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ABSTRACT 

Information on the adsorption isotherm and the thermodynamic properties can assist in optimizing food 
processing operations such as drying, packaging and storage in the assessment of the quality of food. In this 
study, an Artificial Neural Network (ANN) was used for modelling the water activity/Equilibrium Relative 
Humidity (ERH) of banana foam mat under a range of values of the Experimental Equilibrium Moisture 
Content (EMC) to calculate the isosteric heat of sorption (qst) by applying the Clausius-Clapeyron equation. 
The EMC of three dry banana foam samples at different densities of 0.21, 0.26 and 0.30 g/cm3 was 
determined by a standard gravimetric method over a temperature range of 35-45°C and a relative humidity 
range of 32-83%. The modified-GAB model best fitted the EMC data. However, the modified-GAB model 
was not acceptable for predicting the heat sorption behaviour. A negative value of qst estimated using the 
modified-GAB equation was found at a moisture content above 0.24 kg/kg d.b., showing the poor fit of the 
model. A multilayer feed-forward ANN trained by back-propagation algorithms was developed to correlate the 
output ERH to three exogenous inputs (foam density, EMC and temperature). The developed ANN models 
could predict the ERH more accurately than the modified-GAB model. The predictions from the ANN models 
produced R2 values higher than 0.97. No negative qst values were found using the ANN method. 
 
Keywords: ANN, Adsorption Isotherm, Banana Foam, Back-Propagation, Isosteric Heat 

1. INTRODUCTION 

Net isosteric heat of sorption (qst) is necessary for the 
modelling and simulation of the dehydration process and 
provides important information in respect of the sorption 
mechanisms. Two methods are available for the 
measurement of the differential heat of sorption. The 
first is the direct calorimetric measurement of the heat 
evolved; the second is the application of the Clausius-
Clayperon equation on the isosteric equilibrium 
pressures at different temperatures. The isosteric heat of 
sorption is proportional to the number of available 
sorption sites at a specific energy level and provides the 

theoretical minimum amount of energy required to 
remove a given amount of water from the food. 
Conventionally, qst is a positive quantity when heat is 
released during adsorption and negative when heat is 
absorbed during desorption. The heat of adsorption is 
a measure of the energy released on sorption and 
presents the energy required to break the 
intermolecular forces between the molecules of water 
vapour and the surface of the adsorbent. 

The value of qst can be calculated through water 
sorption isotherms. Water sorption isotherms can be 
expressed mathematically and there are currently more 
than 200 equations for representing the Equilibrium 
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Moisture Content (EMC) of agricultural products and 
biological materials (Mulet et al., 2002). These 
models, which have different numbers of parameters, 
are either theoretically based or are empirical. 
Although several mathematical models can describe 
the water sorption isotherms of food materials very 
well, no single equation gives accurate results 
throughout the whole range of water activities and for 
all types of foods (Al-Muhtaseb et al., 2002). 
Chowdhury et al. (2006) fitted sorption isotherms data of 
mungbean to isothermal equations in both M = f(RH,T) 
and RH = f(M,T) forms. They found that the modified 
Chung-Pfost equation is the most suitable in the M = 
f(RH,T) form while the modified Oswin equation is the 
most suitable in the RH = f(M,T) form. In the present study, 
the sorption isotherm equations needed to be written 
explicitly in RH = f(M,T) forms to calculate the net heat of 
sorption by applying the Clausius-Clapeyron equation. If 
the sorption isotherm model is an implicit equation, then 
mathematical techniques are required to solve the equation. 

Artificial Neural Network (ANN) is an effective tool 
for modeling complex and non-linear problems in various 
scientific and technological fields (Shilbayeh et al., 2013; 
Al-Marghilani, 2013; Bhoyar and Kakde, 2010; 
Omaima, 2010). ANN has been successfully used to 
predict property and quality changes of a wide array of 
food products during processing and storage. These 
include the predictions of fruit maturity and grade the 
fruit into relevant quality category (Effendi et al., 
2010), size and shape measurements of fish images 
(Alsmadi and Omar, 2010; 2011). This methodology 
does not need the explicit expressions of the physical 
meaning of the system under study and is considered to 
belong to the group of “black-box” models. The ANN 
models permit the study of the relationship between the 
input variables and the target(s) or output(s) of the 
process using a limited number of experimental runs 
(Khayet and Cojocaru, 2012). There are several types of 
ANNs such as feed-forward networks (perceptron 
network) and feedback networks (recurrent network). 
The feed-forward network is commonly used with an 
error correction algorithm such as back-propagation. The 
standard Back-Propagation Neural Network (BPNN) 
algorithm relies on a search technique (e.g., gradient 
descent), in which the network weights are changed 
along the negative of the gradient of the performance 
function. The BPNN procedure compares output and 
target values and modifies the weight values according to 
a specific learning algorithm to reduce the overall error. 
The modified weights are then propagated backwards 
into the system. This process is carried out for each set of 
training patterns to compute the global error and is 

repeated until the difference between the predicted 
output and target values reaches an accepted range 
(Tabach et al., 2007). The drying or sorption processes 
involve complex and highly nonlinear phenomena. 
Recently, ANNs have gained much popularity for 
simulating nonlinear relationships in drying and 
sorption processes (Aghbashlo et al., 2011; Broyart and 
Trystram, 2003; Fathi et al., 2011; Menlik et al., 
2010; Mihajlovic et al., 2011; Momenzadeh et al., 
2011). A study on neural network modelling of the 
isosteric heat of food has been reported by Chayjan 
and Esna-Ashari (2010). They found that the ANN 
model could predict soya bean EMC more accurately 
than sorption isotherm equations. Moreover, the ANN 
models provide an accurate and rapid way to 
determine the energy requirements for the dehydration 
process of soya bean. Once the ANN model has been 
trained with a set of EMC data covering the range for 
the parameter of interest, interpolation with the ranges 
employed is dependable and fast. 

In the present study, a banana foam mat product was 
used that is very hygroscopic and whose crispness is 
sensitive to moisture migration. Information on the 
adsorption isotherm and isosteric heat of sorption could 
provide a better understanding of the equilibrium state of 
water under certain temperature and RH conditions and 
assist in the assessment of the quality of dried banana 
foam mats. However, to date, no study has been found 
related to banana foam mats that was based on the ANN 
approach and no information on the isosteric heat of 
sorption of this product is available. Therefore, the 
objective of present study was to develop an ANN 
model to predict ERH. The developed ANN model 
was then used to calculate the isosteric heat of 
sorption of the banana foam mats. 

2. MATERIALS AND METHODS 

2.1. Dried Banana Foam Preparation 

Gros Michel bananas (Musa sapientum L.) with a 
maturity stage of 5 (corresponding to a yellow peel and 
green tip) were purchased from a local market. The total 
soluble solids of the banana were measured using an 
ATC-1E hand-held refractometer (ATAGO, Japan) at a 
temperature of 23°C. The bananas used in the 
experiments contained a total soluble solids content of 
23-25°Brix. To prepare the banana foam, the bananas 
were sliced and pretreated by immersing them in 1 g/100 
g sodium metabisulphite solution for 2 min and rinsing 
them with distilled water for 30 s, in order to prevent 
discoloration during the foaming process. Then, 100 g 
banana puree with 5 g fresh egg albumen used as a 
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foaming agent, was whipped with a kitchen aid mixer 
(model no. 5K5SS, Strombeek-Bever, Belgium) at the 
maximum speed to produce foam densities of 0.3, 0.5 
and 0.7 g/cm3. The banana foam density was 
determined by measuring the mass of a fixed volume 
of the foam. The banana foam was poured slowly into 
a steel block with dimensions of 45×45×42 mm 
(W×L×H) and then placed on a mesh tray, which was 
covered with aluminium foil. After that, it was dried 
to about 0.03 kg/kg d.b. using a tray dryer which was 
operated at 80oC and an air velocity of 0.5 m/s. The 
banana foam prepared from the initial foam densities 
of 0.3, 0.5 and 0.7 g/cm3 could produce dried banana 
foam densities of 0.21±0.02, 0.26±0.02 and 0.30±0.02 
g/cm3, respectively. The product thicknesses after 
drying were 2.8±0.15, 3.2±0.1 and 3.4±0.1 mm for the 
banana foam densities of 0.21, 0.26 and 0.30 g/cm3, 
respectively. Three replications were performed for 
each banana foam density. 

2.2 Adsorption Experiment 

Moisture adsorption experiments were carried out 
using the static method. Samples were placed into 
glass jars containing saturated salt solutions (MgCl2 

.6H2O, Mg(NO3)2 .6H2O, KI, NaCl and KCl) which 
provided a Relative Humidity (RH) in the range 32-
82% at corresponding temperatures of 35, 40 and 
45°C. All the jars were placed in a temperature-
controlled oven with a precision of ±1°C (UFE500, 
Memmert, Germany). Samples were weighed at 
different exposure times ranging from 1 to 120 h. At 
RH values of more than 74%, 1 mL of toluene was 
held in a vial and fixed in each glass jar in order to 
prevent sample spoilage by microbial activity. The 
moisture content of each sample after reaching 
equilibrium conditions was determined by drying the 
sample in the hot air oven at a temperature of 103°C 
for 3 h (AOAC, 1995). At this temperature, the 
percentage error of moisture content determination 
was approximately 0.4% when compared to the result 
obtained by the standard vacuum method 
(Thuwapanichayanan et al., 2008). The experiment 
under each adsorption condition was repeated three 
times and the mean value was reported. 

2.3. Isotherm Equation and Fitting Method 

The criteria used to select the most appropriate 
sorption model were the degree of fit to the 
experimental data and the simplicity of the model. 
Therefore, five widely used empirical equations were 
chosen to fit the experiment data. A non-linear multiple 
regression analysis was used to fit the experimental 
data using the models shown in Table 1.  

The Root Mean Square Error (RMSE) was used to 
measure the accuracy of the model and the coefficient of 
determination (R2) was used to show the variability 
between the predicted and measured data. 

Equation 5 in Table 1 was modified in a GAB 
empirical way by adding a term (Viollaz and Rovedo, 
1999). The second term of the equation allows the 
necessary flexibility to obtain a good fit for high RH 
values. This term has a very low value compared to the 
first term for a low value of RH, so that the values of A, 
B and C are not severely affected by the addition of this 
new term. It can be observed that if the value of D is 
equal to zero, the GAB isotherm can be obtained. The 
constant parameter of Equations 1-5 were obtained by 
non-linear regression, using as the objective function the 
minimization of the relative deviations: 
 

( )2exp

1(%) 100

N

i i
i

M M
RMSE

N
=

−
= ×
∑

 (1) 

 
where, Mexp and M are the experimental and predicted 
values, respectively and N is the number of data points. 

2.4. Artificial Neural Networks 

A Back-Propagation Artificial Neural Network 
(BPNN) is a non-linear processing system operating in 
parallel that is composed of neurons which between 
them can be used for mapping input and output data 
(Khayet and Cojocaru, 2012). The BPNN is a single 
computational processor, which has four steps: (1) 
Assembly of the dataset, defining the input and output 
data, (2) deciding the network architecture, (3) training 
(network learning) and (4) simulating the network 
response to new inputs. The schematic structure of the 
BPNN used in the present study for predicting the 
moisture ratio is shown in Fig. 1. 

Figure 1 shows a 3-layer BPNN with n,m and p as 
the number of input, hidden and output layers 
respectively. Scalar input Xi is transmitted via a 
connection that multiplies its strength by the scalar 
weight Wij to form the product Wij×X i. The bias Wj is 
much like a weight, except that it has a constant input of 
unity and it is simply added to the product Wij×X i by 
summing junction. The summing junction operator of a 
single neuron summarizes the weights and bias into a net 
input Aj known as the argument to be processed: 
 

n

j j ij i
i=1

A =W + W × X∑  (2) 
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Where:  
Wj = Called the bias value  
Wij = The connection weights between the input layer 

and the hidden layer 
X i = The input variable 
n = The number of input variables and  
i = the integer index. The transfer function takes the 

argument 
A j = Produces the scalar output of the neurons  

The most widely used transfer functions to solve 
linear and non-linear regression problems are the linear 
transfer function (purelin), log-sigmoid transfer function 
(logsig) and tan-sigmoid (tansig) transfer function 
(Hagan et al., 1996). The outputs of neurons computed 
by these transfer functions can be written as: 
 

( ) ( ) ( )1
S x = LOGSIG

1+ exp -x
  (3) 

 

( ) ( )( ) ( )2
S x = TANSIG

1+ exp -2x - 1
  (4) 

 
( ) ( )S x = x PURELIN   (5) 

 
The BPNN used in this study is based on the 

following Equation 6: 
 

m n

k jk ij i
j=1 i=1

O = S W × S W X
  
  

  
∑ ∑  (6) 

 
Where: 
Ok = The output values 
Wjk = The connection weights between the hidden layer 

and the output layer and 
S = The transfer function. At each node, the weighted 

input signals are summed and the bias value  
Wj = added. The combined input  
A j = Then passed through the transfer function 
S = Produce the output node  
Oj = Illustrated in Fig. 1. The output of one node 

contributes as input to the nodes in the next layer  

The schematic structure of the ANNs used in present 
study for predicting the ERH is shown in Fig. 2. The 
foam density, equilibrium moisture content and 
temperature were the parameters chosen as the input 
layer and ERH was the output layer. Two training 
algorithms (the Levenberg-Marquardt (Trainlm) and 
Bayesian regulation (Trainbr) back-propagation 
algorithms) were used for updating the network weights. 

The 180 data patterns, obtained from different 
experimental conditions, were randomly divided into 108 
(60%), 36 (20%) and 36 (20%) data sets for good 
representation of the situation diversity; these data sets 
were used for training, Cross-Validation (CV) and 
testing the neural networks, respectively. The neural 
network toolbox of the Matlab software (MathWorks, 
Natick, Massachusetts, USA) was used in this study.  

When using a back-propagation algorithm, a 
number of control parameters need to be set. The 
number of hidden layers and neurons within each 
hidden layer can be varied with the complexity of the 
problem and data set. In this study, the control 
parameters chosen were the number of neurons in the 
hidden layer (2-10), momentum coefficient (0.01-0.1), 
step size (0.01-0.05) in the hidden layer, epoch 
number (50-1000) and training runs (1-5). The 
prediction performance of the developed BPNN model 
can be evaluated by using different error analysis 
methods. In general, these methods are the Root Mean 
Square Error (RMSE), coefficient of determination 
(R2) and Mean Absolute Percentage Error (MAPE). A 
higher value of R2 and lower values of both the RMSE 
and MAPE are indications of better performance of 
the developed BPNN model. These parameters can be 
calculated as follows Equaton 7 and 8:  
 

( )

( )

N 2

exp,i ANN,i
2 i=1

N 2

ANN
i=1

D - D
R = 1-

D - D

 
 
 
 
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∑

∑
  (7) 

 
N

ANN exp

j=1 ANN

D - D1
MAPE = ×100

N D
∑  (8) 

 
Where: 
Deap = The experimental data 
DANN = Predicted data 
 D  = The average value of experimental data and N 

the number of observations 

To increase the accuracy and processing velocity of 
network, input and output layers are normalized in the [-
1, 1] or [0, 1] range Equation 9: 
 

R min
N

max min

G - G
G =

G - G
 (9) 

 
where, GR is the actual value, Gmin and Gmax are minimum 
and maximum values in the data set, respectively.  
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Fig. 1. Architecture of a typical BPNN  
 

 
 
Fig. 2. Schematic of multilayer neural network 
 
2.5. Thermodynamic Properties of Sorption 

The isosteric heat at each level of moisture 
equilibrium can be used to estimate the energy 
requirements for the dehydration process. The isosteric 
heat of adsorption was calculated by applying the 
Clausius-Clapeyron equation to the experimental 
equilibrium isotherm data and it can be determined by 
the following equation: 
 

( )
st

EMC

¶lnRH q
= -

¶ 1 / T R
 (10) 

where, qst is the net isosteric heat of sorption (kJ/mol), R 
is the universal gas constant, EMC is the equilibrium 
moisture content (kg/kg d.b.) and T is the absolute 
temperature (K). The net isosteric heat of sorption is 
calculated from the slope of the plot of ln RH versus 1/T 
at a constant equilibrium moisture content. This 
approach assumes that the isosteric heat of adsorption 
does not change with temperature. The isosteric heat of 
sorption, Qst, was calculated using Equation 11: 
 

st stQ = q + λ  (11) 
 
where, λ is the latent heat of pure water (kJ/mol). 

3. RESULTS AND DISCUSSION 

3.1. Adsorption Isotherm of Banana Foam Mat 

Figure 3a-c shows the experimental adsorption 
isotherms at 35, 40 and 45°C. The isotherms of banana 
foam exhibited the sigmoid (Type II) shape common to 
most food materials. The curves showed no intersection 
or crossover points with an increase in the temperature. 
At a constant relative humidity, the equilibrium 
moisture content decreased as the temperature 
increased. This trend may be explained by the 
excitation states of water molecules.  
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 (a) 
 

 
 (b) 
 

 
 (c) 
 

Fig. 3. Adsorption isotherm of banana foam densities at (a) 0.21 g/cm3, (b) 0.26 g/cm3 and (c) 0.30 g/cm3 
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At an elevated temperature, the water molecules 
are in higher states of excitation, thus increasing their 
distance apart and decreasing the attractive forces 
between them (Kaya et al., 2007). Kim and Okos 
(1999) and Palou et al. (1997) found that the sorption 
capacity or equilibrium moisture content of products 
such as crackers and cookies decreased with an 
increase in temperature. 

Figure 4 shows the influence of banana foam 
densities on the adsorption isotherm at 35°C. At a 
constant relative humidity, an upward shift in the density 
from 0.21 to 0.30 g/cm3 led to a shift of isotherms 
toward a lower value for the equilibrium moisture 
content. Similar behaviours were observed at 40 and 
45°C (graphs not shown). 

The behaviour could be explained by the fact that as 
the foam density decreased, the porosity of the banana 
foam increased and the adsorption capacity of banana 
foam was higher at lower foam density. ANOVA 
showed that there was no significant difference among 
the adsorption isotherms between foam densities of 0.21 
and 0.26 g/cm3, but there was a significant difference 
when the foam density increased to 0.30 g/cm3 (p<0.05). 

3.2. Fitting of Adsorption Models 

Experimental data of the banana foam mats were 
compared with the isotherms predicted by Equation 1-
5. The value of the parameters of Equations 1-5 and 
the values of RMSE (%) and R2 are shown in Table 2. 

As seen in Table 2, the modified-GAB equation 
only gives values for RMSE that are lower than 4%. 
The modified-GAB equation well described the 
equilibrium moisture data within a wide range of RH 
values and could predict the experimental data with 
reasonable agreement (RMSE <2% and R2>0.99). 
Viollaz and Rovedo (1999) found that the modified-
GAB equation was acceptable for describing the 
sorption behavior of starch and gluten for relative 
humidities higher than 90%. From the RMSE and R2 
values, it could be deduced that the modified-GAB 
equation was reasonable to use in describing the 
moisture adsorption of banana foam mats. 

3.3. Heat of Adsorption Predicted by Sorption 
Isotherm Models 

In this study, Equations 4 and 5 were selected to 
study the isosteric heat of the banana foam mats. The 
isosteric heat of adsorption values were calculated from 
Equation 10 by plotting the natural logarithm of Relative 
Humidity (ln RH) against 1/T, for the specific moisture 

data derived from the adsorption isotherm. Equations 
4 and 5, together with the parameters in Table 2, were 
used to calculate the RH values. Equation 4 could be 
written explicitly in the RH = f(M) form as shown in 
Table 1. On the other hand, Equation 5 is an implicit 
form. A mathematical technique is required to solve 
the implicit equation. In this study, the fzero function 
in MATLAB was used to determine the RH value. 

Figures 5 and 6 show the qst values estimated 
through the water sorption isotherms of the GAB and 
modified-GAB models, respectively. Although the 
modified-GAB model can predict the experimental 
isotherms of banana foam mats better than the GAB 
model, when using the modified-GAB to calculate the 
heat of sorption, it was found that it was not acceptable 
for describing the heat adsorption behavior. As shown 
in Fig. 6, the negative value of qst estimated using the 
modified-GAB equation is found in a moisture content 
range of 0.24-0.44 kg/kg d.b. for the dry banana foam 
densities of 0.21 and 0.26 g/cm3, showing the poor fit 
of this model. A negative qst value as the error of 
determination has no physical meaning. 

3.4. Heat of Adsorption Predicted by ANN Models 

In order to achieve the optimal result, several 
algorithms were tested. The adjustment of the neural 
network parameters included the number of neurons, 
the type of transfer function, learning rate, momentum 
and the number of patterns. The performance of the 
ANN models was compared using the RMSE, R2 and 
MAPE. The training process was run until a minimum 
value of the RMSE was reached in the validation 
process. The performance of the trained network was 
estimated based on the accuracy of the network with 
the test data. Test data were presented to the network 
after the training process was completed. 

The structures of the model used in this study are 
shown in Table 3. The number of hidden neurons and 
threshold functions were selected for good 
performance after several experiments. The best 
results were produced with the Trainlm algorithm, 
TANSIG-TANSIG-PURELIN threshold function and 
3-4-2-1 topology. This composition produced values 
of RMSE = 2.12, R2 = 0.97 and MAPE = 3.44, with 
convergence after 66 epochs.  

A comparison between the experimental and 
predicted data at ρ = 0.5 g/cm3 and T = 45°C obtained 
by the modified-GAB model (implicit equation) and 
the BPNN model for prediction of outputs is presented 
in the correlation plots shown in Fig. 7.
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Fig. 4. Influence of foam densities on the adsorption isotherm 35°C 
 

 
 

Fig. 5. Isosteric heat of sorption for different foam densities estimated using the GAB model 
 

 
 
Fig. 6. Isosteric heat of sorption as function of moisture content for different foam densities; data estimated from modified-GAB model 
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Fig. 7. Relationship between measured and predicted ERH using modified-GAB model and BPNN model for testing data set (ρ = 

0.5 g/cm3 and T = 45°C) 
 

 
 
Fig. 8. Isosteric heat of sorption as function of moisture content for different foam densities; data estimated by optimum BPNN 

model and solid line is trend line 
 

It is clear that the BPNN application exhibits better 
correlation between the experimentally observed and 
predicted results compared to the modified-GAB 
equation with values of R2 = 0.94 and 0.98, 
respectively. 

The ERH values of the banana foam mats at the 
three temperature levels and eight moisture content 
levels were computed using the optimized BPNN 
model. Figure 8 shows the isosteric heat of sorption 
for the different foam densities. As shown in Fig. 8 at 
the low moisture content, there are water molecules 

bound by a high binding strength on the adsorbent 
surface and high amounts of energy are required to 
remove the water molecules. On the other hand, when 
water was adsorbed far from the adsorbent surface, the 
binding force was low and it required low net isosteric 
heat. At a moisture content higher than 0.48 kg/kg 
d.b., the qst value approached zero, implying that the 
heat of sorption is equal to the heat of vaporization of 
water. Such similar trends were observed in crackers, 
cookies and many cereal grains (Tolaba et al., 1997; 
Kim et al., 1998).  
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Table 1. Sorption isotherm models used for fitting the experimental data 
Equation M = f(RH, R) form  RH = f(M, T) form 
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M = Equilibrium moisture content (kg/kg d.b.), A, B, B0, C, C0 and D = equation constants, RH = Relative Humidity (decimal), 
MOE = Modified Oswin Equation, MCE = Modified Chung-Pfost Equation, MHE = Modified Hasley equation, GAB = 
Guggenheim, Anderson and de Boer equation, MGAB = Modified GAB 

 
Table 2. Estimated values of equation coefficients and equation fit errors 

    Equation constants 
    ----------------------------------------------------------------------------------------------------- 
Model ρ (g/cm3) RMSE R2 A B C B0 C0 D0 HB HC HD 

MOE 0.3 11.620 0.92 -20.010000 0.35500 2.714 - - - - - - 
 0.5 11.020 0.93 -44.210000 0.44000 2.810 - - - - - - 
 0.7 11.560 0.92 33.930000 0.20500 2.950 - - - - - - 
MCE 0.3 10.430 0.93 7.03E10 1.19E10 0.023 - - - - - - 
 0.5 10.430 0.93 1.26E11 1.75E10 0.024 - - - - - - 
 0.7 8.870 0.94 4.60E11 7.78E15 0.021 - - - - - - 
MHE 0.3 14.740 0.89 4.54900 0.00610 1.500 - - - - - - 
 0.5 14.390 0.89 4.17600 0.00750 1.507 - - - - - - 
 0.7 15.210 0.87 5.72800 0.00290 1.512 - - - - - - 
GAB 0.3 8.133 0.96 0.15900 - - 1.57E-5 1.396 - 29.680 -1.188 - 
 0.5 6.026 0.97 0.17300 - - 2.92E-5 1.377 - 27.150 -1.183 - 
 0.7 8.650 0.96 0.10600 - - 3.04E-5 1.667 - 27.680 -1.453 - 
MGAB 0.3 0.029 0.99 0.08900 - - 0.7221 0.828 -0.083 3.145 - 0.963 
 0.5 0.548 0.99 0.06800 - - 0.6830 0.864 -0.088 4.146 - 1.066 
 0.7 1.342 0.99 0.07400 - - 0.9710 1.06 -0.130 1.250 - 0.329 

MOE = modified Oswin equation, MCE = modified Chung-Pfost equation, MHE = modified Hasley equation, GAB = Guggenheim, 
An-derson and de Boer equation, MGAB = modified GAB 
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Table 3. Training algorithms for different neurons and hidden layers of networks for prediction of ERH 
  Numbers of hidden 
Training algorithm Threshold function layers and neurons RMSE R2 MAPE Epoch 
Trainlm TANSIG-TANSIG-LOGSIG 3-4-3-1 5.58 0.95 8.56 37 
Trainlm TANSIG-TANSIG-PURELIN 3-4-2-1 2.12 0.98 3.44 66 
Trainlm TANSIG-LOGSIG-PURELIN 3-5-2-1 7.74 0.93 10.22 29 
Trainbr TANSIG-LOGSIG-PURELIN 3-4-3-1 10.02 0.92 12.13 38 
Trainbr TANSIG-TANSIG-PURELIN 3-3-2-1 5.97 0.95 8.66 47 
Trainbr TANSIG-TANSIG-TANSIG 3-4-2-1 9.87 0.92 12.18 88 
Trainlm = Levenberg-Marquardt back-propagation, Trainbr = Bayesian Regulation back-propagation 
 

Figure 8 also reveals that lower values of qst were 
found at higher banana foam densities. The surface area 
may be affected in determining the water binding 
properties of particulate materials (Toğrul and Arslan, 
2006). The void area fractions for the banana foam 
densities of 0.21, 0.26 and 0.30 g/cm3 obtained by 
counting the pore area of binary images, were 31, 26 and 
23%, respectively (Prakotmak et al., 2011). The lower 
surface area of the solid matrix present in samples with a 
low banana foam density may reduce the material’s ability 
to interact with water molecules, thereby reducing the 
energy required to remove them from the porous matrix. 

The evaporation of water from banana foam requires 
energy to overcome the heat of evaporation of pure 
water. The maximum qst value of banana foam at a 
density of 0.3 g/cm3 (about 8-12 kJ/mol at 0.05 kg/kg 
d.b.) was close to that of cookies and corn snacks (6.7-
10.1 kJ/mol and 7.5 kJ/mol, respectively) and in a 
moisture content range 0.05-0.07 kg/kg d.b., as reported 
by Palou et al. (1997). Arogba (2001) reported higher 
values of isosteric heat of sorption for mango flour with 
a maximum value of 18.2±1.6 kJ/mol, in a moisture 
content range of 0.10-0.12 kg/kg d.b. McMinn et al. 
(2007) also reported higher values of isosteric heat of 
sorption for microwave-baked oatmeal biscuits with a 
maximum value of 16.1 kJ/mol at a moisture content 
of 0.01 kg/kg d.b. As shown in Fig. 8, at 0.20 kg/kg 
d.b., the qst value of banana foam did not exceed 6.0 
kJ/mol. Yan et al. (2008) found that the value of qst of 
dried banana was 8.91 kJ/mol at 0.20 kg/kg d.b. The 
results of the present study indicated that drying of the 
banana foam mats requires a lower energy level to 
remove water than is required with fresh banana 
(without a foaming technique). 

4. CONCLUSION 

The information of adsorption isotherm and 
isosteric heat of sorption could provide a better 
understanding of the equilibrium state of water under 
certain temperature and the Equilibrium Relative 

Humidity (ERH) conditions and in assessing quality 
of dried banana foam mats. Artificial neural networks 
have proved to be an effective tool to predict the ERH 
of banana foam mat as a function of input parameters, 
namely, banana foam density, equilibrium moisture 
content and temperature. The optimized model 
structure for prediction of ERH consists of two hidden 
layers with three and two neurons per layer, 
respectively. The ANNs could predict ERH values 
more accurately than the modified-GAB model with 
R2 value higher than 0.97. However, one of the main 
problems with ANNs for modeling is that they cannot 
be applied to similar but different materials. 

From the results obtained, it was found that the 
isosteric heat decreased exponentially with an increase in 
the moisture content. In addition, the isosteric heat for a 
low foam density was greater than those at higher foam 
densities at any moisture content level. The high isosteric 
heat value indicates the covering of the strongest binding 
sites and the greatest water-solid interaction. This implies 
that banana foam mats needs more energy at a lower 
moisture content for dehydration and storage, but require a 
low energy at higher moisture contents. 
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