Hoek
problems in rock engineering. , and Brown strength criterion and the GSI index that
Nowadays, simplified analytical formulations are jegcribes the frequency and conditions of natural
usually adopted for both the evaluation of the meanjiscontinuities in order to obtain the local stréngf the
axial stress in the pillar and for the evaluatidntt®  gck mass.
pillar  strength. The uncertainty concerning the  Thanks to the proposed approach, it is possible to
determination of the strength of pillars generdéigds  proceed with the dimensioning of a pillar, not e t
to the adoption of high safety factors. basis only of one or more deterministic values e t
A probabilistic approach for the dimensioning of safety factor in the points inside the pillar, bather on
rock pillars has been proposed in this work. Thisprobabilistic distributions which are able to inalie the
approach considers the exact development of theeliability of the estimation of the degree of sgféo
stresses inside the pillar and the typical unceffadf  the designer in relation to the uncertainty of ithiéal
the geomechanical parameters of the rock mass. Trgeomechnanical parameters of the rock.
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