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Abstract: Problem statement: A traial to find equilibrium points in out of plane of the restricted three 
body problem. Approach: Solution of the equations of motion at equilibrium points. Linearizing the 
equations of motion and computing the eigen values to investigate the stability. Results: New 
triangular equilibrium points in plane perpendicular to the plane of motion and passing through 
Lagrange triangular equilibrium points are obtained. A circle of equilibrium points, namely Fawzy 
equilibrium circle is discovered. Infinite number of equilibrium points located on the circumference of 
this circle are computed. The obtained solutions are checked via obtaining some special cases. The 
stability of Fawzy equilibrium circle is studied. The oscillatory stable solutions as η-dependent and ξ-
dependent stabilities are derived. Conclusion: The equilibrium points in out of plane of motion of the 
restricted three body problem is investigated. We obtained the following very new results:- First we 
obtained Fawzy ξξ-triangular equilibrium points in the plane η = 0. Second we obtained the so called 
Fawzy equilibrium circle. We checked our solutions via obtaining some special cases. We studied the 
stability of Fawzy equilibrium circle. We derived the oscillatory stable solutions as η-dependent and ξ-
dependent stabilities. The stability of Lagrange as well as Fawzy triangular equilibrium points 
followed directly because they are subsets of the Fawzy equilibrium circle. 
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INTRODUCTION 

 
 In any assumed isolated two-body massive orbiting 
system (such as the Sun and the Earth) there are five 
equilibrium points, Li, i = 1, 2, 3, 4, 5 these points 
usually called Lagrangian or libration points. At these 
points the gravitational pulls are in balance. Any 
infinitesimal body at any point of the Lagrangian points 
would be held there without getting pulled closer to 
either of massive bodies. The points L1, L2, L3 are 
colinear with the line joining the two massive bodies, 
while the triangular points L4, L5 are found 60° ahead of 
and behind the less massive body, along its orbit. These 
two triangular points L4,5 are forming equilateral 
triangles with the two massive bodies. The Restricted 
Three Body Problem (RTBP in brief) is now defined as 
a system consisting of two massive bodies, called the 
primaries, revolving in a circular orbits around their 
center of mass and a third body of infinitesimally small 
mass which moves in the primaries' orbital plane. The 
three collinear equilibria at L1, L2, L3 are unstable, 
while the two triangular solutions L4, L5 are stable, in 
the linear analysis, for only a certain values of the mass 
ratio in the interval (0, µ) where µ = 0.038521 is the 
Routhian which modifies when including different 

perturbations (cf. Szebehely, 1967; Subba and Sharma, 
1994; 1997; 1988; 1986; Narayan and Ramesh, 2011). 
The global stability of these points have been studied 
by several authors: (Leontovich, 1962; Deprit and 
Deprit-Bartholome, 1967; Markeev, 1969; Szebehely 
1979; Narayan and Ramesh, 2008; Singh, 2011; Kumar 
and Ishwar, 2011; Douskos, 2011; Shankaran et al., 
2011). Their final conclusions are that in the planar case 
the triangular points L4,5 are always stable within some 
domain of mass ratio which is modified when including 
such kind of different perturbations. 
 In this study the author is searching for new 
equilirium points in the peripindicular planes to the 
plane of motion of the primaries. We follow the same 
very well known way in RTBP but with the required 
modifications. We first compute their positions of such 
equilibrium points and then study their stability. 
 
Equations of motion: The equations of motion of an 
infinitesimal mass in the relativistic RTBP in a synodic 
frame of reference (ξ,η,ξ), in which the primaries 
coordinates on the x-axis (-µ,0,0), (1-µ,0,0) are kept 
fixed and the origin at the center of mass, are given Eq. 
1 by Brumberg (1972): 
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dt

U
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⋅

⋅

 ∂ ∂  ξ− η −
 ∂ξ ∂ ξ  
 ∂ ∂  η+ ξ − 

 ∂η ∂ η 


∂ ζ
∂ζ



  (1) 

 
where n=1 is the mean motion of the rotating system 
and U is the potential-like (pseudopotential) function of 
the RTBP is given by Eq. 2: 
 

2

1 2

r 1
U =

2 r r

− µ µ+ +   (2) 

 
And: 
 

( )
( )

22 2 2
1

22 2 2
2

2 2 2 2

r = ,

r = 1 ,

r =

ξ + µ + η + ζ

ξ + µ − + η + ζ

ξ + η + ζ

 

 
Equilibrium points: From the equations of motion (1), 
it is apparent an equilibrium solution exists relative to 
the rotating frame when the partial derivatives of the 
pseudopotential function are all zero, i.e., these points 
correspond to the positions in the rotating frame at 
which the gravitational forces and the centrifugal force 
associated with the rotation of the synodic frame all 
cancel, with the result that a particle located at one of 
these points appears stationary in the synodic frame. 
The libration points are obtained from equations of 

motion (1) after setting 
⋅⋅
ξ  = 

⋅
ξ  = 

⋅⋅
η  = 

⋅
η  = 

⋅⋅
ζ  = =

⋅
ζ 0. 

These points represent particular solutions of equations 
of motion Eq. 3: 
 

U U U
= = = 0

∂ ∂ ∂
∂ξ ∂η ∂ζ

  (3) 

 

 
Equilibrium Points in the plane ηηηη=0: The author 
expects a new set of equilibrium points in the ξξ plane. 
Now we can rename the triangular Lagrange 
equilibrium points L4, L5 to become 4Lξη , 5Lξη  this 

because Lagrange found them in ξη. In this study the 
author found a new set of equilibrium points in the ξξ 
plane. This new set will be called in the future works 
Fawzy ξξ-triangular equilibrium points 4Lξζ , 5Lξζ . To 

calculate the locations of these new equilibrium points, 

rewrite the potential-like function U in a different form. 
By definition, this new set has η = 0 and Eq. 4: 
 

( )
( )

22 2
1

22 2
2

r =

r = 1

ξ + µ + ζ 


ξ + µ − + ζ 

  (4) 

 
 Thus we can write Eq. 5:  
 

( ) ( )( ) ( )( )
( )

2 22 2

2 2

1 1

1

− µ ξ + µ + ζ + µ ξ + µ − + ζ

= ξ + ζ − µ µ −
  

( )

( )

2 2
1 2

1 2

1 2 1 2
U = 1 r r

2 r 2 r

1
1

2

   
− µ + + µ +   

   

+ µ µ −

  (5) 

 
 The system (3) can be written as Eq. 6: 
 

( )

( )

1
1 22 2

1 2

2

1 22 2
1 2

2 2 0U r1 2r 2r
r r

= =

U r2 2
1 2r 2r

0r r

      ∂ ∂   − µ − µ −         ∂ξ ∂ξ         
      
      ∂ ∂         − µ − µ −         ∂ζ ∂ζ          

 (6) 

 
 This system is verified when: 
 

( ) 1 22 2
1 2

2 2
1 2r = 0, 2r = 0

r r

   
− µ − µ −   

   
  

from which one can easily obtain r1 = r2 = 1. 
Substituting these results back to the Eq. 4 yields: 
 

( ) ( )2 22 2= 1, 1 = 1ξ + µ + ζ ξ + µ − + ζ
  

 Solving these two equations simultaneously yields 
Eq. 7: 
 

1 3
= , =

2 2
ξ − µ ζ ±   (7) 

 
 As expected from the symmetry of the problem, we 
obtained the locations of the new equilibrium points. It 
looks similar to Lagrange triangular equilibrium points 

( ) 1 3
, = ,

2 2

 
ξ η − µ  

 
, 

1 3
,

2 2

 
− µ −  

 
 but except the plane 

in which they lie: i.e., in the plane η = 0 Eq. 8: 
 

( ) 1 3 1 3
, = , , ,

2 2 2 2

   
ξ ζ − µ − µ −      

   

  (8)  
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Equilibrium points in the plane parallel to ξξξξ = 0 
plane: We consider a test particle at a plane parallel to 
the plane ξ = 0 (except at planes ξ = -µ and ξ = 1-µ 
because we did not find any more equilibrium points 
there). According to these constraints we have Eq. 9: 
 

( )
( )

22 2 2
2

22 2 2
1

2 2 2 2

r = 1

r =

r =

ξ + µ − + η + ζ

ξ + µ + η + ζ 
ξ + η + ζ 

  (9) 

 
 Thus we can write: 
 

( ) ( )( )
( )( )

( )

2 2 2

2 2 2

2 2 2

1

1 =

1

− µ ξ + µ + η + ζ

+µ ξ + µ − + η + ζ

ξ + η + ζ − µ µ −
  

 Substituting into (2): 
 

( )

( )

2 2
1 2

1 2

1 2 1 2
U = 1 r r

2 r 2 r

1
1

2

   
− µ + + µ +   

   

+ µ µ −

 

 
 The system (3) can be written as Eq. 10: 
 

( ) ( )

( )

( )

( )

2
i

1 2
i=1 i 1 1

2 2
2 2

2
1

1 2
i=1 1 1 1

2 2
2 2

2
i

1 2
i=1 i 1 1

2 2
2 2

U U r 2
1 2r

r r r

12
2r 0

r r

U U r 2
1 2r

r r r

2
2r 0

r r

U U r 2
1 2r

r r r

2
2r 0

r r

ξ + µ ∂ ∂ ∂= = − µ −  ∂ξ ∂ ∂ξ   
ξ + µ −  +µ − =   


 ∂ ∂ ∂ η= = − µ − ∂η ∂ ∂η  


  η+µ − = 
 

 ∂ ∂ ∂ ζ= = − µ − ∂ζ ∂ ∂ζ  

  ζ+µ − = 
 

∑

∑

∑
















 

(10) 

 

 This system is verified when 
1

U
= 0

r

∂
∂

, 
2

U
= 0

r

∂
∂

 Eq. 11 

 

( ) 1 22 2
1 2

2 2
1 2r = 0, 2r = 0

r r

   
− µ − µ −   

   
  (11) 

 
from which one can easily obtain r1 = r2 = 1. Substituting 
these results back to the Eq. 9 yields Eq. 12: 

( )
( )

2 2 2

2 2 2

= 1,

1 = 1

ξ + µ + η + ζ 


ξ + µ − + η + ζ 

  (12) 

 
 Solving these two equations simultaneously for ξ 

yields 
1

=
2

ξ − µ , substituting back into Eq. 8 we get 

2 2 3
=

4
η + ζ  ⇒ 23

=
4

ζ ± − η  provided that 
3

2
η ≤  ⇒ 

3 3

2 2

− ≤ η ≤ . Therefore we have infinite number of 

solutions (equilibrium points), their coordinates are 
given by Eq. 13: 
 

( ) 21 3 3 3
, , = , , =

2 2 2 4

 −ξ η ζ − µ ≤ η ≤ ≤ ζ ± − η  
 

  (13) 

 
Remark 1: As is clear from the solution set we have 
obtained infinte number of equilibrium points which lie 

on a circumference of a circle centered at 1
,0,0

2
 − µ 
 

 

and its circumference passes through the Lagrange and 

Fawzy triangular equilibrium points 4Lξη , 5Lξη , 4Lξζ , 5L .ξζ  

This circle will be called in the future works Fawzy 
equilibrium circle. i.e., The Lagrange and Fawzy 
triangular equilibrium points is a subset of Fawzy 
equilibrium circle.  
 

Special cases: To check our solutions, setting 
3

=
2

η ±  

in (13) yields directly the familiar Lagrangian triangular 
equilibrium points 4Lξη , 5Lξη  on respective at 

( ) 1 3
, = ,

2 2

 
ξ η − µ ±  

 
. Also if we set η = 0 Fawzy 

triangular equilibrium points follow directly as 4Lξζ , 5Lξζ  

on respective at ( ) 1 3
, = ,

2 2

 
ξ ζ − µ ±  

 
. 

 
Stability of fawzy equilibrium circle: We are going to 
study the stability of Fawzy equilibrium circle. At each 
step we will examine our solution using the well known 
results in RTBP. To examine the stability, an 
infinitesimal body would be displaced a little from the 
Fawzy equilibrium circle. If the resultant motion of the 
particle is a rapid departure from the vicinity of this 
circle we can call such a circle an unstable circle, if 
however the particle merely oscillates about the 
equilibrium points of its circumference, it is said to be a 
stable positions. If we have a mixed situation then we 
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will determine the stable points and the unstable ones. 
To examine the stability of the orbits in the vicinity of 
Fawzy equilibrium circle the equations of motion are 
linearized around the circumference of the equilibrium 
circle with coordinates Eq. 14: 
 

. . .

0 0 00 0 0 0ξ = η = ζ = ξ = η = ζ =
 

 

..

0 0

= 0

..

0 0

= 0

..

0

= 0

U
2n =

U
2n =

U
=

⋅

ξ ξ

⋅

η η

ζ ζ

 ∂
ξ − η  ∂ξ  

 ∂η + ξ  ∂η  


 ∂ ζ   ∂ζ  

  (14) 

 
the subscript 0  indicates evaluation for ξ = ξ0, η= η0 

and ξ = ξ0. If Eq. 14 are now evaluated at ξ = ξ0 +ξ1, ξ 
= ξ0 +ξ1 and η= η0 +η1, one can get Eq. 15: 
 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

..

1 1 1 1 1

..

1 1 1 1 1

..

1 1 1 1

2n = U U U ...

2n = U U U ...

= U U U ...

⋅

ξξ ξη ξζ

⋅

ξη ηη ηζ

ζξ ζη ζζ

ξ − η ξ + η + ζ + 
η + ξ ξ + η + ζ + 

ζ ξ + η + ζ +


 (15)  

 
 We can rewrite Eq. 15 in matrix notation as Eq. 16: 
 

11

11

1

11

11

1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 00
=

U U U 0 2 0

U U U 2 0 0

U U U 0 0 0 0

ξξ ξη ξζ

ξη ηη ηζ

ζξ ζη ζζ

  ξ ξ  
     ηη     
     ζ
     

ξξ     
     − ηη
     
   ζ     

&

&

&&&

&&&

&&

  (16)  

 
 The point is switching from the solution of 
simultaneous second order differential equations to the 
solution of a system of first order differential equations. 
Let us denote to the state vector by ( )1 1 1 1 1X , , , ,≡ ξ η ζ ξ η& &  

accordingly X&  represents any of 
. . .. .. ..

1 1 1 1 1, , , , ,ξ η ξ η ζ  thus 

Eq. 16 becomes Eq. 17: 
 
X = AX&   (17)  
 
 To solve this system we compute first the eigenvalues 
of the coefficient matrix A as follows Eq. 18:  
 
( ) ( )A I X = 0 det A I = 0− λ ⇒ − λ   (18) 

 Therefore we get the characteristic equation, with 
degree n in λ with possible complex roots. After 
getting the eigenvalues λ’s substitute them into (A-
λI)X= 0 and solve for the components X. The 
resulting equations are coupled (different components 
are appeared in the same equation). Using the 
similarity transformation Y = BX we can transform 
this coupled system to uncoupled one as: 
 

1 1

1 1 1

Y = BX X = B Y X = B Y

B Y = AB Y Y = BAB Y

− −

− − −

⇒ ⇒

⇒ ⇒

& &

& &
  

where, BAB-1 is a diagonal matrix with the eigenvalues 
of A on the diagonal, the matrix B is constructed from 
the n eigenvalues the matrix A. Now The coupled 
system (17) is transformed to uncoupled Eq. 19: 
 

1
i i i iY = BAB Y = Y− λ&

 (19) 
  
 The solutions of the transformed system are easily 
found as Eq. 20: 
 

( )i i iY = c exp tλ
 (20) 

  
where ci are n constants of integration. We must now 
transform back to the original variables in components 
form as Eq. 21 and 22: 
 

( )1 1
i i i iX = B Y = B c exp t− − λ

 
 

11

11

1

11

11

1

0 0 1 0 0

0 0 0 1 0

0 0 0 0 00
=

U U U 2 0

U U U 2 0

U U U 0 0 0

ξξ ξη ξζ

ξη ηη ηζ

ζξ ζη ζζ

λ  ξ ξ  
     λ ηη     
     λ ζ
     λ ξξ     
     − λ ηη
     

λ   ζ     

&

&

&&&

&&&

&&

 (21)  

 

( )

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0
det A I = 0

U U U 2 0

U U U 2 0

U U U 0 0

ξξ ξη ξζ

ξη ηη ηζ

ζξ ζη ζζ

−λ 
 −λ 
 −λ

− λ =  
−λ 

 − −λ
 

−λ  

 

(22) 

 
which are linear differential equations with constant 
coefficients so long as only first order terms are 
retained. Let a solution of the problem be Eq. 23: 
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( )
( )
( )

1

1

1

Aexp t

Bexp t

Cexp t

ξ = λ 


η = λ 
ζ = λ 

  (23) 

 
where, A, B, C and λ are constants. To find the 
expressions for A, B and C Eq. 15 can be rewritten, 
using the suggested solution, as Eq. 24: 
 
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

2

2

2

U A 2 U B U C = 0

2 U A U B U C = 0

U A U B U C = 0

ξξ ξη ξζ

ξη ηη ηζ

ζξ ζη ζζ

λ − − λ + −

λ − + λ − − 


− − + λ − 

 (24) 

 
which can be written in matrix notation as Eq. 25: 
 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

2

2

2

U 2 U U A 0

2 U U U B = 0

C 0U U U

ξξ ξη ξζ

ξη ηη ηζ

ζξ ζη ζζ

 λ − − λ + −     
    λ − λ − −     
        − − λ − 

 (25) 

 
 This system has nontrivial solution if Eq. 26: 
 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

2

2

2

U 2 U U

2 U U U = 0

U U U

ξξ ξη ξζ

ξη ηη ηζ

ζξ ζη ζζ

λ − − λ + −

λ − λ − −

− − λ −

 (26) 

 
expanding the determinant yields Eq. 27: 
 
 

( )
(

)
(

)

6 4

2 2 2 2

2 2 2

0 4 U U U

U U U U U U

4U U U U

U U U 2U U U

U U U U U U

ξξ ηη ζζ

ξξ ηη ξξ ζζ ηη ζζ

ζζ ξη ξζ ηζ

ξξ ηη ζζ ξη ξζ ηζ

ξξ ηζ ξη ζζ ξζ ηη

= λ + − − − λ

+ + +

− − − − λ

+ − −

+ + +

  (27) 

 
where σ is the root of the characteristic determinant and 
Uαβ are the second partial derivatives with respect to 
the variables mentioned in the subscripts and evaluated 
at the equilibrium points. Evaluating the partial 
derivatives included in Eq. 27. Now computing the 
coefficients of 's,λ  then the characteristic Eq. 27 can be 
written in the form Eq. 28: 
 

( )( )( )6 4 2 2 2 2

2 2 2

9 1 12

108 = 0

λ + λ + µ − µ η + ζ − ζ λ

+ ξ η ζ
  (28) 

 
 To check at this step let us return back to the 
stability investigation in the case of Lagrange's 
triangular points: 

(setting 
3

= 0, =
2

ζ η ) we ge Eq. 29t: 

 

( )

( )

6 4 2

4 2

27
1 = 0

4
27

1 = 0
4

λ + λ + µ − µ λ

⇒ λ + λ + µ − µ
  (29) 

 
which has the four solutions: 
 

2
1,2,3,4

1
= 1 27 27 1

2
λ ± − ± µ − µ + . 

 

 The only oscillatory stable solution when 2λ  is 
real and negative. In this case two purely imaginary 

roots 2= iλ ± λ  exist. This case is verified when: 

 
227 27 1 0µ − µ + ≤  

 
i.e., when the mass ratio becomes the very well known 
result µ = 0.038521. Now return back to characteristic 
Eq. 27. It has the solutions Eq. 30: 
 

( )( )( )
( )( )( )

( )

2 2 2

2
2 2 2

1
1 2

2 2 2 2

1
= 9 1 12

2

9 1 12

108 1 2

λ ± − µ − µ η + ζ − ζ

± µ − µ η + ζ − ζ


− − µ η ζ  

 (30) 

 
ηηηη-Dependent Stability: 
Setting: 
 

2
2 2 23 1

= , =
4 2

 ζ − η ξ − µ 
 

, 

Yields Eq. 31:  
 

( )

( )

( ) ( )

2

2
2

1
1 2

2 2 4 2

1 27
= 1 12 9

42

27
1 12 9

4

27 1 2 4

  λ ± − µ − µ + η − 
 

 ± µ − µ + η − 
 


− − µ η − η  

  (31) 

 

 The quantity ( )27
1

4
µ − µ  is positive definite and the 

quantity 212 9 0η − ≥ , only when: 
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3 3
, ,

2 2

   
η∈ −∞ − ∞       

U  

 
 The quantity inside the inner square root can be 
checked for the negative values as follows; setting: 
 

( ) ( ) ( ) ( )
2

22 2 427
F = 1 12 9 27 1 2 4

4
 η µ −µ + η − − − µ η − η 
 

 

 
 Expanding F (η) yields Eq. 32: 
 

( )

( )
( )

2 3 4

2 2

2 4

2673 243 729 729
F = 81

16 2 8 16

243 270 270

252 432 432

 η µ − µ− µ + µ + 
 

+ − + µ− µ η

+ − µ+ µ η

  (32) 

 
which can be written as ( ) 2 4

0 1 2F = a a aη + η + η , where 

0 1 2a 0,a 0,a 0≥ ≤ ≥  are the coefficients of 'sη  in Eq. 32. 

Completing the square and searching for the negative 
values yields: 

 

( )
2

2
2 1 1

0 2
22

1
1 2

2 2
1 1

0
2 22

a a
F = a a < 0

4a2 a

a 1 a
a

2a 4aa

 
η + η + − 

 
 

 
  ⇒ η ≤ ± − ± −  
   

  

( )
( )

( )
( )

( )

2

2

2

22

2

2 3

1
1 2
2

4

243 270 270

2 252 432 432

1

252 432 432

243 270 270

4 252 432 432

243 2673 729

2 16 8

729
81

16

 − + µ − µ
η ≤ ± −

− µ + µ

±
− µ + µ

 − + µ − µ
×
 − µ + µ


− − µ + µ − µ



 + µ +   

 

 

 Expanding and retaining the terms up to ( )5µO  the 

above equation can be rewritten in the form Eq. 33: 

2

3 4 5

2

1
1 2
2

3 4 5

27 57 285

56 196 1372

342 10089 92340

2401 16807 117649
22599 314199

32805
4 4

222345 419175
59049

2 4

η ≤ ± + µ + µ


− µ − µ − µ

± − + µ − µ



 + µ − µ + µ  


  (33) 

 
ξξξξ-Dependent stability: Recall Eq. 30 and setting 

2 23
=

4
η − ζ , 

2
2 1

=
2
 ξ − µ 
 

 yields: 

 

( )

( )

( ) ( )

2

2
2

1
1 2

2 2 4 2

1 27
= 1 12

42

27
1 12

4

27 1 2 4

  λ ± − µ − µ − ζ 
 

 ± µ − µ − ζ 
 


− − µ ζ − ζ  

 

 

 The quantity ( ) 227
1 12

4
 µ − µ − ζ 
 

 is positive when: 

 

 ( ) ( )3 3
1 , , 1

4 4
   ζ ∈ µ − µ ∞ −∞ − µ − µ   
   

U

 
  
 The quantity inside the inner square root can be 
checked for the negative values as follows; setting: 

 

 ( ) ( )

( ) ( )

2
2

2 2 4

27
F = 1 12

4

27 1 2 4

 ζ µ − µ − ζ 
 

− − µ ζ − ζ

 

 
Expanding ( )F ζ  yields Eq. 34: 

 

( ) ( ) ( )2 4 2 4729
F 1 2 162 1 14

16
ξ = µ − µ + µ + µ µ − ξ + ξ   (34) 

 
which can be written as ( ) 2 4

0 1 2F = a a aζ + ζ + ζ , where 

0 1 2a 0,a < 0,a 0≥ ≥  are the coefficients of 'sζ  in Eq. 34. 

Completing the square and searching for the negative 
values yields: 
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( )
2

2
2 1 1

0 2
22

1
1 2

2 2
1 1

0
2 22

a a
F = a a < 0

4a2 a

a 1 a
a

2a 4aa

 
ζ + ζ + − 

 
 

 
  ⇒ ζ ≤ ± − ± −  
   

  
Thus Eq. 35: 
 

( )

( )
1

2
3 3

1 3 3
81 1

12 2

3 3
16 8

256

 
ζ ≤ ± ± µ − µ  

 


− µ + µ + µ 



  (35) 

 
 As is clear from Eq. 33 and 35 the general solution 
for the components of the position and velocity around 
the equilibrium points of on the circumference of the 
circle involve a linear combinations, linearly 

independent terms, of ( )2exp i t+ λ  and ( )2exp i t− λ  

that leads by Euler identity to sines and cosines. Thus 
we obtained oscillatory stable solutions when η or ξ 
satisfies the critria derived in (33) and (35). 
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