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ABSTRACT 

Our aim in the present article is to introduce and study the relation between the deformation retract of the 

Reissner-Nordstrom spacetime N
4
 and the deformation retract of the tangent space Tp (N

4
). Also, this 

relation discussed after and before the isometric and topological folding of N
4
 into itself. New types of 

conditional folding are presented. Some commutative diagrams are obtained. 
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1. INTRODUCTION 

As is well known, the theory of foldings is always one 

of interesting topics in Euclidian and Non-Euclidian space 

and it has been investigated from the various viewpoints by 

many branches of topology and differential geometry (El-

Ahmady, 2013a; 2013b; 2013c; 2013d; 2013e). 

Most folding problems are attractive from a pure 

mathematical standpoint, for the beauty of the problems 

themselves. The folding problems have close connections 

to important industrial applications Linkage folding has 

applications in robotics and hydraulic tube bending. Paper 

folding has application in sheet-metal bending, packaging 

and air-bag folding (El-Ahmady, 2012a; 2012b; 2011). 

Following the great Soviet geometer (El-Ahmady and Al-

Rdade, 2013), also, used folding to solve difficult 

problems related to shell structures in civil engineering 

and aero space design, namely buckling instability (El-

Ahmady and Al-Hazmi, 2013). Isometric folding between 

two Riemannian manifold may be characterized as maps 

that send piecewise geodesic segments to a piecewise 

geodesic segments of the same length. For a topological 

folding the maps do not preserves lengths i.e., A map  ℑ: 

M→N, where M and N are C
∞
-Riemannian manifolds of 

dimension m,n respectively is said to be an isometric 

folding of M into N, iff for any piecewise geodesic path γ: 

J→M, the induced path ℑ 0 γ: J→N is a piecewise 

geodesic and of the same length as γ (El-Ahmady and El-

Araby, 2010). If ℑ does not preserve length, then ℑ is a 

topological folding. A subset A of a topological space X is 

called a retract of X if there exists a continuous map r: 

X→A such that r(α) = α,  ∀α∈ A where A is closed and X 

is open (Arkowitz, 2011; Banchoff and Lovett, 2010; El-

Ahmady, 2007a; 2007b, El-Ahmady, 2006; 2004a; 

2004b). Also, let X be a space and A a subspace. A map r: 

X→A such that r (α) =α, for all α∈A, is called a retraction 

of X onto A and A is the called a retract of X (El-Ahmady 

and Shamara, 2001). This can be re stated as follows. If i: 

A→X is the inclusion map, then r: X→A is a map such 

that ri = idA. If, in addition, ri 
x

ri id�  we call r a 

deformation retract and A a deformation retract of X 

(El-Ahmady, 1994). Another simple-but extremely 

useful-idea is that of a retract. If A, X ⊂ M, then A is a 

retract of X if there is a commutative equation: 
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 If f: A→B and g: X→Y, then f is a retract of g if ri 

= idA and js = idB (Naber, 2011; Reid and Szendroi, 

2011; Arkowitz, 2011; Strom, 2011; Shick, 2007). At 

each point p of a complete Riemannian manifold M, we 

define a mapping of the tangent space Tp (M) at p onto 

M in the following manner. If X is a tangent vector at P 

we draw a geodesic g(t) starting at P in the direction of 

X. If X has length α, then we map X into the point g(α) 

of the geodesic. We denote this mapping by expp: Tp 

(M)→M, the map expp is everywhere C
∞
 and in a 

neighborhood of p in M, it is a diffeomorphism 

(Kuhnel, 2006; Banchoff and Lovett, 2010). 

1.1. Main Results 

The Reissner-Nordström spacetime N
4
 is given by 

the following metric (El-Ahmady and Al-Rdade, 2013; 

Hartle, 2003; Griffiths and Podolsky, 2009; Straumann, 

2003) Equation 1: 
 

2 2
2 2 1

2 2

2 2 2 2 2

2m e 2m e
ds (1 )dt (1 )

r r r r

dr r (d sin d )

−= − − + + − +

+ θ + θ φ

 (1)  

 
where, m represents the gravitational mass and e the 

electric charge of the body. 

The coordinates of Reissner-Nordstr O&& m spacetime 

N
4
 are given by Equation 2: 

 
2

2 2

1 1 2

2 2 2 2 2

2 2

2 2 1

2 2 2 2

2 2 2

3 3

2 2 2 2

4 4

2m e
x C 1 t

r r

x C (r 4mr) (4m e ) In(r 2mr e )

1 r m
(8m 4e m) tan

e m e m

x C r

x C r sin

−

+

−

+

 
= − + 

 

= + + − − +

−
+ −

− −

= + θ

= θφ

 (2) 

 
where, C1,C2,C3 and C4 are the constant of integration . 

The Reissner-Nordström space time N
4
 geodesic 

equations for the metric (1) are given by the following 

Equation 3-6: 
 

1 2 2 2
1 2 2 2

2 2

2 2
2 3 2

2
2 2

2 3

4 2

2

du e mr (r 2mr e )
(u ) (u )

d r(r 2mr e ) r

r 2mr e
sin (u )

r

m e
(r 2mr e )

r r
(u ) 0

r

− − +
+ −

τ − +

− +
− θ +

 
− − + 

  =

 (3) 

2
1 2 3 2du 2

u u _ sin cos (u ) 0
d r

+ θ θ =
τ

 (4) 

 
2

1 3 2 3du 2
u u 2cot u u 0

d r
+ + θ =

τ
 (5) 

 
2

4
1 4

2 2

e
2 m

rdu
u u 0

d r 2mr e

 
= + 

 + =
τ − +

 (6) 

 

where,  τ is an affine parameter. Suppose that 

0 0 0 0( ) (r , , , t ),(r, , , t)
2

π
γ τ = θ θ φ  corresponding (u

1
,u

2
,u

3
,u

4
), 

for all τ where 
2

π
φ = . Then Equation 7: 

 

 3d
0 u

d

φ
= =

τ
 (7) 

 

Under the condition u
3
 = 0 the above equations 

become Equation 8-11: 

 
1 2 2 2

1 2

2 2

2
2 2

2 3

2 2

du e mr (r 2mr e )
(u )

d r(r 2mr e ) r

m e
(r 2mr e )

r r
(u ) 0

− − +
+ −

τ − +

 
− − + 

 + =

 (8) 

 
2

1 2du 2
u u 0

d r
+ =

τ
 (9) 

 
3du

0
d

=
τ

 (10) 

 
2

4
1 4

2 2

e
2 m

rdu
u u 0

d r 2mr e

 
− + 

 + =
τ − +

 (11) 

 

Integrating Equation (9), we get Equation 12: 
 

2 2

2r

ω
µ =  (12)  

 
 Also, integrating Equation (11), we get Equation 13: 

 
2

4 1

2 2

r

r 2mr e

ω
µ =

− +
 (13)  
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where, 
1

ω  and 
2

ω are the constant of integrations. 

Substituting (7), (12) and (13) in (2), we get: 
 

2
2 2 2 2

1 2 3 4 2

2
2 2 21

2 2

2m e
x x x x (1 )

r r

r
( ) (r 4mr) (4m _ e )
r 2mr e

− + + + = − +

ω
+ + +

− +

 

 

2 2 2 2 1

2 2

2

2
122 2

1
In (r 2mr e ) (8m _ 4e m) tan

e m

r m
H

re m

−− + +
−

− ω
+ +

−

 

 

Which is a hypersphere 3 4

1
S N⊂  which is a geodesic 

retraction. 

Again, substituting (7), (12) and (13) in (3), we get 

the following curves geodesic retraction S1⊂N
4
 

2 2
1 2 2 2

1 2 2

2m e
(u ( )) k 1

r ( ) r( ) r ( )

  ϖ
µ = ϖ + − − +  

µ µ µ  
 where k = - 1 

corresponds timelike geodesics and also k =0 

corresponds to null geodesics. 

Then, the following theorem has been proved. 

Theorem 1 

Types of the geodesic retraction of Reissner-
Nordstrom spacetime N

4
 are hypersphere retraction and 

curves retraction. 

Theorem 2 

The deformation retract of (N
4
-(p1,q1)) onto 

3 4

1 1 1
S (N (p ,q ))⊂ − under the exponential map is an 

induced deformation retract of Tp1 (N
4
) 

onto 1 3 4

1 p1 1exp (S ) T (N q )− ⊂ − . Any isometric folding 

4 4F : N N→ such that F (x1,x2,x3,x4) = (x1,x2,|x3|,x4) 

induces the same deformation retract of Tp1 (N
4
) under 

the condition x3 = 0, which makes the equation: 
 

( ) ( )2

1

1 1

F4 4

1 1p p

1 1

F4 4

1 1 1 1

D p D p

exp exp

N – (p ,  q ) N –  (p ,  q )

− −

π − → π −

↑ ↑

→

 

 

Commutative, where ( )4

p1D ( ) p1π −  is an open ball of 

radius π and center at p1. 

Proof  

The parametric equation of the Reissner-Nordström 

space time N
4
 is given: 

2
2

1 2

2 2

2

2 2

2 2

1

2 2 2 2

2

3 2

2 2 2

4

2m e
( (C (1 )t ( ))

r( ) r ( )

(C (r ( ) 4mr( )) 4(m _ e )

In (r ( )) 2mr( ) e )

(8m 4e m)

1 r( ) m
tan

e m e m

(C r ( ) ( ))

C r ( )sin ( ) ( ))

+

−

+

ξ = − − + µ
µ µ

µ + µ +

µ − µ +

+ −

µ −

− −

+ µ θ µ

µ θ µ φ µ

 

 

By using lagrangian equations: 

  

i i

d T T
( ) 0, i 1,2,3,4

ds G G

 ∂ ∂
− = = 

∂ ∂ 
 

 

where, 21
T ds

2
=  we obtain the deformation retract of 

(N
4
-(p1, q1)) given by: 

 
3 2 2

1 1 2

2 2

2 2

1

3 4
2 2

S ( C , C (4m e )In(e )

1
(8m 4e m)

e m

m
tan , C C )

e m

−

= + − +

−
−

−

−

 

 

With retraction 4 3

1 1 1 1 1
R ,R : (N (p ,q )) S− → , then exp

-1
 

(N
4
-q1) is an open ball n

p1 p1D ( ) T (N4)π ⊂ . If F1 is a 

deformation retract of (N
4
 – (p1,q1)) onto a geodesic 

retraction 4

3 4

1 1 1 1 {N (p1,q1)}
S ,F :{N (p ,q )} I

−
− × →  such that: 

  
2

2

1 1 2

2 2 2 2

2

2 2 1 2 2

3
2 2 2 2

2m e
F (x,v) (1 v)( (C (1 )t ( )),

r( ) r ( )

(C (r ( )) 4mr( ) 4m e ) In(r ( ) 2mr ( ) e )

1 r( ) m
(8m 4e m) tan (C r ( ) ( )),

e m e m )

−

= − − − + µ
µ µ

+ µ + µ + − µ − µ +

µ −
+ − + µ θ µ

− −
2 2 2 2 2

4 2

2 2 1

3 4
2 2 2 2

(C r ( )sin ( ) ( )) v( (C )(4m e )In(e )

1 m
(8m 4e m) tan C C )

e m e m )

+ +

−

µ µ φ µ + − +

−
−

− −
2

2 2

1 1 2 42

2m e
F (x,0) ( (C (1 )t ( )) (C (r ( )

r( ) r ( )
− + += − + µ µ

µ µ
 

2 2 2 2 2

2 4
mr( )) (4m _ e )In(r ( ) mr( ) e ) (8m e m)− −µ + µ µ + +  
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1 2 2 2

3 4
2 2 2 2

2 2

1 r( ) m
tan (C r ( )) ( )) (C r ( )

e m e m )

sin ( ) ( ))

−
+

µ −
+ µ θ µ µ

− −

θ µ φ µ

and 

2 2 2 2

1 1 2 4

1

2 2 2 2

F (x,1) ( C , (C (4m e )In(e ) C ) (8m 4e m)

1 m
tan

e m e m )

+

−

= − + −

−

− −

 

also 

1 2 2

1 2

2 2 1

3 4
2 2 2 2

exp ( C (C (4m e )In(e )

1 m
(8m 4e m) tan C , C )

e m e m

−
+

−

− +

−
−

− −

 is a 

hypersphere 3 4

1 p1S T (N )⊂  of radius 
2

π
 then there is an 

induced deformation retract of ( )4

p1 1D ( ) pπ − defined by 

4 4

2 p1 1 p1 1F :{D ( ) p } I {D ( ) p }π − × → π −  such that 

1 2 3 4
2 1 2 3 4 1 2 3 4

1 2 3 4

(x ,x ,x ,x )
F ((x ,x ,x ,x ),v) (x ,x ,x ,x )(1 v)

v2 | (x ,x ,x ,x ) |

π
= − +

Where 
2 1 2 3 4 1 2 3 4

1 2 3 4
2 1 2 3 4

1 2 3 4

F ((x ,x ,x ,x ),0) (x ,x ,x ,x )

(x ,x ,x ,x )
F ((x ,x ,x ,x ),1)

2 | (x ,x ,x ,x ) |

=

π
=

 Which is 

3 4

1 p1S D ( )⊂ π , also 

1 3

1 2 1 2 3 4 1

n 1 4

2 p1 1 2 1

1 1

1 2

exp {F (x,1)} F ((x ,x ,x ,x ),1) S

F {D ( ) p } F {exp (N q )}

exp o F F oexp

−

−

− −

= =

= π − = −

⇒ =

 

and the following equation is commutative: 

 

( )( ) ( )( )

( ) ( )

2

1

1 1

F4 4

1 1p p

1 1

F4 4

1 1 1 1

D p D p

exp exp

N – (p ,  q ) N –  (p ,  q )

− −

π − → π −

↑ ↑

→

 

 

If F1: N
4
 →N

4
 is an isometric folding and any folding 

homeomorphic to this type of folding: 

 

( )1 1 2 3 4 1 2 2 4F x ,x ,x ,x (x ,x ,| x |, x )=  

 

Then F1 (F1 (x,1)) = F1 (x,1), there is an induced 

isometric folding 4 4

2 p1 p1 1F : (D ( ) p1) (D ( ) p )π − → π −  such 

that 

3 3

2 1 1 1 2 1 2 3 4

2 1 2 3 4 1 1 1

F : S S i.e.F (F (x ,x ,x ,x ),1)
2 2

F (x ,x ,x ,x ),1if F (F ) F

 π π   = =    
    

=

. 

Let Fµ is the set of all types of folding homeomorphic 

to F1 under the condition: 

 

( )1 1 2 3 4 1 2 3 4F x ,x ,x ,x (x ,x ,| x |, x )=  

Then the deformation retract of any F∈Fµ (N
4
) is 

invariant, i.e., 
3

1 1
F (f ) S= , the induced invariant deformations retract: 

  

4 3

2 p1 1
F {F(D ( ) p1)} S

2

π π − =  
 

 

 

Theorem 3 

Under the condition t = e = m = 0, the deformation 

retract of 2

1 1 1
S (p ,q )−  onto 1 2

1 1 1 1
S S (p q )⊂ − − , under the 

exponential map is an induced deformation retract of 
2

p1 1T (S )  onto 1 1 2

1 p1 1 1exp (S ) T (S q )− ⊂ − . Any isometric 

folding 2 2

1 1
F :S S→  such that F(x1, x2, x3) = (x1|x2|x3) 

induces the same deformation retract of 2

p1 1T (S ) , which 

makes the equation: 

 

( ) ( )2

1

1

1 1

F2 4

1 1p p

1 1

F2 2

1 1 1 1 11

D p D p

exp exp

S – (p ,  q ) S –  (p ,  q )

− −

π − → π −

↑ ↑

→

 

 

Commutative, where 2

p1D ( )π  is an open ball of radius 

π and of center at p1. 

Theorem 4 

Any isometric folding 3 4 3 4

1 1
F :S N S N⊂ → ⊂ such that 

F(p) = p,p is any point on 3 4

1
S N⊂ . There is an induced 

isomtric folding of the tangent space 3

p1 1T (S )  such that the 

following equation is commutative: 

 

( ) ( )

( ) ( )

1 1

3 F 3

1 1p p

1 1

2 F 2

1 1 1 1

T S T S

exp exp

S – q S – q

− −

→

↑ ↑

→

 

 

q1 is the conjugate point of 

p1, 3 4 1 1

1 1 1
p ,q S N i.e.,exp o F F o exp− −∈ ⊂ = . 

Proof  

Since q1 is a conjugate point to p1, then exp
-1

: 
3 3

1 1 p1 1(S q ) T (S )− → under this map 3

1 1
(S q )−  mapped onto 

an open ball 3 3

p1 p1 1D T (S )⊂ , p1 is the center of the ball with 

radius π. 



A.E. El-Ahmady and A. Al-Rdade / American Journal of Applied Sciences 10 (7): 740-745, 2013 

 

744 Science Publications

 AJAS 

Let 3 3

1 1 1 1
F : (S q ) (S q )− → −  such that F(p1) = p1 be an 

isometric folding, then there is an induced isometric 

folding F  such that: 

  
3 3

p1 1 p1 1F : T (S t) T (S )→  

 

Let γ be any curve in 3

1 1
(S q )−  then F( )γ = γ& , since 

there is no conjugate point to p1 on 3

1 1
(S q )− , then exp

-1
 

(γ) = β, then p1 ∈β, p1 is the beginning of β, 

also 1exp ( )− γ = β&& . There is an induced isometric folding 
3 3

p1 1 1 p1 1 1F : T (S q ) T (S q )− → −  such that: 

 
1

1 1

1 1 '

2 3 3

1

2

F( ) F(exp ( ))

exp o F( ) _ exp ( )

exp (F(p )) exp (P ) P

F(exp (p ))

−

− −

− −

−

β = γ = α

γ γ + β

= =

&&
 

 

Is the end of β and the beginning point of α is the 

beginning point of β, the end point of α is the end point 

of β, then α = β, i.e.: 

 
1 1exp oF Foexp− −=  

 

Theorem 5 

Under the condition t = e = m = 0, Any isometric 

folding 2 2

1 1
F :S S→ such that F(p) = p, p is any point 

on 2

1
S . There is an induced isomtric folding of the tangent 

space 2

p1 1T S  such that the following diagram is 

commutative: 

 

( ) ( )

( ) ( )

1 1

2 F 2

1 1p p

1 1

2 F 2

1 1 1 1

T S T S

exp exp

S – q S – q

− −

→

↑ ↑

→

 

 

q1 is the conjugate point of 2

1 1 1 1
p ,  p ,q S∈ i.e.: 

 
1 1

1 2
exp oF F oexp− −=  

 

Theorem 6   

Under the conditions in theorem (2), if the 

following equation: 

( )( ) ( )( )

( ) ( )

2

1

1 1

F4 4

1 1p p

1 1

F4 4

1 1 1 1

D p D p

exp exp

N – (p ,  q ) N –  (p ,  q )

− −

π − → π −

↑ ↑

→

 

 
Is commutative and F1 (F1) =F1, then the following 

equation is commutative: 
 

( )( ) ( )( )

( ) ( )

2

1

1 1

F4 4

1 1p p

1 1

F4 4

1 1 1 1

D p D p

exp exp

N – (p ,  q ) N –  (p ,  q )

− −

π − → π −

↑ ↑

→

 

 

Proof 

Since exp
-1

 o F1 = F2 o exp
-1

, then: 
 

1

1 2 1 1 1 2 2 2
F exp oF oexp , F (F ) F ,F (F ) F−= = =  

 
We get: 
 

1 1 1

1 1

1 1 1

2 2 2

exp oF exp (F ) exp

(exp o F exp ) F o exp F o exp

− − −

− − −

= =

= =
 

 

2. CONCLUSION 

In this study we achieved the approval of the 

important of the curves and surface in Reissner-

Nordström spacetime N
4
 by using some geometrical 

transformations. The relations between folding, 

retractions, deformation retracts, limits of folding and 

limits of retractions of the curves and surface in the 

Reissner-Nordström spacetime N
4
 are discussed. New 

types of the tangent space Tp (N
4
) in Reissner-Nordström 

spacetime N
4
 are deduced. 
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