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ABSTRACT 

Speech enhancement has become an essential issue within the field of speech and signal processing, 
because of the necessity to enhance the performance of voice communication systems in noisy environment. 
There has been a number of research works being carried out in speech processing but still there is always 
room for improvement. The main aim is to enhance the apparent quality of the speech and to improve the 
intelligibility. Signal representation and enhancement in cosine transformation is observed to provide 
significant results. Discrete Cosine Transformation has been widely used for speech enhancement. In this 
research work, instead of DCT, Advanced DCT (ADCT) which simultaneous offers energy compaction 
along with critical sampling and flexible window switching. In order to deal with the issue of frame to 
frame deviations of the Cosine Transformations, ADCT is integrated with Pitch Synchronous Analysis 
(PSA). Moreover, in order to improve the noise minimization performance of the system, Improved 
Iterative Wiener Filtering approach called Constrained Iterative Wiener Filtering (CIWF) is used in this 
approach. Thus, a novel ADCT based speech enhancement using improved iterative filtering algorithm 
integrated with PSA is used in this approach.  
 
Keywords: Improved Iterative Wiener Filtering, Advanced Discrete Cosine Transform, Pitch Synchronous 

Analysis, Perceptual Evaluation of Speech Quality 

1. INTRODUCTION 

 Speech enhancement is the technique which 
enhances the quality of speech signals which are 
corrupted by adverse noise and channel distortion. 
Speech enhancement has been used in a number of 
applications in recent years (Paliwal et al., 2012). The 
main aim of speech enhancement is to enhance the quality 
and clarity of the speech signal. A number of techniques 
have been developed for providing better clarity speech 
signals which comprises of the techniques such as spectral 
subtraction (Raitio et al., 2011; Zen et al., 2012).  

For the past two decades, speech enhancement has 
become one of the most active researches in the field of 
signal processing but still there are no standard techniques 
for both speech and noise (Anusuya and Katti, 2009). 

Transform domain filters are widely used in the 
speech enhancement process. These filters compute the 
transform coefficients initially followed by the 
enhancement process. Finally, the inverse transform 
must be applied to attain the ultimate desired speech. A 
number of speech enhancement algorithms largely 
function in the transform domain as the speech energy 
is not present in all the transform coefficients and it is 
much easier to filter off the noise particularly for the 
noise-only coefficients. Different transforms may 
require different analysis techniques. For single-
channel speech enhancement, a number of transform-
based algorithms have been investigated in the past. 
Among these, DFT-based algorithms are the most active. 
Moreover, spectral subtraction algorithm (Paliwal et al., 
2012) was extended to the Fourier transform by 
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(Verteletskaya and Simak, 2011; Anusuya and Katti, 
2009) became a very widely used approach. 

Recently, it is observed that Discrete Cosine 
Transform can be effectively used in speech 
enhancement as it is also a Fourier-related transform 
which only uses real numbers rather than the complex 
numbers used in DFT. A number of benefits of DCT 
have been presented by D’Ambrosio (2011) in enhancing 
speech as compared to DFT. These features of DCT can 
be summarized as follows: 

• DCT is capable of giving higher energy compaction 
capability 

• It is a real transform without phase information 
• It offers a higher resolution for examining the 

transform coefficients in the same window length 

The higher energy compaction ability plays a key role 
in speech enhancement as if the speech energy can be 
compressed into lesser coefficients even as the 
background noise remains white, then the noise can be 
easily eliminated and there is less chance to distort the 
speech signal during the noise reduction process.  

This study will focus on DCT during the frame-based 
analysis along with an improved noise reduction filter. In 
traditional DCT-based speech enhancement algorithms, 
the transform is carried out by a short-term cosine 
transform which is almost the same as Short-Term 
Fourier Transform (STFT) except that DCT is used 
rather than DFT. In such algorithms, the observed speech 
is partitioned into fixed overlapping frames ranging from 
50 to 75% and then processed by DCT.  

Moreover, a noise suppression filter is applied on the 
DCT coefficients. One of the key differences is that the 
DCT coefficients are real, while the DFT coefficients 
are complex and it consists of a magnitude and phase 
representation. Without a phase representation, DCT 
coefficient’s magnitudes obtained by a standard 
window-shift illustrate much higher variation compared 
to those of DFT for a strictly stationary signal. This 
will have influence negatively on the inter-frame 
approaches such as the decision directed approach for 
the assessment of α priori SNR. 

ADCT is widely used in audio processing, where 
the overlapping minimizes artifacts from the block 
boundaries (Ilk and Guler, 2011). Hence, this research 
work uses ADCT in order to improve the speech 
quality. So,pitch synchronous analysis is an efficient 
key which also helps in offering better performance 
(Morales-Cordovilla et al., 2011). This would improve 
the overall performance of DCT-based speech 
enhancement algorithms especially those using inter-

frame techniques. This system also incorporates the pitch 
synchronous processing which will be improved by a 
Maximum Alignment technique. An Improved Iterative 
Wiener Filtering in DCT domain will be introduced 
which in turn uses the windowing function.  

Thus, an advanced speech enhancement system 
namely Advanced Discrete Cosine Transform Speech 
Enhancement with Iterative Wiener Filtering based Pitch 
Synchronous Analysis (ADCT based IWFPS) is 
proposed in this approach.  

2. LITERATURE SURVEY 

A number of DFT based techniques concentrates to 
filter the spectral magnitude only while leaving the noise 
corrupted phase information intact, as it has been 
reported that the best estimate of the phase is the 
corrupted one itself (Ding et al., 2011). DCT can attain a 
higher upper bound than DFT, since no such action 
generally results in an upper bound on the maximum 
possible improvement in Signal-to-Noise Ratio (SNR). 
DFT only creates about half the independent spectral 
constituents as the other half are complex conjugates, 
while DCT creates fully independent spectral components. 
Depending on these benefits, it is also proven that DCT is 
a suitable choice to the Discrete Fourier Transform (DFT) 
for speech enhancement Szeliski (2010). 

Pitch synchronous analysis has been earlier used in 
various speech signal processing systems such as speech 
analysis/synthesis system (Morales-Cordovilla et al., 
2011), prosody modification system (Govind and 
Prasanna, 2009) and speech recognition system. The 
fundamental scheme of pitch synchronous processing is 
to initially partition the speech signal into pitch periods 
for the voiced sounds and into pseudo pitch periods for 
unvoiced sounds. A number of different processes can 
then be applied on the resulting pitch synchronous 
segments for various functions. 

Pitch Synchronous Overlap Adds (PSOLA) 
technique is applied in the time domain and it makes 
the algorithm to be competent to control the value of 
the synthesized pitch and the duration of the 
synthesized signal (Jagla et al., 2012). PSOLA 
technique can also be used in other domains such as 
frequency domain (Bajibabu et al., 2011). Fourier 
transform is applied on the pitch synchronous sections and 
the resulting spectra are approximated by a pattern of 
zeros and poles to attain the pitch synchronous depiction. 
For examining the voiced sounds also uses this pitch 
synchronous representation and utilizes Wavelet 
transform on it to attain a new depiction of pseudo-
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periodic signal through a regularized oscillatory 
component and fluctuations. This depiction provides a 
number of scales for examining the fluctuations which is 
superior to Fourier representation with only one scale.  

Pitch synchronous speech segments are transferred to 
linear prediction residual on which the DCT is applied 
for resampling the residual signal by truncation or zero 
padding (Shahnaz et al., 2012). DCT is applied as an 
application tool as it is efficient at energy compaction. 
The energy loss with the DCT-based linear prediction 
technique is lesser than that with the direct linear 
prediction technique and this algorithm is thus superior 
to the original fundamental algorithm.  

Most of the existing research work demonstrates that 
the pitch synchronous processing assists in minimizing 
the discontinuities connected with windowing and it 
focuses on a key point, which is the pitch period. Pitch 
synchronous processing has been extensively applied in 
speech processing but is being rarely been used for the 
purpose of speech enhancement (Ding and Soon, 2009). 

3. ADCT AND IWFPS PITCH 
SYNCHRONOUS BASED SPEECH 

ENHANCEMENT  

The structure of this proposed speech enhancement 
system is shown in Fig. 1. The initial speech frame is 
filtered by a noise reduction technique and then a 
voiced/unvoiced decision is made. If it contains voiced 
signal, the time-shift will be changed to one pitch period. 
Otherwise, the time-shift will fall back to the original 
fixed value. In this way, the analysis window shift adapts 
to the underlying speech properties and it is no longer 
fixed (Ding et al., 2011). 

In order to improve the performance, Advanced 
Discrete Cosine Transform is used in this approach. 
Signal representation in ADCT domain has become an 
active area of research in signal processing. ADCT is 
being effectively used in superior quality audio coding 
due to its unique characteristic features. The main 
advantage of ADCT is its energy compaction capability. 
Moreover, it also attains critical sampling, a 
minimization of block effect and flexible window 
switching (Kasmani et al., 2009). 

In certain applications such as streaming audio to 
handheld devices, it is very essential to have quick 
implementations and optimized codec structures. In 
many circumstances, it is also efficient to carry out 
ADCT domain audio processing such as error 
concealment, which lessens the deprivation of subjective 
audio quality. The above said characteristic features of 
ADCT motivated the use of ADCT in this research work. 

The direct and inverse ADCT are defined as 
Equation (1): 
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where, k k ka = h aɶ is the windowed input signal, ak is the 

input signal of 2N samples. hk is a window function. 
Assume an identical analysis-synthesis time window. 
Certain limitations of perfect reconstruction are 
Equation (2): 
 

2
k k 22N 1 k k N 1

h h h h− − = =
= +  (2) 

 
A sine window is widely used in audio coding 

because it offers good stop-band attenuation, gives good 
attenuation of the block edge effect and allows perfect 
reconstruction. Other optimized windows can be applied. 
The sine window is defined as Equation (3): 
 

kh =sin[π(k +1 / 2) / 2N, k =0...,2N -1 (3) 

 
âk in (1) are the IADCT coefficients of ar. It contains 
time domain aliasing Equation (4): 
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3.1. Windowing Function 

In signal processing, if a signal is to be observed 
over a finite duration, then a window function has to 
be applied to truncate this signal. The simplest 
window function is the rectangular window which 
causes the well-known problem, spectral leakage 
effect. That is, if there are two sinusoids with similar 
frequencies, leakage interferes with one buried by the 
other. If their frequencies are unlike, leakage obstructs 
when one sinusoid has much weaker amplitude than 
the other. The main reason is that the rectangular 
window represented in the frequency domain has 
strong side-lobes where the first side-lobe is only 
around 13 dB lower than the main lobe. 
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Fig. 1. Block diagram of the ADCT based IWFPS 

 
Similar to Fourier transform, DCT has the same 
problem with the rectangular window. The rectangular 
window also has some disadvantages such as 
discontinuities at the endpoints or maximum scalloping 
loss for frequency component that is exactly in the 
middle of two FFT coefficients. Thus, some other 
window functions are used instead in many DCT 
applications. For instance, a sine window is widely 
used in audio coding because it offers good stop-band 
attenuation for high quality coding, e.g., MP3 and 
MPEG-2 ACC. Some other window shapes, such as 
Kaiser-Bessel derived window are used for Vorbis. 

Rectangular window does have some advantages. 
It has a narrower main-lobe which is able to resolve 

comparable strength signals. Besides, one advantage 
of using the DCT as compared to DFT is that there is 
no discontinuity problem caused by rectangular 
window at the endpoints, since DCT is based on an 
even symmetrical extension during the transform of a 
finite signal.  

Therefore, the selection of the window is based on 
a tradeoff between spectral resolution and leakage 
effects. In the literature of DCT-based speech 
enhancement algorithms, the Hann window is very 
popular (Shekokar and Mali, 2013). In this study, 
rectangular window is used for better performance of the 
system with Advanced Discrete Cosine Transform. 
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3.2. Improved Iterative Wiener Filtering 

Wiener filter has been proven to be the optimal filter 
for the real transform in Mean Square Error (MSE). 
During the implementation, it fully depends on the 
estimation of the a priori SNR. The a priori SNR can be 
computed by many ways among which the decision-
directed approach (Paliwal et al., 2012) is widely used. 
Let the noisy speech, clean speech and noise signal be 
denoted as y,s and n, respectively and their ADCT 
representations are Ym,k, Smk and Nmk. 

This study proposes a smoothed noise update 
technique that uses the estimated signal spectrum for 
subsequent signal estimation. It leads to a more 
efficient result than the soft-decision based noise 
estimate found in literature. Further, the CIWF 
performance is improved using codebook constraints 
in the LAR domain instead of LSP domain. 

Figure 2 shows the adaptive CIWF scheme. The 
noisy signal is x = s+d, where s is the speech signal and 
d is the noise signal. The speech signal s in IWF is 
formulated as a response of an all-pole system and the 
approach is utilized to solve for the MAP estimate of the 
signal, given x. In scenarios, where background noise 
psd Pd (ω) is time-varying, the conventional method is to 
update the noise psd estimate in nonspeech regions. This 
method has two major limitations: firstly, a speech/non-
speech classification is required which in itself is 
challenging in noisy conditions; secondly, this approach 
is based on the postulation that adequate non-speech 
duration is available to update the noise estimate which 
may not be the case. Furthermore, the noise itself could 
be changing within a non-speech region. Thus, an 
inaccurate calculation of Pd(ω) greatly affects the 
performance of the wiener filters. A simple and 
efficient adaptive technique is presented, that tracks the 
dynamic noise characteristics. As the signal spectrum 
can be calculated iteratively and the Wiener filter is 
optimum in calculating the signal, the noise spectrum in 
each frame can be calculated through signal 
subtraction. This provides the means of estimating the 
time-varying spectrum. However, it is assumed that 
noise is less time-varying than speech and thus, for 
each frame, the noise estimate is attained by averaging 
the noise power spectrum of the last L frames as shown 
below. For each frame m Equation (5 and 6): 
 

j= m- L

d j= m-1

1
P̂ (m;ω) = ( (F(j;ω).W(m)))

L
∑  (5) 

x s x s

x

ˆ ˆ ˆF(j;ω) =P (j;ω) -P (j;ω);if P (j; ω) >P (j;ω)

F(j;ω) =P (j;ω);otherwise
 (6) 

 
Parameter is the frequency index, P ̂d(ω) denotes the 

noise psd estimate, P ̂s(ω) represents the speech psd 
estimates, Px(ω) denotes the noisy signal psd estimates of 
CIWF and W(m) denotes the weighting function. 

In order to initiate the consecutive evaluation, the 
noise psd calculation is attained from assumed initial 
non-speech duration of 0.2 sec. The speech psd 
calculation is attained with every iteration of CIWF as 
shown in the Fig. 2. The smoothing parameter L is 
based on the measure of non-stationarity of the noise. 
Ideally, the smaller the value of L, the better is the 
algorithm able to track rapidly varying noise. In 
addition, the weighting function W(m) chosen as a 
tapering window takes into account the higher 
correlation of the nearby frames rather than farther 
frames. Although, the algorithm makes no assumption 
regarding the type of noise, it is found to give robust 
performance for a variety of real world noises 
(Jingfang, 2011). 

3.3. Spectral Subtraction Based Initialization (SSI) 

For each frame in sequential MAP calculation, a 
set of initial values for vector a denoted as ao is 
assumed based on which the speech vector Ŝ1 is 
calculated through the Wiener filter. The current 
estimate Ŝ1 is in turn used to estimate the next 
estimate of a. This procedure is continued until 
convergence is achieved. Santhi and Banu (2011), 
H(ω) is started as unity which is highly suboptimum. 
Therefore, it results in two possibilities. The first 
possibility is that the iterations might converge in 
such a way that the resulting filter is not perceptually 
the best. The second possibility is that, though they do 
converge to an optimal filter, number of iterations 
taken for convergence will be large. 

Hence, an initialization technique which provides 
efficient and quicker convergence is needed. A 
Spectral Subtraction based Initialization (SSI) method 
is proposed to deal with the above issues. For each 
and every frame, power spectral subtraction is 
performed to obtain the enhanced speech estimate. 
Following LPC analysis, the above estimate gives ao 

which determines Ho(ω). It is obvious that Ho(ω) is 
better than starting with a unity WF and it results in 
better convergence properties of CIWF. 
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Fig. 2. Adaptive Constrained Iterative Wiener Filtering (CIWF) 
 

3.4. Robust Parameter Domain Search 

The significance of CIWF lies in approximating 
the optimum filter by means of a codebook of clear 
speech vectors. Hence, the parameter space utilized to 
denote these vectors has a considerable bearing on the 
successive approximations. Line Spectral Frequencies 
(LSF), Reflection Coeffecients (RC) and Log Area 
Ratios (LAR) have a one-to-one mapping but they 

also have different clustering attributes due to the 
non-linear relationships between them. Hence, each 
has been used with varied success in speech coding 
and recognition. In this work, a number of different 
parameter spaces are explored for CIWF to discover 
the best performing parameter. The widely used IS 
distance measure is used for creating LPC codebooks. 
The Eucledean Distance (ED) is used for LAR and RC 
codebooks. For LSPs, ED and other two perception 
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based weighted Eucledean distances such as the Mel-
Frequency Warping (MFW) based distance which is 
modeled on the auditory system and the Inverse 
Harmonic Mean (IHM) based distance are presented. 
IHM based distance is perceptually appropriate as it 
weighs each LSF in the inverse proportion of its 
nearness to its neighbors because of the improved 
possibility of it denoting formants. 

The estimated a priori SNR, can be expressed as 
follows Equation (7): 
 

2 2

m-1k m,k

m,k
N N

Ŝ Y
ζ̂ =a +(1- a)max -1,0

λ λ

 
 
 
 

 (7) 

 
where, Ŝm-1,k is the estimated clean speech in the 
previous frame, max is the maximum function and λN is 
the noise variance which equals to the expectation of the 
power magnitude of the noise signal, E[Nm,k 

2]. The 
noise variance is assumed to be known since noise signal 
is a wide-sense stationary random process and can be 
computed during the silence period. In (1), the parameter 
is used to set a proportion of contributions from the 
previous frames to the current estimate. In Fourier 
transform domain, the value is normally set to 0.98 
which is an empirically obtained value and is known to 
be a good tradeoff between noise reduction and speech 
distortion. The same value of is also commonly used in 
DCT speech enhancement schemes (Ding and Soon, 
2009). However, this might not be proper for the new 
situation since DCT coefficients may require a different 
value of or even an adaptive one. 

In DFT domain, there are some work about adapting 
for better estimation of the a priori SNR (Shafi and 
Khan, 2012). Thus, it is workable to propose an adaptive 
for decision-directed approach in DCT domain which 
leads to an improved version of Wiener filter. The 
Minimum Mean Square Error (MMSE) criterion is used 
to derive the optimal expression. Recall the decision-
directed approach in (1), the a priori SNR can be 
expressed as Equation (8): 
 

m,k m,k m-1,k m,k m,k
ˆ ˆζ =a ζ +(1- )max (γ -1,0)α  (8) 

 
where, am,k is an adaptive version of a, ξm-1,k = Ŝ m-1,k 

2/λN 
and λm,k = Ym,k 

2/λN. Then the error between the estimated 
a priori SNR ξm,k and the real one ξm,k is Equation (9): 
 

( ){ }z

a m,k m,k
ˆ ˆJ = E ζ ζ−  (9) 

If E{( γm,k-1)z} is set to ξm,k which is reasonable, then 
(9) can be rewritten as Equation (10): 
 

( ) ( )
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z z2
a m,k m-1,k m,k m,k

z z2
m,k m,k m,k
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ζ̂ 1 E 1

α − − − α

+ − α γ −
 (10) 

 
Based on the assumption that DCT coefficient of speech 

signal Sm,k and noise signal Nm,k can be modeled as zero 
mean random Gaussian variables which are independent of 
each other, E{(γm,k-1)z} can be expressed as Equation (11): 
 

( ) ( ){ }4 2 2
m,k N,N m,kE S λ =3ξ  (11) 

 
Is used in (11) based on the assumption that the DCT 

coefficient of speech signal S(m,k) has a Gaussian 
distribution. Incorporating (10) and (11), the error can be 
finally obtained by Equation (12): 
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Equating ∂Ja/∂am,k to zero, the optimal expression of 

can be obtained as Equation (13): 
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The approximation used above is to avoid division by 

zero. As ξm,k is unknown, (7) cannot be applied directly. An 
approximate value of am,k can be obtained by substituting 
ξm,k with ξ(m,k) which is defined as follows Equation (14): 
  

( )m,π m,k= γ -1 *ζ Η(m)  (14) 

 
where, * is the convolution operator, H(m) is a low pass 
filter and a Gaussian mask is applied here to realize this 
smoothing function of H(m). The reason for applying 
this low-pass filter is that it is able to reduce the variance 
among different speech frames which are caused by 
noise. This annoying effect can be further reduced by a 
“moving” value of am,k Equation (15): 
 

m,k m-1,k m,k= β + (1-β)ˆ αâ a  (15) 
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β represents a parameter which is fixed to 0.5 for 
the experimental evaluations. From the above 
equation SNR changes slowly, the parameter am,k will 
be a value close to one. If the SNR has sharp changes, 
the parameter will take a smaller value enabling to 
change adaptively. Thus, the adaptive controller is in 
the range of zero to one. 

3.5. Pitch Synchronization  

In order to implement the ADCT based IWFPS 
algorithm, the pitch period should be extracted first. 
There are many ways to estimate the pitch periodicity of 
a speech signal.  

From periodicity in time or from frequently spaced 
harmonics in frequency domain the pitch can be 
predicted. A time domain pitch estimator needs a 
preprocessor to filter and make simpler the signal 
through data reduction, basic pitch estimator and a post 
processor to correct errors.  

The autocorrelation approach is mainly used in 
time domain method for calculating pitch period of a 
speech signal. 

For a discrete signal x (n), the autocorrelation 
function is Equation (16): 

 

( ) ( )

( )
n N

0

lim 1
R m = x n .

N α 2N +1

x n +1 ,0 m M
=−→

≤ ≤

∑
N

 (16) 

 
where, N is the length of analyzed sequence and M0 is 
the number of autocorrelation points to be computed. 
For pitch detection assume x (n) is periodic sequence, 
that is x(n) = x(n+P) for all n, it is shown that the 
autocorrelation function is also periodic with the same 
period, R(m) = R(m+P). On the contrary, the 
periodicity in the autocorrelation function point out 
periodicity in the signal. For a non-stationary signal 
like speech, the long time autocorrelation is calculated 
from (16). Generally with short speech segments, 
consisting of finite number of samples the 
autocorrelation based PDAs short-time autocorrelation 
function is as below Equation (17): 

 

( ) ( ) ( )
1

n 0
0

1
R m = x n .x n + m ,0 M

N

− −

=

≤ ≤∑
N m

m  (17) 

The variable m in (17) is called delay and the pitch is 
equal to the value of m which results in the maximum 
R(m). In the proposed approach, the pitch period is 
calculated using autocorrelation method. 

The final enhanced speech is obtained by overlap 
add process. Actually, this process is a little different 
from the original process due to the adaptive window 
shifting. A convenient solution is to produce a 
weighting function which records all the windows 
frame by frame and calculates the net weighting 
function. The weighting function can be calculated 
from the current and the previous frames and hence 
can be performed in real time. Thereafter, the 
enhanced speech has to be normalized by the 
weighting function. 

3.6. A New PSOLA Approach to Enhance the 
Pitch Synchronous Analysis  

A pitch mark location method is modified for signals 
with varying fundamental frequency. The analysis stage 
intend to iteratively collecting sound samples from the 
input signal at equally spaced fundamental frequencies 
Equation (18): 

 

min 0 0
0i 0

max minF F
F = F +i i = 0,M-1

M 1

−
−

 (18) 

 
where, M is the total number of sound samples to extract:  

• Calculate the growth of the fundamental frequency 
of the input signal. This step is performed by 
calculating, approximately the evolution of the most 
energetic harmonic kAmax = Fo 

• This component is got from the input signal with 
a selective time varying passband filter. The 
central frequency of the filter is noted at every 
sample to match the local kAmax = Fo 
approximation. Preferably, the resulting signal is 
a single sinusoid modulated in frequency and 
amplitude according to the kAmax = Fo evolution 
and remains in phase with the input signal 

• Pitch marks are placed so for recalling kAmax = Nc 

these are placed in the input signal at the intial 
level for every th

cN  period of the filtered signal 
obtained in step 2. For each frequency Foi, a 
single pitch mark is chosen as the one equivalent 
to the closest fundamental  
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• For each selected pitch mark, a sound sample is 
extracted from the input signal with an suitable 
temporal window. The additive noise ωFo is naturally 
extracted with the harmonic part of the signal and 
requires no additional operations (Jagla et al., 2012) 
Equation (19): 

 

[ ] [ ]
0

0
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s
F0,k

kF
x n = sin 2π n + +ωF n

F

 
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 
∑

k

A  (19) 

 
where, n is the discrete time index: 

• F0 = Fc is the fundamental frequency 
• AFo,k and φFo,k are the amplitudes and the initial 

phases of the harmonics  
• ωFo[n] is the stochastic component 

4. EXPERIMENTAL RESULTS 

For this experimental setup, a hundred different 
segments of speeches (half females and half males), are 
randomly chosen from the TIMIT database. They are 
resampled at 8 kHz and corrupted by three additive 
noise types including white noise, fan noise and car 
noise. The total speech duration of all these test speech 
segments is 313.998s including the silence period. 
Approximately 50% of the speech segments are 
classified as voiced speech. 

The proposed ADCT based IWFPS technique is 
evaluated using two objective measures, segmental 
SNR (SegSNR) measure and Perceptual Evaluation of 
Speech Quality (PESQ) measure. Since SegSNR is 
better correlated with Mean Opinion Score (MOS) 
than SNR as indicated by (Kressner et al., 2013) and 
is easy to implement and it has been widely used to 
qualify the enhanced speech. The implementation in 
(Valentini-Botinhao et al., 2011) is adopted here such 
that each frame with segmental SNR is thresholded by 
a dB lower bound and a 35 dB higher bound. The 
segmental SNR is defined by (Ding and Soon, 2009) 
Equation (20): 
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 (20) 

 
where, γ represents the set of frames that contain speech 
and |γ| its cardinality.  

PESQ which is described in ITU-T recommendation 
P.862 and is also published in (Rix et al., 2011) is an 
objective measurement tool that predicts the results of 
subjective listening tests on telephony systems. It uses a 
sensory model to compare the original, unprocessed 
signals with the enhanced signals. Valentini-Botinhao et al. 
(2011) it is indicated that the SegSNR is a better 
evaluation in terms of noise reduction, while the PESQ is 
more accurate in terms of speech distortion prediction. 
The latter is also more reliable and highly correlated 
with MOS as compared to other traditional objective 
measures. In most situations, PESQ is the best 
objective indicator for overall quality of enhanced 
speech. Before evaluating the ADCT based IWFPS 
system, the effects of window functions should be 
presented. Iterative Wiener filter with fixed time-shift 
analysis of 8ms is utilized. Two different window 
functions, rectangular window and Hann window are 
used to truncate the input signal.  

The window length is fixed to 32 ms. SegSNR and 
PESQ results are shown in Fig. 3 and 4, respectively. 
From these two figures, it is clear that rectangular 
window is better for DCT based noise reduction 
algorithms. For all the noise types taken into 
consideration, rectangular window is observed to provide 
better Segmental SNR.  

To exhibit the advantages of each component of the 
proposed ADCT based IWFPS system, three speech 
enhancement schemes are compared. The first approach 
is Wiener filtering with a higher fixed overlap which can 
be denoted as WFHO. The second one is the pitch-
synchronized Wiener filtering named as PSWF. The 
third approach is the Adaptive Time-Shift Analysis 
speech (ATSA) approach. 

Table 1 shows the comparison of SegSNR results. 
The comparison is carried out for three noise types such 
as White noise, Fan noise and Car noise. The Input SNR 
taken for experimentation are 0, 5, 10 and 15. For white 
noise, the proposed ADCT based IWFPS provides 
efficient ∆SEGSNR for all the SNR input values taken 
for consideration. Similarly for the other noise types, the 
proposed ADCT based IWFPS approach outperforms the 
other approaches taken for comparison.  

Table 2 shows the performance comparison of the 
proposed speech enhancement approach with other 
approaches suchs as WFHO, DCT based PSWF and 
ATSA in terms of PESQ score. It is observed that the 
proposed ADCT based IWFPS approach provides better.
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 (C) 
 

Fig. 3. Segmental SNR results of noisy speech, iterative wiener filtered speech with rectangular window and hann window 
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 (a) 
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  (c) 
 

Fig. 4. PESQ score results of noisy speech, iterative wiener filtered speech with rectangular window and hann window 
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Table 1. Comparison of ∆SEGSNR results 

  ∆SEGSNR 
  ------------------------------------------------------------------------------------------------------ 
Noise SNR  DCT based  ADCT based  
type (dB) WFHO PSWF  ATSA IWFPS 

White 0 5.23 5.24 5.48 5.62 
 5 4.52 4.53 4.86 4.99 
 10 3.48 3.53 3.95 4.12 
 15 2.52 2.56 3.09 3.28 
Fan 0 8.84 8.97 9.26 9.51 
 5 8.76 8.94 9.29 9.56 
 10 8.27 8.52 8.84 9.05 
 15 7.42 7.71 8.01 8.23 
Car 0 12.11 12.21 12.72 12.94 
 5 11.70 11.81 12.34 12.55 
 10 10.85 11.03 11.48 11.69 
 15 9.65 9.81 10.22 10.54 

 
Table 2. Comparison of ∆ PESQ results 

  ∆ PESQ (×10−1) 
  ---------------------------------------------------------------------------------------------------------- 
   DCT based  ADCT based  
Noise type SNR (dB) WFHO PSWF ATSA IWFPS 

White 0 6.13 6.17 6.27 6.39 
 5 6.78 6.90 7.00 7.12 
 10 6.98 7.04 7.21 7.34 
 15 6.82 6.87 6.99 7.13 
Fan 0 6.40 6.48 6.70 6.91 
 5 5.78 5.81 5.96 6.13 
 10 4.71 4.72 4.88 5.06 
 15 3.52 3.58 3.73 3.96 
Car 0 4.53 4.58 4.76 4.95 
 5 3.40 3.47 3.61 3.87 
 10 2.17 2.23 2.41 2.63 
 15 1.14 1.20 1.27 1.39 

 

5. CONCLUSION 

This research work focuses on developing an 
efficient speech enhancement technique. DCT based 
speech enhancement approaches are observed to 
produce better results. In conventional DCT-based 
noise reduction algorithms, the observed speech signal 
is partitioned into fixed overlapping frames and 
transformed into DCT domain which results in 
variation of DCT coefficients from one frame to 
another due to non-ideal analysis window positions. In 
order to improve the overall performance, Advanced 
Discrete Cosine Transform is integrated with pitch 
synchronous analysis technique. Iterative Wiener 

filtering is also used in this approach for better 
performance. The autocorrelation function is used for 
detecting the pitch period which in turn,is used as the 
amount of shift for the analysis window. Therefore, a 
consistent DCT spectrogram is generated for better 
noise reduction filtering. This technique can be further 
improved by maximum alignment which results in a 
much better fit to the DCT basis functions. The 
proposed approach of ADCT based IWFPS produces 
good quality enhanced speech. Two objective 
measures, segmental SNR and PESQ are utilized to 
evaluate the proposed system. The future work of this 
research is to use different transformation approaches 
for evaluating the performance of the system. 
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