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Abstract: Problem statement: A traial to find equilibrium points in out of plarof the restricted three
body problemApproach: Solution of the equations of motion at equilibriggmints. Linearizing the
equations of motion and computing the eigen valtesnvestigate the stabilityResults. New
triangular equilibrium points in plane perpendicuta the plane of motion and passing through
Lagrange triangular equilibrium points are obtain@dcircle of equilibrium points, namely Fawzy
equilibrium circle is discovered. Infinite numberemuilibrium points located on the circumferende o
this circle are computed. The obtained solutiores @drecked via obtaining some special cases. The
stability of Fawzy equilibrium circle is studiedh& oscillatory stable solutions gsdependent an§-
dependent stabilities are derivé&bnclusion: The equilibrium points in out of plane of motiohtbe
restricted three body problem is investigated. \W&ioed the following very new results:- First we
obtained Fawz¥&-triangular equilibrium points in the plame= 0. Second we obtained the so called
Fawzy equilibrium circle. We checked our solutiies obtaining some special cases. We studied the
stability of Fawzy equilibrium circle. We derivelet oscillatory stable solutions gslependent ané-
dependent stabilities. The stability of Lagrange vesdl as Fawzy triangular equilibrium points
followed directly because they are subsets of thezy equilibrium circle.
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INTRODUCTION

perturbations (cf. Szebehely, 1967; Subba and Sharm
1994; 1997; 1988; 1986; Narayan and Ramesh, 2011).

In any assumed isolated two-body massive orbitingrhe global stability of these points have beenistiid
system (such as the Sun and the Earth) there e fiby several authors: (Leontovich, 1962; Deprit and

equilibrium points, L, i = 1, 2, 3, 4, 5 these points
usually called Lagrangian or libration points. Aese

Deprit-Bartholome, 1967; Markeev, 1969; Szebehely
1979; Narayan and Ramesh, 2008; Singh, 2011; Kumar

points the gravitational pulls are in balance. Anyand Ishwar, 2011; Douskos, 2011; Shankagarml.,

infinitesimal body at any point of the Lagrangiasiris
would be held there without getting pulled closer t
either of massive bodies. The points, IL,, L; are
colinear with the line joining the two massive bexli
while the triangular points . Lsare found 60° ahead of
and behind the less massive body, along its ofbitse
two triangular points Ls are forming equilateral
triangles with the two massive bodies. The Restict
Three Body Problem (RTBP in brief) is now defined a
a system consisting of two massive bodies, calhed t
primaries, revolving in a circular orbits arounceith
center of mass and a third body of infinitesimaltgall
mass which moves in the primaries' orbital planee T
three collinear equilibria at 1. L,, L; are unstable,
while the two triangular solutions,LLs are stable, in
the linear analysis, for only a certain valueshaf mass
ratio in the interval (Op) wherep = 0.038521 is the
Routhian which modifies when including different

2011). Their final conclusions are that in the placase
the triangular points Js are always stable within some
domain of mass ratio which is modified when inchgli
such kind of different perturbations.

In this study the author is searching for new
equilirium points in the peripindicular planes thet
plane of motion of the primaries. We follow the g&am
very well known way in RTBP but with the required
modifications. We first compute their positionssaich
equilibrium points and then study their stability.

Equations of motion: The equations of motion of an
infinitesimal mass in the relativistic RTBP in ansylic
frame of reference&(n,t), in which the primaries
coordinates on the x-axisy(©,0), (14,0,0) are kept
fixed and the origin at the center of mass, aremikqg.
1 by Brumberg (1972):
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o ou_dfau rewrite the potential-like function U in a differeform.

E-2nn=—-—| — By definition, this new set hag= 0 and Eq. 4:

0 dt P¥;

2 + + 2

r]+2nEU—a—U 4djv (1) " (E H) zZ )

on dt| 5p p=(E+pu-1)"+2°

_au

¢= o Thus we can write Eq. 5:

(-w)((Ern) + ) +uf(E+u-97+2)
where n=1 is the mean motion of the rotating system = 272y (y—1
and U is the potential-like (pseudopotential) fumctof =&+ -n(u-y

the RTBP is given by Eq. 2:

2 4 U=;(1-u)(52+2]+;u[r§+2j
u=" 417K H 2 1 Ik (5)
2 A A ! _q
SH(k-1)
And: )
The system (3) can be written as Eq. 6:
2= (E+p) +n°+27
12 2 o (1_“)(25_22] “[25_22] % 0
2=(E+pu-1)"+n?+2?, 0 N 2 )| 08
2:22_'_|,‘I +Z2 = = (6)
ou

2 2| o2
eofacd) )3

Equilibrium points: From the equations of motion (1), | az
it is apparent an equilibrium solution exists nefatto

Fa]

the rotating frame when the partial derivativesthud This system is verified when:
pseudopotential function are all zero, i.e., thpemts

correspond to the positions in the rotating frante a 2 2
which the gravitational forces and the centrifufyate (1- )(2'1‘1] 0“[ ZE‘J =0

associated with the rotation of the synodic frartle a
cancel, with the result that a particle located of 51 which one can easily obtain, = r, = 1.

these points appears stationary in the synodicdram Substituting these results back to the Eq. 4 yields
The libration points are obtalned from equatlons of

motion (1) after setting _ € =n =n = ¢ = = o B+ +C=L(Erp-1T+ =1

These_ points represent partlcular solutions of tojs Solving these two equations simultaneously yields
of motion Eq. 3: Eq. 7:

oU _dU _ouU _ 1 J3

—=——="—=0 3 =_ - =+

E on ot @) g=s-ng=e (7)

Equilibrium Points in the plane n=0: The author As expected from the symmetry of the problem, we

expects a new set of equilibrium points in &eplane. obtaine_d 'Fhe locations of the_z new equilib_r_iur_n px_;u.int
Now we can rename the triangular LagrangeIOOKS similar to Lagrange triangular equilibriuminmpts
equilibrium points I, Ls to becomely, LY this (&) _(1_ \/§J (1 - \/5]

, = but except the plane
because Lagrange found themém. In this study the

“l27M 2 ) (2
author found a new set of equilibrium points in §e  in which they lie: i.e., in the plang= 0 Eq. 8:
plane. This new set will be called in the futurerks
Fawzy &&-triangular equilibrium pointsLY, LY. To (£.0)= [1 JEJ[ —u _\/—3] ®)
calculate the locations of these new equilibriurm{= 2 )2 7 2
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Equilibrium points in the plane parallel to & = 0

plane: We consider a test particle at a plane parallel to

the plane = 0 (except at plane§ = u and& = 14

(8+u)en7e =1, } (12)
1

(E+p-1)°+n2+0%=

because we did not find any more equilibrium points

there). According to these constraints we have9Eq.

7 =(E+n-1"+n*+?
P = (E+n) 0+ (9)
r2=EZ+r]2+Z2

Thus we can write:

(1-R)((&+n)*+n2+2?)
+p((£+p—1)2 +n? +Z2) =
E+n*+2-p(u-1)

Substituting into (2):
1 2] 1 2
Uu==(1- 2+ S+l 2+ =
A “)(E rj 2“[5 rzj
1
+= -1
SH(H-D)

The system (3) can be written as Eq. 10:

U _gauan_ (&)
o “)[E J 2

+il[2r 2](E+ru Y 0

oy _ 2, U ar, _ _2)n

o za oo 22 (10)

U _souon_ - _2g
¢ Zoa ¢ “)(E rf]rl
2
w0
ou
This system is verified Whe%F 0, P =0 Eq. 11
1 2
2 2
(1—p)(2g—2] :Op( 25—2] =0 (11)
r-1 r-2

from which one can easily obtaipn=r, = 1. Substituting
these results back to the Eq. 9 yields Eq. 12:

Solving these two equations simultaneously §or

yields E—f—p substituting back into Eq. 8 we get

n2+12:g = (=% / -n? provided that]n| < \/—
SR

——<n<—. Therefore we have infinite number of

solutions (equilibrium points), their coordinatese a
given by Eq. 13:

(Eng) = [*—Hﬁﬂi [<< +\/:] (13)

Remark 1: As is clear from the solution set we have
obtained infinte number of equilibrium points whilid

on a circumference of a circle centered(ét_p,o,oj
2

and its circumference passes through the Lagrande a
Fawzy triangular equilibrium pointhT, Ly, LY, L%

This circle will be called in the future works Fawz
equilibrium circle. i.e., The Lagrange and Fawzy
triangular equilibrium points is a subset of Fawzy
equilibrium circle.

\3

Special cases: To check our solutions, setting= 17

in (13) yields directly the familiar Lagrangianamnigular
equilibrium points LY, LY on respective at

(E,n):[;—u,ifj. Also if we setn = 0 Fawzy
triangular equilibrium points follow directly as?, L%

on respective afg,l) = ( ﬁ]

2

Stability of fawzy equilibrium circle: We are going to
study the stability of Fawzy equilibrium circle. Aach
step we will examine our solution using the welbtum
results in RTBP. To examine the stability, an
infinitesimal body would be displaced a little froume
Fawzy equilibrium circle. If the resultant motiofithe
particle is a rapid departure from the vicinity this
circle we can call such a circle an unstable cirdle
however the particle merely oscillates about the
equilibrium points of its circumference, it is saabe a
stable positions. If we have a mixed situation tken
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will determine the stable points and the unstalieso Therefore we get the characteristic equation, with
To examine the stability of the orbits in the viggnof ~ degree n inA with possible complex roots. After

Fawzy equilibrium circle the equations of motiorear getting the eigenvalues’s substitute them into (A-
linearized around the circumference of the equilior  )\)x= 0 and solve for the components X. The

circle with coordinates Eqg. 14: resulting equations are coupled (different comptsien
S are appeared in the same equation). Using the
& =No=0,=8,=Ny=C,=0 similarity transformation Y = BX we can transform

this coupled system to uncoupled one as:

. [u}
€~ 2nn, = %U Y=BX=X=BY =X=B7Y

. o —BW=ABY =Y=BAB Y
Ne+2ng, =| — (14)

on n=ng where, BAB'is a diagonal matrix with the eigenvalues
. U of A on the diagonal, the matrix B is constructeair
o :[ch the n eigenvalues the matrix A. Now The coupled
{=¢

system (17) is transformed to uncoupled Eg. 19:

the subscriptO indicates evaluation fof = &o, N=no Y, =BABY, =AY,
andg = &g. If Eq. 14 are now evaluated &t &, +&4, &

= & *&; andn=no +ny, one can get Eq. 15: The solutions of the transformed system are easily
found as Eg. 20:

(19)

il_znﬁl - (UEE)21+(UEn)r|1+(UEZ)Z1+

) o Y, =c expAt

20, = (Up)eos(Unnis (U2 as) 0 20

4 = (Uge )&+ (U )+ (Uge )2+ where ¢ are n constants of integration. We must now

transform back to the original variables in compuse
We can rewrite Eq. 15 in matrix notation as Eq. 16 form as Eq. 21 and 22:

&1 [0 0o 0 1 0 0Ofg X;=B™Y, =B exp(\ 1)
n,| |0 0 0 0 1 0n,
0 0 0 0 0 O re 1 T s 7
0 & (16) E1[n o 0o 1 0 0Og
& Ug Uy Ug 0 2 0jg, n,| |0 A 0 0 1 Ofn,
fiu| |Ye Y Upe =2 0 0y, of(_[0 0o A 0 o0 0fg 1
1G] Yz UYn Uy 0 0 0]j0 | E| |Ug Uy Ug A 2 0§ (21)
i U, U, U, -2 A 0|n
The point is switching from the solution of 21 UE” U Unz 0 o0 A 01
simultaneous second order differential equationthéo L4 L-¢ “o T« 4L
solution of a system of first order differentialuadjions. ) )
Let us denote to the state vector bS’EEu nl,zl,zl,r]l) -~ 0 0 1 o0 O
S 0 -A 0 0O 1 O
accordingly X represents any of,,n,,&,,n,.{,, thus 0O 0O -A 0 0 O
g. ecomes kEg. . Uzz Um Uzz -A 2 0
. U U U -2 -A 0
X = AX (17) &n nn n¢
[Ue Uy Ug 0 0 A
To solve this system we compute first the eigarasl
of the coefficient matrix A as follows Eq. 18: which are linear differential equations with comsta
coefficients so long as only first order terms are
(A-N)X=0=det(A-A)=0 (18)  retained. Let a solution of the problem be Eq. 23:
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& =Aexp(At) , V3 :

tt =0,n =— Eq. 29t
N, =Bexp(At) (23) (settingZ =0 2 )we ge Eq
Z,=Cexp(A i)

] )\6+)\4+2—7u(1—u))\220
where, A, B, C and\ are constants. To find the 4

expressions for A, B and C Eq. 15 can be rewritten
using the suggested solution, as Eq. 24:

27 (29)
=\ +)\2+Z“(1_“) =0

(A2-Ug)A-(2a+U,)B-(Uy)C = 0O
(2a-U,)A+(A2-u,)B-(U,)c = 0 (24)
~(Ug)Aa-(u,)B+(A*-U,)c =0

which has the four solutions:

Mosa= iiz\/—liw/ﬂpz -2+ 1.

which can be written in matrix notation as Eq. 25: . ] 5 .
The only oscillatory stable solution wheh® is

Al To real and negative. In this case two purely imaginar

Bl=

C

NP-Uge  —(2a+Ug) -(Ug)
(ZA_UEH) ()‘Z_Unn) _(Unz)

,_(UR) _(Uln) ()‘Z_Uzz)

This system has nontrivial solution if Eq. 26:

0 (25)  rootsa = iiJ‘)\z‘ exist. This case is verified when:
0

27U -2+ 1< 0

i.e., when the mass ratio becomes the very welivkno

N-Uy  —(2+Uy) —(Ug) resultp = 0.038521. Now return back to characteristic
Eq. 27. It has the solutions Eq. 30:

(2-u,) (*-u,) ~(u) | = 0 (26) *=d q

‘(Uzz) _(Uln) (AZ _UZZ)

r=x [+ ¢)-127)

expanding the determinant yields Eq. 27: lL(gu(l_ “)(nz +Zz)—122)2 (30)

2 2 2
0=A°+(4- Uy - U, - U A -108(1- 2 HZZZH
+(U22Unn + UZEUZZ + UnnUZZ
-4U,, - U?n - UEZZ - Urfl))\z (27) r]-Dependent Stablllty

Setting:
+(_U22Unnuzz ~2Ug Ug Uy,
2

+U, U2 +UZ U, +UZU, ) Zz=§—nzyiz=g—uj ,

wherea is the root of the characteristic determinant andYields Eq. 31:
Uqs are the second partial derivatives with respect to

the variables mentioned in the subscripts and etedu 1 27
at the equilibrium points. Evaluating the partial A :iﬁ{'(
derivatives included in Eqg. 27. Now computing the
coefficients ofA's, then the characteristic Eq. 27 can be +|:[ 27

2 H(1-p)+11° - 9}

2
- k- ‘- 31
written in the form Eq. 28: 2 M-k + 1 9) (31)

ANt (ou(1-w) (7 +27) =12 a7 (28) ~27(1-a)(n*- 414)ﬂ2
+10&2r]212 =0

To check at this step let us return back to the
stability investigation in the case of Lagrange's
triangular points: quantity 12n* - 92 0, only when:

1382
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27 57 . 285,
nm[—w.—ﬂu{%wj ”5{57,*5 T 1a7d
342 , 10089, 92340,
T2401" 16807 117649
The quantity inside the inner square root can be 22599, 314199,
checked for the negative values as follows; setting: J—{ —, 13280~ (33)
!
i V4
F(n) [2714(1- W) +12° - 9j -2+ @) (- o) +2222345u3—%wﬁ4+5904915}2

Expanding Fr) yields Eq. 32:
E—Dependent stability: Recall Eq. 30 and setting
2673, 243 729, 729 z
F(n)=(¥u2-f2 ‘78U3+?3U4+83J ZZ &= (*—UJ yields:

+(-243+ 27qu- 270%) (32)
+(252- 43+ 432’ - +1{ (g 1 _lzzj
7 M(1-1)
which can be written as$=(n)=4a,+ an’+ an*, where l:[zu( W) -12 JZ
a,20,3< 0,3> (are the coefficients ofis in Eq. 32. 4
Completing the square and searching for the negative . 17T
values yields: -27(1- 2)*(¢* - 414)}{]
4
_ 2, & _a
=& +[\/€n * 2\/;] 4a, <C The quantity(zfp(l—p) —1212J is positive when:
: T B
a , 1 Z 3 3
Snst| -t t—| - O =yu(l-p),0 |U| —o0,—=/u(1-
" JEL% a”} ¢ (4 (=), JU[ i “)J
The quantity inside the inner square root can be
- _(—243+ 27 - 27(12) checked for the negative values as follows; setting:
== 2(252- 43+ 43p?)

1
: J(zsz— 43+ 43p2)

x[(—243+ 27qu- 270°)°

F(z):[%u(l—u)—lzzzr
-27(1- )’ (¢ - 2*)

_ 2
4(252- 43p+ 43¢°) ExpandingF(¢) yields Eq. 34:
_[_Zi?’ L2673, 729,

2u 16 8

a,= 0,3 <0,3= (are the coefficients ofs in Eq. 34.
: . s
Expanding and retaining the terms upagu®) the Completing the square and searching for the negative
above equation can be rewritten in the form Eq. 33:  values yields:

1383

F(g) = E)H (1 A+ )+1621(u Je7+ 18° (34)

Nl
NI

+E’p4 +81ﬂ

which can be written as$=({) =4, + al*+ al*, where



Am. J. Applied Sci., 9 (9): 1378-1384, 2012
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As is clear from Eq. 33 and 35 the general squtionShankar.an’. S J'P'. Sham?a and |Bawar, 201_1'
Equilibrium points in the  generalised

for the components of the position and velocity around o .

the equilibrium points of on the circumference of the photogravitational non-planar restricted three body
circle involve a linear combinations, linearly problem. Int. J. Eng., Sci. Technol., 3: 63-67.
ind q ob S q S Sharma, R.K. and R.P.V. Subba, 1986. On finite
Independent terms, Xp(“\/‘)‘ ‘t) an EXp(_ A ‘t) periodic orbits around the equilateral solutions of

that leads by Euler identity to sines and cosines. Thus the planar restricted three-body problem.
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