
American Journal of Applied Sciences 11 (1): 119-126, 2014
ISSN: 1546-9239
©2014 Science Publication
doi:10.3844/ajassp.2014.119.126 Published Online 11 (1) 2014 (http://www.thescipub.com/ajas.toc)

Corresponding Author: Asral Bahari Jambek, School of Microelectronic Engineering, Universiti Malaysia Perlis,
 Pauh Putra Campus, Perlis, Malaysia

119 Science Publications

AJAS

PERFORMANCE COMPARISON OF HUFFMAN
AND LEMPEL-ZIV WELCH DATA COMPRESSION

FOR WIRELESS SENSOR NODE APPLICATION

Asral Bahari Jambek and Nor Alina Khairi

School of Microelectronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, Perlis, Malaysia

Received 2013-09-23; Revised 2013-10-28; Accepted 2013-12-10

ABSTRACT

Wireless Sensor Networks (WSNs) are becoming important in today’s technology in helping monitoring our
surrounding environment. However, wireless sensor nodes are powered by limited energy supply. To extend
the lifetime of the device, energy consumption must be reduced. Data transmission is known to consume
the largest amount of energy in a sensor node. Thus, one method to reduce the energy used is by
compressing the data before transmitting it. This study analyses the performance of the Huffman and
Lempel-Ziv Welch (LZW) algorithms when compressing data that are commonly used in WSN. From the
experimental results, the Huffman algorithm gives a better performance when compared to the LZW
algorithm for this type of data. The Huffman algorithm is able to reduce the data size by 43% on average,
which is four times faster than the LZW algorithm.

Keywords: Component, Formatting, Style, Styling, Insert

1. INTRODUCTION

The increasing usage of wireless communication
devices has resulted in the rapid development of
Wireless Sensor Networks (WSNs). The devices monitor
and collect data before transmitting it to the base station.
Due to its wireless capability, the system can be
implemented in many applications, including military,
industry, medical and agricultural.

One of the problems in implementing WSN is the
energy consumed by the sensor node. Due to its small
size, the sensor node has a limited energy supply and
storage capacity. Thus, researchers need to find ways to
reduce its power consumption so that the device’s
lifetime can be increased without the frequent need for
the replacement of batteries.

Among the many components of the sensor node, the
transmission module has the largest power consumption
(Al-laham and El-Emary, 2007). This is because a huge
amount of energy is needed to power up the wireless
transmitter in order to transmit the data. Thus, one way to

reduce the energy consumption is by compressing the data
before transmission. By doing this, the amount of data
needed to be transmitted to other nodes reduces, thus,
reducing the power consumption due to the transmission.
The higher that the data compression ratio is, the more
power can be saved when transmitting the data.

The existing literature discusses the performance
of the data compressed using different data types,
such as text, images and others. In this work, we
compare the performance of the data compression that
is commonly used for WSNs.

In this study, two different data compression methods
were analysed, namely the Huffman and Lempel-Ziv
Welch (LZW) algorithms. The aim of the work is to
identify the method that could results in the highest
compression ratio and performance.

This study is organized as follows. Section II discusses
the existing work on data compression techniques. In
section III, the Huffman and LZW data compression
algorithms are discussed. Section IV highlights the results
obtain in this study. Lastly, section V concludes the paper.

Asral Bahari Jambek and Nor Alina Khairi / American Journal of Applied Sciences 11 (1): 119-126, 2014

120 Science Publications

AJAS

1.1. Literature Review

Shahbahrami et al. (2011), a survey of data compression
techniques was discussed, including the Huffman and LZW
data algorithms. The types of data evaluated in this study
were .DOC, .TXT, .BMP, .TIF, .GIF and .JPG. From the
paper it can be seen that for a text file (.DOC or .TXT), the
compression ratio for both algorithms is almost the
same. For an uncompressed image file (.BMP or .TIF),
the LZW algorithm performs better than the Huffman
algorithm. As for the .GIF and JPG image files, when
compressed using the LZW algorithm, the compressed
files were larger compared to before the compression
was applied. This shows that the LZW data
compression is not suitable for this image format since
the original file is already in compressed form.

Paper (Strydis and Gaydadjiev, 2008) discusses the
comparison between the Huffman and arithmetic data
compression algorithms using image files. From the
experimental results, as the size of the image file increases,
the compression ratio also increases. The time taken for the
Huffman algorithm to execute is shorter compared to the
arithmetic algorithm. To compress a 128×128 image size,
Huffman takes 0.14 sec while arithmetic coding requires
0.45 sec to complete the task.

Paper (Shanmugasundaram and Lourdusamy, 2011)
analysed the most suitable type of data compression for
biomedical applications. The paper analysed the
compression ratio, execution time, energy consumption
and program-code size. In this application, the implanted
device typically consists of data-memory sizes ranging
from 1KB to 10KB. Both sizes were investigated in this
work. Based on the results, the Huffman algorithm gives
a better compression ratio for 1kB data as compared to
LZW, whereas both algorithms perform equally well for
10 kB. LZW has the advantages of a faster execution
time and lower energy consumption for this application.

A survey was done in (Kodituwakku and
Amarasinghe, 2010) to compare the performance
between different types of data compression. Different
file types and sizes were used in this research, consisting
of various benchmark text files. From the paper, the
LZW algorithm performs slightly better than the
Huffman algorithm, with each of them consuming 4.9
and 5.7 bits per character, respectively.

Paper (Marcelloni and Vecchio, 2008) focuses on the
compression of multiple sizes of text data. For the LZW,
the compression ratio ranges between 30 and 60% and
this ratio decreases as the file size increases. This is
because larger text data will create longer LZW code.
For Huffman coding, the compression ratio is obtained
between 58 and 67%. The compression time for the

LZW algorithm is larger than the Huffman algorithm
because the scanning window or the LZW algorithm
takes more time in order to fill up the dictionary inside
the LZW. Although the compression time is longer, it
takes a shorter time to decompress using the LZW
algorithm than the Huffman algorithm. This is because
the decoding process only needs to decode the data by
matching the LZW code with the code inside the library.

While the existing method focuses more on text and
image data, this study will focus especially on data that
are commonly used in WSN, such as temperature,
humidity and ECG. In the next section, the data
compression that is used in this study will be elaborated.

2. MATERIALS AND METHODS

This section describes the work done for this study.
First, it will discuss the Huffman algorithm, followed by
a discussion of the LZW algorithm. In addition, the
compression performance for a combined Huffman-
LZW algorithm will also be discussed.

The Huffman encoder maps an alphabet or symbol to
a binary code. The binary code is composed of sequences
of binary bits of different sizes. The repeatedly appearing
alphabet will be represented by smaller sized binary bits
compared with the infrequently appearing one (Gonzalez
and Woods, 2008). Figure 1 and 2 shows the flow chart
for the Huffman encoder and decoder, respectively.

Unlike Huffman coding, the LZW coding sets
permanent-length code words to variable length series of
source symbols (Kelly, 2007). LZW builds a ‘dictionary’
that contains words or parts of words of a datum. When the
data needs to be decompressed, it needs to refer to the
dictionary, which in turn represents the LZW code for that
word (Shahbahrami et al., 2011). Figure 3 and 4 shows the
LZW encoder and decoder flow charts, respectively.

For double compression, the combination of Huffman
followed by LZW (HLZ) and LZW followed by
Huffman (LZH) were used. Double compression is
investigated in this work to measure that performance
when compressing different types of data.

In this work, there are four types of input data that are
used, namely temperature, humidity, ECG and text. The
temperature data were taken from the Average Daily
Temperature Archive, University of Dayton (Dan, 2008).

The file contains daily temperatures from 1st January
1995 until 31 December 2012. Figure 5 shows some
samples of the temperature data in Fahrenheit (F).

For the humidity data, this was taken from the
National Environmental Satellite, Data and Information
Service (NIH, 2012). It is a monthly humidity record
throughout the year 2002.

Asral Bahari Jambek and Nor Alina Khairi / American Journal of Applied Sciences 11 (1): 119-126, 2014

121 Science Publications

AJAS

Fig. 1. Huffman encoder flow chart

Asral Bahari Jambek and Nor Alina Khairi / American Journal of Applied Sciences 11 (1): 119-126, 2014

122 Science Publications

AJAS

Fig. 2. Huffman decoder flow chart

Samples of the humidity are shown in Fig. 6. The
numbers represent a percentage measure of the amount
of moisture in the air compared to the maximum amount
of moisture that the air can hoard at the same
temperature and pressure.

PhysioBank is a website where the ECG data in this
work were obtained (SMLLC, 2013). The data chosen

concerned an apnoea patient, a disorder manifest by pauses
in breathing or shallow breaths during sleep. The data in
Fig. 7 is relatively unique and has its own pattern. Figure 7
shows the waveform for the ECG data used in this work,
where the x axis is the time in 10−2 sec and the y axis is the
amplitude in mV. Lastly, the text file sample was taken
from the Mother Goose Club’s website.

Asral Bahari Jambek and Nor Alina Khairi / American Journal of Applied Sciences 11 (1): 119-126, 2014

123 Science Publications

AJAS

Fig. 3. LZW encoder flow chart

Fig. 4. LZW decoder flow chart

Asral Bahari Jambek and Nor Alina Khairi / American Journal of Applied Sciences 11 (1): 119-126, 2014

124 Science Publications

AJAS

Fig. 5. Temperature data

Fig. 6. Humidity data

(a)

(b)

Fig. 7. (a) ECG data (b) Waveform for the ECG data

3. RESULTS AND DISCUSSION

This section discusses the compression results using
data that are typical for WSNs, such as temperature,

humidity, ECG and words. For each type of data, three
different sizes are evaluated.

Table 1 shows the compression results for various
data with different sizes compressed using Huffman,

Asral Bahari Jambek and Nor Alina Khairi / American Journal of Applied Sciences 11 (1): 119-126, 2014

125 Science Publications

AJAS

LZW, HLZ and LZH algorithms. From Table 1, the
Huffman algorithm performs good compression for
temperature, humidity, ECG and text data. For
temperature, the highest saving percentage is 47% for
data size of 200 bits before compression. The percentage
decreases as the data size increases. A similar pattern is
observed for the humidity and ECG data. This pattern is
because as the branches increases, the Huffman code for
each of the branches also increases. Therefore, the longer

the Huffman branches, the longer the Huffman code.
Thus, the saving percentage decreases.

As compared to Huffman, the LZW performs
poorly for temperature, humidity and ECG data. This
is because the LZW algorithm compresses the data
bit-by-bit, which is inefficient for this type of data
since they are already arranged in a group of bits.
Processing them bit-by-bit will result in an increase in
output bits for the LZW.

Table 1. Huffman, LZW, HLZ AND LZH compression performance
 Size before Size after compression (Bits) Compression ratio Saving (%)
 compression -- --- --
Data type (Bits) Huffman LZW HLZ LZH Huffman LZW HLZ LZH Huffman LZW HLZ LZH
Temperature 200 106 200 296 106 0.53 1.00 1.48 0.53 47.00 0.00 -48.00 47.00
 400 247 400 544 247 0.62 1.00 1.36 0.62 38.25 0.00 -36.00 38.25
 600 398 592 776 396 0.66 0.99 1.30 0.66 34.00 1.33 -29.33 34.00
 800 550 784 992 546 0.69 0.98 1.24 0.68 31.25 2.00 -24.00 31.75
Humidity 200 102 200 272 102 0.51 1.00 1.36 0.51 49.00 0.00 -36.00 49.00
 400 240 400 536 240 0.60 1.00 1.34 0.60 40.00 0.00 -34.00 40.00
 600 363 584 720 363 0.61 0.97 1.20 0.61 39.50 2.67 -20.17 39.50
 800 485 752 896 488 0.61 0.94 1.12 0.61 39.38 6.00 -12.00 39.00
ECG 200 92 184 264 88 0.46 0.92 1.32 0.44 54.00 8.00 -32.00 56.00
 400 243 384 536 237 0.61 0.96 1.34 0.59 39.25 4.00 -34.00 40.75
 600 411 584 800 404 0.69 0.97 1.33 0.67 31.50 2.67 -33.33 32.67
 800 555 776 1000 549 0.69 0.97 1.25 0.69 30.63 3.00 -25.00 31.38
Text 800 367 504 728 328 0.46 0.63 0.91 0.41 54.13 37.00 9.00 59.00
 1200 567 696 1000 491 0.47 0.58 0.83 0.41 52.75 42.00 16.67 59.08
 1600 753 840 1264 626 0.47 0.53 0.79 0.39 52.94 47.50 21.00 60.88
 2000 936 960 1480 743 0.47 0.48 0.74 0.37 53.20 52.00 26.00 62.85
 Average 42.92 13.01 -18.20 45.07

Table 2. Huffman, LZW, HLZ AND LZH compressions time
 Time taken (sec)

 Size before Huffman LZW HLZ LZH
 Compression ------------------------- ----------------------- -------------------------- -------------------------------
Data type (Bits) Encoder Decoder Encoder Decoder Encoder Decoder Encoder Decoder
Temperature 200 0.143 0.073 0.360 0.027 0.733 0.143 0.492 0.053
 400 0.790 0.183 0.848 0.119 2.166 0.916 1.040 0.209
 600 0.481 0.669 1.298 0.098 3.568 4.587 1.684 0.353
 800 0.313 1.225 2.102 0.120 3.950 6.957 2.009 0.445
Humidity 200 0.207 0.065 0.509 0.029 0.790 0.163 0.543 0.059
 400 0.341 0.569 1.506 0.059 4.098 0.518 0.783 0.231
 600 0.230 0.279 1.863 0.096 4.036 3.838 1.473 0.229
 800 0.648 0.505 1.805 0.292 2.923 6.339 3.181 0.558
ECG 200 0.187 0.072 0.748 0.043 1.237 0.163 1.156 0.058
 400 0.586 0.300 1.151 0.068 3.814 0.531 1.429 0.137
 600 0.650 0.403 3.284 0.084 4.923 4.317 2.362 0.311
 800 0.506 0.943 2.581 0.191 3.132 7.605 4.171 0.582
Text 200 0.178 0.053 0.697 0.055 0.702 0.147 0.823 0.054
 400 0.222 0.135 1.730 0.075 3.294 0.341 1.462 0.098
 600 0.447 0.106 1.984 0.107 4.316 0.629 2.424 0.175
 800 0.446 0.136 2.046 0.171 3.837 3.263 1.926 0.372
 Average 0.398 0.357 1.532 0.102 2.970 2.529 1.685 0.245

Asral Bahari Jambek and Nor Alina Khairi / American Journal of Applied Sciences 11 (1): 119-126, 2014

126 Science Publications

AJAS

LZW performs well for text data sizes of 800 bits,
with a saving percentage of 37% being observed. The
saving is observed for LZW as the data size increases.
This is due to the increase in the repetition of words that
match with the words inside the library. For double
compression, the LZH performs better compared to the
HLZ. HLZ gives lower compression results for all data
types because after the Huffman algorithm, the data has
been arranged into a certain pattern that is not optimized
for the LZW library. However, the LZH algorithm gives
better compression since the output from LZW contains a
highly repetitive value. This repeated value is suitable for
Huffman compressions.

Table 2 shows the result of the time taken to compress
and decompress various data using the Huffman, LZW,
HLZ and LZH algorithms. For the ingle data
compressions, the average time taken to compress all four
types of data for the Huffman is less than for the LZW.
The Huffman algorithm only takes 0.398 sec, while LZW
algorithm takes 1.532 sec. This is due to the Huffman
algorithm being less complex than the LZW algorithm,
which means it takes less time to compress the data.

For the decompression part, the average time taken
for the LZW is less than for the Huffman for all four
types of data. The LZW decoder takes 0.102 sec, while
the Huffman decoder takes 0.357 sec. This is because the
LZW decoder only needs to scan the LZW code through
the library, whereas the Huffman decoder reads the input
bit-by-bit, which is slower.

4. CONCLUSION

This study analyses the compression performance of
the Huffman algorithm and the LZW algorithm using
various input data commonly measured by a wireless
sensor node, namely temperature, humidity, ECG and
text data. For the given tested data, the Huffman
algorithm shows better performance when compared
to the LZW in terms of compression ratio and
computation time. From the experiments, the Huffman
algorithm is able to achieve an average of a 43% data
reduction. For double compression, the LZH could
provide up to 9% improvement in terms of data
reduction, but at the cost of an increase in the
computation time. In the future, this work will further
study various techniques on WSN data representation
to further increase the Huffman algorithm efficiency.

5. REFERENCES

Al-Laham, M. and I.M.M. El-Emary, 2007. Comparative
study between various algorithms of data
compression techniques. Int. J. Comput. Sci. Netw.
Sec., 7: 281-291.

Dan, D., 2008. National environmental satellite, data and
information service.

Gonzalez, R.C. and R.E. Woods, 2008. Digital Image
Processing. 1st Edn., Prentice Hall, Upper Saddle
River, ISBN-10: 013168728X, pp: 954.

Kelly, K., 2007. Average daily temperature archive. The
University of Dayton.

Kodituwakku, S.R. and U.S. Amarasinghe, 2010.
Comparison of lossless data compression algorithms
for text data. Indian J. Comput. Sci. Eng., 1: 416-
425.

Marcelloni, F. and M. Vecchio, 2008. A simple
algorithm for data compression in wireless sensor
networks. IEEE Commun. Lett., 12: 411-413. DOI:
10.1109/LCOMM.2008.080300

NIH, 2012. National Institute of Health.
Shahbahrami, A., R. Bahrampour, M.S. Rostami and M.A.

Mobarhan, 2011. Evaluation of huffman and
arithmetic algorithms for multimedia compression
standards. Int. J. Comput. Sci., Eng. Appli., 1: 34-47.

Shanmugasundaram, S. and R. Lourdusamy, 2011. A
comparative study of text compression algorithms.
Int. J. Wisdom Based Computing, 1: 68-76.

SMLLC, 2013. Mother Goose Club. Sockeye Media
LLC.

Strydis, C. and G.N. Gaydadjiev, 2008. Profiling of
lossless-compression algorithms for a novel
biomedical-implant architecture. Proceedings of
the 6th IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System
Synthesis, Oct. 19-24, ACM Press, New York,
USA., pp: 109-114. DOI:
10.1145/1450135.1450160

