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ABSTRACT 

In this article we consider the problem of discontinuous characteristic (weak discontinuity) reflection from 
the axis and the plane of symmetry of the supersonic flow. There is a known problem of perturbations radial 
focusing when during numerical calculations reflection of a weak perturbation wave from the axis of 
symmetry leads to an abrupt change in the distribution of dynamics variables along the axis, i.e., to a strong 
discontinuity, which seems unphysical. By an asymptotic expansion in the vicinity of the axis of symmetry 
the expression for the intensity of a weak discontinuity was found before the point of intersection with the 
axis as well as beyond it. It is shown that the appearance of strong discontinuity in the results of numerical 
calculations is a computing feature, which is a consequence of the difference approximation of the 
equations. A solution for changes in the intensity of a weak discontinuity as it approaches the axis or plane 
of symmetry in the plane or axisymmetric supersonic flow was obtained as well. 
 
Keywords: Weak Discontinuity, Discontinuous Characteristic, Perturbations Radial Focusing Paradox, 
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1. INTRODUCTION 

It is important to determine the intensity of 
discontinuous characteristics (weak discontinuities) in a 
number of problems of supersonic and hypersonic 
aerodynamics, because their amplification may lead to 
the emergence of shoch waves within the flow. At the 
symmetry axis curvature of discontinuities and their 
intensity increases strongly as they approach the axis, so 
the problem is particularly acute. The problem of 
studying of the interaction of simple waves, the first and 
last characteristics of which are discontinuous, between 
themselves, with weak discontinuities, solid walls and 
shock waves arises at designing of supersonic and 
hypersonic air inlets, combustion chambers with detonation 
combustion and acoustic wave resonators. In recent years 
close attention was paid to this area. This problem was 
considered in works under the direction of Uskov and 
Chernyshev (2014a). So the solution for supersonic flow in 
the vicinity of the nozzle lip described in his “Two-
dimensional over-expanded jet flow parameters in 
supersonic nozzle lip vicinity” Silnikov et al. (2014). This 
study considers conditions leading to the emergence of a 

hanging shock wave. The solutions for a Prandtl-Meyer 
plane wave interaction with two-dimensional shock wave 
were given in works of Uskov and Chernyshev (2014b). 
During the research work of past 15 years the problem of 
interaction of simple one-dimensional waves and their 
reflection from a solid wall was considered by 
Arkhipova and Uskov (2012). Arkhipova and Uskov 
(2013) found as well a solution for a Prandtl-Mayer 
plane wave reflection from a solid wall. 

Axisymmetric flows are more difficult in terms of 
analytical solutions obtaining, as presence of axial 
symmetry leads to curvature of characteristics. 
Dynamic compatibility conditions on low break and the 
general problem of characteristics interaction 
calculation with considering of the non-uniformity of 
flow were formulated by Uskov and Mostovykh (2011). 

2. THE INITIAL SYSTEM OF 
EQUATIONS 

Flows of ideal gas are described by the system of 
Euler equations. It is convenient for later use to write 
this system in the coordinates n (the length of the 
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normal to the streamlines) -s (arc length along the 
current line) using the basic gasdynamic irregularities 
Ni (Bulat and Bulat, 2013) Equation 1: 
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Where: 
P = Pressure 
ϑ = Angle of the velocity vector 
P0 = Stagnation pressure 
ζ = Vorticity  

After simple transformations, we obtain a system 
of Equation 2: 
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Where: 
M = Mach number  
V = Velocity 
γ = Adiabatic index 

Sometimes the system of equations in the variables n-
s is called Euler equations in natural coordinates. 
However, this is not true, because unit vectors s and n 
form orthogonal geodesic lines of the phase space, but do 
not form the coordinate system in the usual sense of the 
length along the lines of s and n. Indeed, as we move 
along the coordinate xi, xj coordinate must not be 
changed. For natural coordinate system it is valid only in 
a particular case, such as flow from source. 

In the study of isentropic compression and 
expansion waves as well as geometry characteristics 
(the concept of characteristics will be introduced 
below) it is convenient to rewrite the system (2) using 
a function of the Prandtl-Mayer: 
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3. THE FIRST DISCONTINUITY 
CHARACTERISTIC OF THE 

RAREFACTION WAVE 

As you know, gas dynamics equations do not impose 
conditions on changing of the parameters normal to the 
gas-dynamic characteristics, so unevenness Ni before 
characteristic and after it may not coincide. Such 
characteristics are called discontinuous or weak 
discontinuities. An important parameter characterizing a 
weak discontinuity is its intensity. An intensity is taken 
to mean the difference[ ]i i i

ˆN N N= − , for example, the 

difference between the curvature of the streamlines. 
Crossing the shock wave discontinuous characteristic 
change its curvature. Reflecting from axis a weak 
discontinuity changes the distribution of the 
parameters along the axis. The intensity depends on 
the discontinuous characteristics geometry and 
conditions at its inception. Let us consider intensity of 
the first characteristics of a centered rarefaction wave 
in a uniform stream. 

3.1. Prandtl-Meyer Plane Wave 

In a plane rarefaction wave discontinuous are the first 
and last characteristics. Let the nozzle expires uniform 
flow (N1 = N2 = 0). Let us introduce a polar coordinate 
system associated with the edge of the nozzle. For an 
arbitrary curve in polar coordinates following conditions 
are true (Fig. 1a): 

 

( )1
;

r dr dr
tg tg

r r d d
ϕ ψ ϕ

ϕ ϕ
′

= = + =  

 
Where: 
r = Radius vector 
ϕ = Polar angle measured from the vertical axis 
ψ = Angle curve slope to the axis x 

3.2. For Streamline ψψψψ = 0  

For the discontinuous characteristics of the flock 
(χ = ±1) following conditions occur: 
 

( ), 22 21
π πψ ϕ ψ ϕ α= − = − ++ −  

 
From these relations we obtain the differential 

equations of the streamlines and characteristics in 
Prandtl-Meyer wave: 
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Integrating this system, we obtain the well-known 

equation for the streamline in a plane rarefaction wave: 
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Curvature of an arbitrary curve in polar coordinates 

described by the equation: 
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Which leads to the following expression for the 

curvature of the streamlines in the Prandtl-Meyer wave: 
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where, parameters in the undisturbed flow marked by the 
index “0”. From the Equation 3 it follows that the 
intensity of discontinuous characteristics varies inversely 
with r, becomes infinite at the center of the wave and on 
the plane of symmetry equals following: 
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3.3. Axisymmetric Rarefaction Wave in a 

Uniform Stream 

In a uniform flow first discontinuous characteristic 
of centered rarefaction wave is rectilinear. Let us 
consider nearest characteristic v-2 of the same 
direction, which lies inside the wave. At the center of 
wave (at the edge of the nozzle), these characteristics 
differ by a small angle ∆ϕ (Fig. 1b). From the 
condition on the characteristic v+: 
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It follows that in the vicinity of discontinuous 

characteristicd dω = ϑ , i.e., following expression is valid: 
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It can be shown that  ω and ϑ on characteristic v+ 
associated by the same way as in the Prandtl-Meyer flow: 
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where, parameters in the corner point A marked by the 
index “a”. 

Conditions on v+ can be written as; 
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Fig. 1. On the calculation of the intensity of discontinuous characteristic in centered rarefaction wave (a) plane wave (b) axisymmetric 
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Separation of variables leads to the differential 
equation: 
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Whose integration on the assumption that the Mach 

angle is changed a little and dϕ tends to zero, leads to the 
following expression Equation 4: 
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Let us now consider the increment of the arc along 

the streamline ∆S. Due to smallness of ∆ϕ, curvilinear 
triangle ABC can be calculated by formulas of a 
rectilinear triangle, then Equation 5: 
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In order to obtain a discontinuous characteristic 

intensity, we should divide (4) by (5). Neglecting terms 
containing dϕ we obtain an equation that determines 
intensity of a weak discontinuity: 
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Analysis of the extremum of the last equation: 
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Shows that the minimum intensity of the 

discontinuous characteristic lies at a distance of 1/3 from 
the axis of symmetry. 

4. PERTURBATIONS RADIAL 
FOCUSING PARADOX 

During the construction of numerical methods 
often arises the problem of computing features in the 
area of weak discontituity reflection from the 
symmetry axis. This phenomenon is known as 

Perturbations radial focusing paradox. Often as a 
result of the difference simulation of supersonic flow 
of an ideal gas it turns out that at the point of reflection 
of the rarefaction wave first characteristic from the axis 
derivative ∂ω/ωS tends to infinity (Fig. 2). As a result, 
the solution becomes unstable, oscillations of 
parameters and other unwanted effects appear. 

At first glance the possible existance of this 
paradox is indicated by the theorem on the continuity 
of U-function (Adrianov et al., 1995). Indeed, before 
the first characteristic flow is uniform, pressure 
gradient and curvature of the streamlines on the axis are 
equal to zero. Before the first discontinuous 
characteristic ∂ω/ωS>0, but the curvature of the 
streamline remains zero. It seems there is a violation of 
the theorem on the U-function, which can only happen 
when a weak discontinuity in the longitudinal pressure 
gradient tends to infinity (Fig. 2, the graph below). 

In fact, there is no paradox. Let us turn to Fig. 3. It 
can be seen that the flow in the rarefaction wave on 
the axis of symmetry begins to accelerate, breaking 
two weak discontinuity in different directions: The 
incident and reflected characteristics. Gradient on the 
axis defined by the relation: 
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Fig. 2. Perturbations radial focusing paradox 
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Fig. 3. Reflection of a weak discontinuity from the axis of 

symmetry 

 
Discontinuity of the streamline curvature value is 

also obtained from Equation 6, but first with the sign 
“+” when passing through characteristic v-, then with 
the sign “-” when passing through the characteristic of 
the second family v+. As a result, the curvature of 
streamline on the axis remains zero. Thus, 
perturbations radial focusing paradox does not exist, 
the gradient of the Mach number on the axis remains 
finite (Fig. 3), but the second derivative really becomes 
infinite. At the intersection point of characteristics v-, 
which is close to the first discontinuous characteristic 
of the rarefaction wave, with the reflected 
characteristic v+ singularities does not occur. 
Curvature of the streamline characteristics after the 
reflection point of the characteristic from the axis 
remains zero, but its derivative takes a positive value, 
which causes a streamline deviation from the axis 
(Fig. 3), the pressure drops and the flow accelerates. 

5. CONCLUSION 

The concept of the weak discontinuity was 
introduced. We examined the basic relations on the 
first discontinuous characteristic of plane and 
axisymmetric centered rarefaction wave. During the 
mathematical transformations it was shown that the 
intensity of the first discontinuous characteristics of 

centered rarefaction wave in an axisymmetric uniform 
flow has an extremum at a distance of 1/3 of the plane 
of symmetry. We as well considered well-known 
discontinuity radial focusing paradox. Показано, чтоIt 
should be classified to the computing features, arising 
during the difference modelling of an ideal gas flows. 

6. FINDINGS 

The analytical solutions for discontinuous 
characteristics in axisymmetric supersonic flow of an 
ideal gas allow explicitly allocate conditions of the 
hanging jumps occurrence in supersonic flows. It 
matters not only in the problems of ideal gas 
calculation, but generally wherever occurrence of 
strong discontinuities in smooth supersonic flow is 
important. For example, in the nonstationary case an 
appearance of a detonation wave during combustion 
can be attributed to such tasks. Another important fact 
is proof that the perturbations radial focusing paradox 
doesnt have a physical meaning. Earlier this paradox 
was referred to the features of an ideal inviscid gas 
equations solutions and it was believed that the 
transition to the Navier-Stokes removes this paradox 
and features emerging on axis are a manifestation of 
some physical phenomena or disadvantages of 
differential turbulence models. However, it turned out 
that it is not so. The paradox is a consequence of the 
difference approximation of the initial system of 
equations, so its exclusion from the calculation results 
requires careful meshing at the axis of symmetry. 
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