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ABSTRACT

Finite field multipliers are widely used in thelfieof cryptography for the purpose of scalar muitgtion.

The outputs of the finite field multipliers may st of errors due to certain natural radiationscivh
further leads to the failure of the cryptosysteidsre two Concurrent Error Detection (CED) schemes
namely time redundancy and modular inversion based detection schemes for finite field multipteare
discussed. The CED techniques have been implemeiotedit serial, digit serial and bit parallel
Montgomery multipliers. The Simulation results awbtained using Modelsim10.0b, area and power
analysis has been performed using Xilinx ISE 9The proposed modular inversion based CED scheme is
found to be area and power efficient compared istieg time redundancy based CED scheme.

Keywords Montgomery Multiplication, Elliptic Curve Cryptogoay (ECC), Parity Prediction, Modular
Inversion, Finite Field Multipliers

1. INTRODUCTION secured data communication in the presence of third
parties. ECC (Miller, 1998) is an approach to puliky
The finite field multiplication has received great cryptography based on algebraic structure of @lipt
attention in literature (Leet al., 2006; Ghoshet al., curves over finite field. This cryptographic methbds
2011) among the basic operations. It is mainly heea been regarded mature to provide robustness forresecu
the implementation of a multiplier is much more data transaction. Therefore ECC has become an
complex when compared to adder and by usingattractive alternative cryptosystem and many design
multiplication operation repeatedly one can perform have been proposed in recent years (Sakiyamal.,
difficult field operations such as inversion and 2007; Chumgt al., 2005; Gurat al., 2002; Blakeet al.,
exponentiation which are widely used in cryptosyste  2005; Biham and Shamir, 1997; Bongttal., 1997).The
Finite field popularly known as Galois Field (GF i Montgomery multiplication algorithm is used to enba
represented as GF"fpwhere f is a prime number over the scalar multiplication in ECC (Montgomery, 1985)
‘n’ dimensions. When the prime number is 2, elemerft CED is a process used to detect the errors in a
GF are expressed as binary numbers. GF (2) wherryptosystem while the system is performing itsadat
extended to GF (3 is termed as binary extension field. transmission operation (Mitra and McCluskey, 2000;
Since no carry propagation occurs in GP)(2he additon ~ Reyhani-Masoleh and Hasan, 2006; Hariri and Reyhani
of two single bits requires only a logical XOR ogtén. Masoleh, 2007; Bayat-Sarmadi and Hasan, 2007). Due
Finite fields are used in a variety of applications to the fact that fault injection and active attaeks used
including classical coding theory in linear blockdes  against cryptosystems, it is very important to éase
such as Reed Solomon codes and in cryptographithe reliability of the elliptic curve-based crypysgems
algorithms  (MacWilliams and Sloane, 1998). and in particular, its main arithmetic operatiorg.,i
Cryptography is the practice and study of techrscfioe multiplication. The presence of fault in cryptogyss
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can lead to an active attack which results in lgakaf time redundancy approach is shown in Fg. 1. The
secret information from the cryptosystems. The $bstp latches are used to store the data and 2-to-1 lglax2
way to prevent such an attack is to ensure that theby 1 multiplexer to select one of the inputs.
computational device, the multiplier, verifies tredue it CED using time redundancy technique is as follows:
computes before sending them out. To meet thisqserp

m _
concurrent error detection scheme could be ondef t X — mod F(x) | B.X mod F(x)
options to mitigate logic errors. The design ofaéht C  =AB modF(x)
multipliers with CED capability is desirable to faa ~ C = A-B/x ‘mod F(x)
highly reliable and dedicated cryptographic harawar C = A-B’x7'mod F(x)
(Hariri and Reyhani-Masoleh, 2011). B (A. x:n?.(B.g ) X“mod F(x)
Finite field multipliers use Montgomery multiplidai B é‘Em m(r)réOF(E)(X)
algorithm to perform bit serial, digit serial an parallel B
multiplier operations (Ananyét al., 2009; Koc and Acar, The fundamental operation of the multiplier is
1998; Fan and Dai, 2005; Hariri and Reyhani-Masoleh explained in the following steps.
2008). The finite field elements are representéaguhiree The first step is performed by applying inputs A(x)

basis representations namely polynomial basis, @idvesis  and B(x) to the Montgomery Multiplier array and the
and dual basis. Polynomial basis has found to ibheifor  resyit C(x) is converted by the circuit to C’(x) and

the purpose of error detection as conversion fromgiqreq in latches. The dataflow of this first seghown
polynomial basis to binary is quite simple. Thepatallel in bold lines inFig. 2.

systolic finite field multiplier over polynomial B&s has

been implemented for irreducible polynomial, alkon A(x) B(x)

polynomial and irreducible trinomial (Sargunasnal.,
2012a). The speed of bit parallel systolic finiteldf
multiplier over polynomial basis has been improusihg Latches Latches
an unique technique (Sargunasnal., 2012b). Reyhani- ﬁ

Masoleh and Hasan (2003) a parity prediction based v
technique has been implemented for a polynomiaisbas A(x) #xm cirenit B(x) fxm eirenit
multiplier. The major drawback of this techniquesvihat
the exact error bit position was not specifiechi dutput of l A(%) lB__,
the multiplier instead only the existence of errgas h 4 i Y (x)
detected. In this study two error detection schehmse

3 T — . -
been discussed, the time redundancy and the modular T. — 11\1qu 2 to-l Mux
inversion based error detection techniques. * +

2. TIME REDUNDANCY TECHNIQUE Montgomery multiplier array

The fault attacks are common against cryptographic }C(x)
algorithms. CED is one of the counter measures tsed o
protect the crypto-processors in case of such lattdo TxFerreutt
this section, we discuss CED circuits for bit-semgit- +
serial and bit-parallel Montgomery multipliers whican
be used as a counter measure against natural &ndts Latches
fault attacks in cryptography.

2.1 Time Redundancy Approach ll C'(x)

The architecture using time redundancy can avad th Equality checker
potential security problem caused by side-channel
attacks. All single cell faults in the multiplierilivbe ¢
concurrently detected. Moreover, this multipliequiges v
a little space overhead and takes only few extogkcl C’(x)  Errorsignal
cycles. This technique is applied for bit seriadjitdserial

and bit parallel multipliers. The block diagram fibre Fig. 1. CED using time redundancy (Chietial., 2006)
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The second step is executed by applying inputsBy examining the error signal at the output of digua

A’(x) and B'(x) to the Montgomery Multiplier array.
The inputs A(x) and B(x) are applied to respectix&
circuits to obtain A’(x) and B’(x). The result C>s

checker the errors are detected. The exact error bi
position is also detected by this method.

compared to the previously stored result C'(x) in 3. MODULAR INVERSION TECHNIQUE

latches.

The function unit *¥ realizes the following function

It was found that the parity prediction technigaiéefl to

Q'(x) = Q(x)*x™mod P(x). Where Q(x) and Q'(x) are the detect the exact bit positions of the erroneoupuiudf the

inputs and output of the *xcircuit respectively. There is
one to one correspondence between Q(x) and it9 @ (x
residue representation. The dataflow of the sestepl is

shown in bold lines irFig. 3. The C’(x) values obtained

multipliers and this technique was not efficientigect the
online errors that occurred in the cryptosystemg1B) a
time redundancy scheme was developed for the priqios
CED using modular multiplication. There are two artant
performance criteria in VLS| implementation, namely

from step 1 and step 2 are compared using equalityyower and area. Trade-off may exist between the two

checker and the error signal is produced. The ¢sitpi
both these steps are equal no error signal is gexteand
if not the error signal is generated to indicatedhror.

Aix)

Latches

v

Bi;)

Latches

[ v

A(X) I

#XM circuit

B | #xmcircuit

lA’(X)

I

A 4
5]_4 h

0-1 Mux

parameters. Optimization of these two parametensbea
carried out in finite field multiplier architectuie order to
consume low power and low area. The time redundancy
scheme was found to have high power and areaatitiiz

In order to attain a power and area efficient CEEDeme
modular inversion algorithm has been used.
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Fig. 2. The data flow in the time redundancy techniquendur
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3.1 Modular Inversion

The multiplication inversion of an elementFais
defined as the process to find an eleméhfa such that
a.a’ = 1 mod P(x). Several algorithms to compute the
multiplicative inverse in GF (9 have been proposed in
literature. The inverse is computed using an imptbv
modification of the extended Euclidian algorithniled
modular  inversion algorithm. The  modular
multiplicative inverse @ (mod p) of an integer ‘a’
exists if and only if ‘a’ and ‘p’ are relatively jpne, that
is gcd (a,p) = 1. In all cases considered, p imprand
hence ‘a’ and ‘p’ are always relatively prime. The
following is the modular inversion algorithm thaash
been incorporated in the CED scheme.

Algorithm

Inputs: Operand a, prime p
Output: &' mod p
Stepl:u=a,v=p;x1,%=0
Step2: while 4 1 and v 1 do
Step 2.1: while u even do
Step2.1.1: u=u/2
Step 2.1.2: if xeven then x= x,/2
else x= (X, + p) /2
Step 2.2: while v even do
Step 2.2.1: v=vV/2
Step 2.2.2: if xeven then x= x»/2
else x= (X + p) /2
Step 2.3:ifgvthenu=u-v, Xx=X;- X,
elsev=v-u,x=%—X
Step 3: if u = 1 then return(mod p)
else return x(mod p)

The step 2 of the algorithm runs iteratively and
proceeds towards the goal. In this step for evieraiion
either ‘u’ or ‘v’ is reduced by at least one bihi¢gh. The
total number of iterations in step 2 is at most\#kere k
is the maximum bit length of ‘p’ and ‘a’.

3.2 Error Detection Method

In order to obtain an efficient CED scheme for the
purpose of detecting errors in the output of thetdi
field multipliers the modular inversion algorithmash
been incorporated into the error detecting scherhés
technique has been proved to have better poweaaad

A(x) Bf)
Latches Latches
L 4 v
A(x) Modular B(x) Modular
inversion inversion
Y # A’(x) \ J *B"(x)
2-to-1 Mux r 2-to-1 Mux

s T-| :
v v
Montgomery multiplier array

T @

Modular
inversion
Latches
T Y vC®
Equality checker
v
C'(x) Error signal

Fig. 4. Modular inversion based error detection scheme

The multiplication array block performs bit serial,
digit serial or bit parallel multiplication in fite field.
The 2-to-1 Mux block selects one of the inputs for
multiplication based on the select signal ‘S’. Téreor
detection process is performed using the blockrdiag
by multiplying two inputs A(X) and B(x). Instead of
modular multiplication in time redundancy technique
here modular inversion is used to detect the erdors
this technique also exact error bit position can be
detected and it can detect multiple errors.

The data flow for the CED scheme using modular
inversion in the block diagram is explained in two
steps as follows:

During the first step the two inputs (A(x), B(x))ea
multiplied using the Montgomery multiplication
algorithms (Bit serial, Digit serial or Bit Pard)leThe
output of the Montgomery multiplication array (C(x$

efficiency when compared to the time redundancy further taken as input into the modular inversidock

scheme. The block diagram for modular inversion
technique is shown irrig. 4. The modular inversion
technique also performed in two steps.
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where the inversion algorithm is performed and the
output C’(x) is generated. The blocks which aredussed
the data flow during this first step is showrFig. 5.
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Ax) B(x) Step 1 Step 2
Latches Latches
C'(x) C'(x)
5 \
-,—D 2- to-1 Mux r 2- to-1 Mux
¢ ¢ Equality checker
Montgomery multiplier array l
¥C
Modular Error signal
inversion Fig. 7. Comparison of the outputs from step 1 and step rigusi
¢ equality checker
C(x) During the second step the two inputs A(x) and B(X)

are individually inverted using the modular inversi
algorithm to form A’(x) and B’(x). The inverted quits
are taken into the Montgomery multiplication arrayd
multiplied using the Montgomery multiplication

Fig.5. The data flow in the modular inversion technique
during the 1st Step

A(x) B(x) algorithms (Bit serial, Digit serial or Bit Pard)le The
‘ ‘ output from the Montgomery multiplication array is
generated as C'(x). The blocks which are usedhierstep
Latches Latches and the data flow are shown in fhig. 6.
The outputs of step 1 and 2 (C'(x)) are compared
* * in the equality checker. If the outputs of the tsteps
are different the error signal is generated as show
Modular Modular Fig. 7. The existence of error and the error bit
inversion inversion positions can be identified by examining the outpit
* NG ¢ B(x) the equality checker.
s T.| 2- to-1 Mux r 5 to-1 Mux 4. IMPLEMENTATION RESULTS
¢ ¢ The algorithms for the time redundancy and the
modular inversion error detection technique havenbe
Montgomery multiplier array coded using VHDL and simulated using Mentor
Graphics front end (Modelsim 10.0b). The
+ implementation is done using Xilinx ISE 9.1i anéar
C'(x) and power reports are obtained. The bit serialjtdig

serial and bit parallel Montgomery multipliers are
Fig. 6. The data flow in modular inversion technique duting ~ coded and the time redundancy and modular inversion
2nd step techniques are applied for all the multiplier types
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Fig. 10. Simulation result for the error detection in bitiak

Fig. 8. Comparison of time redundancy technique and modular multiplier using time redundancy technique

inversion technique in terms of gate count
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) ) ) ) Fig. 11. Simulation result for the error detection in bitiak
Fig. 9. Comparison of time redundancy technigque and the multiplier using the modular inversion scheme

modular inversion technique in terms of power
consumption in Mw

5. CONCLUSION

Figure 8 and 9 show the graphical comparison of . ) .
the area and power consumption of the time The CED scheme is used to detect online errors in

redundancy technique and the modular inversion@Pplications like cryptography. The time redundancy
based error detection technique for all the three@nd modular inversion based CED schemes are
multiplier types. Figure 10 shows the simulation Performed for the three types (Bit-serial, Digitiaé
result for the error detection in bit serial mulgg ~ and Bit-parallel) of finite field multipliers using
using time redundancy technique. Montgomery multiplication algorithm. The proposed

Figure 11 shows the simulation result for the error CED using modular inversion technigque is found ¢o b
detection in bit serial multiplier using the modula area and power efficient when compared to the time
inversion based error detection scheme. redundancy technique.
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