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ABSTRACT

In this article we consider the problem of discoatius characteristic (weak discontinuity) reflectioom

the axis and the plane of symmetry of the supecsitmiv. There is a known problem of perturbatioadial
focusing when during numerical calculations reflattof a weak perturbation wave from the axis of
symmetry leads to an abrupt change in the distabuif dynamics variables along the axis, i.ea &trong
discontinuity, which seems unphysical. By an asytiptxpansion in the vicinity of the axis of symnye
the expression for the intensity of a weak discarnity was found before the point of intersectiothathe
axis as well as beyond it. It is shown that theespance of strong discontinuity in the results wherical
calculations is a computing feature, which is aseguence of the difference approximation of the
equations. A solution for changes in the intensita weak discontinuity as it approaches the axiglane

of symmetry in the plane or axisymmetric supersdloiv was obtained as well.

Keywords. Weak Discontinuity, Discontinuous Characteristi@rtBrbations Radial Focusing Paradox,
Supersonic Flow, Intensity of a Weak Discontinudethod of Characteristics

1. INTRODUCTION hanging shock wave. The solutions for a Prandtl-dley
plane wave interaction with two-dimensional shockes
It is important to determine the intensity of were given in works of Uskov and Chernyshev (2014b)
discontinuous characteristics (weak discontinujtiasa During the research work of past 15 years the protf
number of problems of supersonic and hypersonicinteraction of simple one-dimensional waves andrthe
aerodynamics, because their amplification may lead reflection from a solid wall was considered by
the emergence of shoch waves within the flow. A th Arkhipova and Uskov (2012). Arkhipova and Uskov
symmetry axis curvature of discontinuities and rthei (2013) found as well a solution for a Prandtl-Mayer
intensity increases strongly as they approachtisgg so  plane wave reflection from a solid wall.
the problem is particularly acute. The problem of  Axisymmetric flows are more difficult in terms of
studying of the interaction of simple waves, thetfand ~ analytical solutions obtaining, as presence of laxia
last characteristics of which are discontinuougwben  symmetry leads to curvature of characteristics.
themselves, with weak discontinuities, solid wadlsd Dynamic compatibility conditions on low break arng t
shock waves arises at designing of supersonic andgieneral problem of characteristics interaction
hypersonic air inlets, combustion chambers witlomigion ~ calculation with considering of the non-uniformiof
combustion and acoustic wave resonators. In reears  flow were formulated by Uskov and Mostovykh (2011).
close attention was paid to this area. This problesas
considered in works under the direction of Uskow an 2. THEINITIAL SYSTEM OF
Chernyshev (2014a). So the solution for superdmicin
the vicinity of the nozzle lip described in his “@w EQUATIONS
dimensional over-expanded jet flow parameters in Flows of ideal gas are described by the system of
supersonic nozzle lip vicinity” Silnikoet al. (2014). This  Euler equations. It is convenient for later usemite
study considers conditions leading to the emergefiee  this system in the coordinates n (the length of the
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normal to the streamlines) -s (arc length along the
current line) using the basic gasdynamic irregtiksi
N; (Bulat and Bulat, 2013) Equation 1:

_ 09 _0InR

dinP
N, = N, =— N,=¢= 1
2T s 2 a8 T Ton (1)
Where:
P = Pressure
J Angle of the velocity vector

Po
¢

Stagnation pressure
Vorticity

After simple transformations, we obtain a system
of Equation 2:

M2-1_ 99 sind _
>N, +—+—=0,
m N on vy
nv
yMZT=—N1, (2)
° alnp
M?2N, = - .
on
Where:
M = Mach number
V = Velocity
y = Adiabatic index

Sometimes the system of equations in the variables
s is called Euler equations in natural coordinates.
However, this is not true, because unit vectorsid @
form orthogonal geodesic lines of the phase sgade]o
not form the coordinate system in the usual sefiskeo
length along the lines of s and n. Indeed, as weemo
along the coordinate ;xx coordinate must not be
changed. For natural coordinate system it is vatily in
a particular case, such as flow from source.

In the study of isentropic compression and

expansion waves as well as geometry characteristicgy

(the concept of characteristics will be introduced
below) it is convenient to rewrite the system (2)ng
a function of the Prandtl-Mayer:

ctga =VM?* -1,
1 arctg(,/s(M 2 —l)) —arctigvM?-1

wW=—F

Je
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3. THE FIRST DISCONTINUITY
CHARACTERISTIC OF THE
RAREFACTION WAVE

As you know, gas dynamics equations do not impose
conditions on changing of the parameters normahéo
gas-dynamic characteristics, so unevennesshedore
characteristic and after it may not coincide. Such
characteristics are called discontinuous or weak
discontinuities. An important parameter characiegza
weak discontinuity is its intensity. An intensity faken

to mean the differendel]=N -N,, for example, the

difference between the curvature of the streamlines
Crossing the shock wave discontinuous characteristi
change its curvature. Reflecting from axis a weak
discontinuity changes the distribution of the
parameters along the axis. The intensity depends on
the discontinuous characteristics geometry and
conditions at its inception. Let us consider inignef

the first characteristics of a centered rarefacti@ve

in a uniform stream.

3.1. Prandtl-M eyer Plane Wave

In a plane rarefaction wave discontinuous are itisé f
and last characteristics. Let the nozzle expiregoum
flow (N1 = N, = 0). Let us introduce a polar coordinate
system associated with the edge of the nozzle.aror
arbitrary curve in polar coordinates following cdiahs
are true Fig. 1a):

rolo
rde¢

_dr

=tg(¢ +y);tge _d7¢

r

Where:

r = Radius vector

¢ Polar angle measured from the vertical axis
Angle curve slope to the axis x

3.2. For Streamline =0

For the discontinuous characteristics of the flock
(x = +1) following conditions occur:

v, =Pyt =T(0+20)

From these relations we obtain the differential
equations of the streamlines and characteristics in
Prandtl-Meyer wave:
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r' =rctga,—streamline
@ =const,-v,;
r' =rctg2a,-v_

Integrating this system, we obtain the well-known
equation for the streamline in a plane rarefaciane;

1
r B

_s

To

cosZ,
cosZ

,Z=VJe(¢+C),C

= iarctg (\/Ectgao) +a, —g

Je

Curvature of an arbitrary curve in polar coordisate
described by the equation:

_1+2(r/r) -r?
K _79/
r(1+(r'/r)2) 2

Which leads to the following expression for the
curvature of the streamlines in the Prandtl-Meyavev

(1-£)(M2-1)
rm3

04 _1-¢ .
=—"cosa, sim,=-
r

3 - 3)
where, parameters in the undisturbed flow markethby
index “0". From the Equation 3 it follows that the
intensity of discontinuous characteristics variegersely
with r, becomes infinite at the center of the wawel on
the plane of symmetry equals following:

A

~

(TS S p—— NS, S ————

@)

99 =£co§0(0 sifo, =-
0S 1-y

(1-¢€)sin’ 2,

Ay

3.3. Axisymmetric Rarefaction Wave
Uniform Stream

in a
In a uniform flow first discontinuous charactercsti
of centered rarefaction wave is rectilinear. Let us
consider nearest characteristic, vof the same
direction, which lies inside the wave. At the cemé
wave (at the edge of the nozzle), these charattis

differ by a small angleA¢ (Fig. 1b). From the
condition on the characteristig:v

d(w-9)
dv

+

sing .
=——sna

It follows that in the vicinity of discontinuous
characteristidw=d3, i.e., following expression is valid:

W= =9,

It can be shown thatw and 9 on characteristic .v
associated by the same way as in the Prandtl-Mieyer

ag_a)z:wg_wl_(wz_wl)
=8, -8, -(9,-9)=95-9,

where, parameters in the corner point A markedhey t
index “a”.
Conditions on y can be written as;

49 _dw _snd

—sina
y

2—= =22
dv_

dv_

Fig. 1. On the calculation of the intensity of discontina@haracteristic in centered rarefaction wavpléae wave (b) axisymmetric
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Separation of variables leads to the differential Perturbations radial focusing paradox. Often as a
equation: result of the difference simulation of supersorimaf
of an ideal gas it turns out that at the pointedffection
of the rarefaction wave first characteristic frome taxis
derivativedw/wS tends to infinity Fig. 2). As a result,
the solution becomes unstable, oscillations of
=y o o dw- ctgdd? 2y parameters and other unwanted effects appear.

At first glance the possible existance of this
paradox is indicated by the theorem on the contynui
of U-function (Adrianovet al., 1995). Indeed, before
the first characteristic flow is uniform, pressure
gradient and curvature of the streamlines on the ave
equal to zero. Before the first discontinuous
(1-¢£)cos’adg -

5 4) characteristic 0u/wS>0, but the curvature of the
\Jy(1-&)cos’actgads streamline remains zero. It seems there is a Vilaif
the theorem on the U-function, which can only happe
Let us now consider the increment of the arc alongwhen a weak discontinuity in the longitudinal prass
the streamlineAS. Due to smallness dfd, curvilinear gradient tends to infinityHig. 2, the graph below).
triangle ABC can be calculated by formulas of a |n fact, there is no paradox. Let us turnFig. 3. It

sindcosadsd _ sinacosddd
sindsina sindsina

Whose integration on the assumption that the Mach
angle is changed a little ang ¢ends to zero, leads to the
following expression Equation 4:

NG =

rectilinear triangle, then Equation 5: can be seen that the flow in the rarefaction wame o
the axis of symmetry begins to accelerate, breaking
AS = dg(1-y) (5) two weak discontinuity in different directions: The
sin’g - 0.5d¢sin 2 incident and reflected characteristics. Gradienttiom

axis defined by the relation:
In order to obtain a discontinuous characteristic
intensity, we should divide (4) by (5). Neglectitegms 9 31l-¢
ini i i i — =-==—din‘a,cos’a (6)
containing @ we obtain an equation that determines 35~ "5 y o 0
intensity of a weak discontinuity:

2 vain?2
[ﬁ} -(1-¢) cos’asin’a
0S

Jy(t-y)

Analysis of the extremum of the last equation:

2 L an _
(l_g)cosasma(l SyJ:O

ya-y)* 2y

Shows that the minimum intensity of the
discontinuous characteristic lies at a distanc&/®ffrom
the axis of symmetry.

4. PERTURBATIONS RADIAL M
FOCUSING PARADOX

During the construction of numerical methods 0
often arises the problem of computing featureshim t S
area of weak discontituity reflection from the
symmetry axis. This phenomenon is known as Fig. 2. Perturbations radial focusing paradox
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0

S

Fig. 3. Reflection of a weak discontinuity from the axis of
symmetry

Discontinuity of the streamline curvature value is
also obtained from Equation 6, but first with thgrs
“+” when passing through characteristic then with
the sign “-” when passing through the characteriefi
the second family ¥ As a result, the curvature of
streamline on the axis remains zero. Thus

perturbations radial focusing paradox does nottexis

centered rarefaction wave in an axisymmetric umifor
flow has an extremum at a distance of 1/3 of ttenel
of symmetry. We as well considered well-known
discontinuity radial focusing paradoXloka3zaxo, utolt
should be classified to the computing featuressirayi
during the difference modelling of an ideal gasvBio

6. FINDINGS

The analytical solutions for discontinuous
characteristics in axisymmetric supersonic flowaof
ideal gas allow explicitly allocate conditions dfet
hanging jumps occurrence in supersonic flows. It
matters not only in the problems of ideal gas
calculation, but generally wherever occurrence of
strong discontinuities in smooth supersonic flow is
important. For example, in the nonstationary case a
appearance of a detonation wave during combustion
can be attributed to such tasks. Another importact
is proof that the perturbations radial focusingauhx
doesnt have a physical meaning. Earlier this parado
was referred to the features of an ideal inviscit g
equations solutions and it was believed that the
transition to the Navier-Stokes removes this paxado
and features emerging on axis are a manifestatfon o
some physical phenomena or disadvantages of
differential turbulence models. However, it turneuat
that it is not so. The paradox is a consequencehef
difference approximation of the initial system of

the gradient of the Mach number on the axis remains€duations, so its exclusion from the calculatiosutts
finite (Fig. 3), but the second derivative really becomes "equires careful meshing at the axis of symmetry.

infinite. At the intersection point of characterist v,
which is close to the first discontinuous charaister
of the rarefaction wave, with the reflected
characteristic v singularities does not occur.
Curvature of the streamline characteristics after t
reflection point of the characteristic from the sxi
remains zero, but its derivative takes a positiatug,

which causes a streamline deviation from the axis

(Fig. 3), the pressure drops and the flow accelerates.
5. CONCLUSION

The concept of the weak discontinuity was

introduced. We examined the basic relations on the
plane and Arkhipova, L.P. and V.N. Uskov, 2012. Reflection of

first discontinuous characteristic of

axisymmetric centered rarefaction wave. During the
mathematical transformations it was shown that the

intensity of the first discontinuous characteristicf
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