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ABSTRACT

The aspect of this study is to compare the thréferdint algorithms such as Genetic Algorithm (GA),
Enhanced Genetic Algorithm (EGA) and Particle Swé&rptimization (PSO) to fine the optimal location of
the FACTS device in the transmission line. The FA&Qievices Thyristor Controlled Series Compensator
(TCSC) and Unified Power Flow Controller (UPFC) aadected based on the steady stability state and
dynamic stability state. Each of the algorithmsci@ded in MATLAB and incorporated it with the
conventional Newton Raphson’s load flow analysie. fihd the effectiveness of the proposed algorithm
IEEE 14-bus system is taken as the test system.

Keywords; Optimal Power Flow (OPF), Flexible AC TransmissiBystem (FACTS), Genetic Algorithm
(GA), Enhanced Genetic Algorithm (EGA), Particle &m Optimization (PSO), Newton
Raphson’s (NR) Power Flow

1. INTRODUCTION main factor to select the FACTS devices. Hence the
generation cost and the cost of device to be uBeele
The power flow in the power system has becomeare many works still is progress to find the looatand
very complex. In order to have a maximum power the optimal choice of the device.

transfer and utilization of the existing power syst The main idea is to develop a MATLAB based code
resources. This can be archived by the use of #@Ts  for the algorithms to find device and the rating lte
devices in the power system. connected along with it the generators limits sttt the

The various improvements when the FACTS devicesoverall system cost including the device cost isimized.

are connected in the power system network are the
stability, behaviour and the reliability of the pew 2.FACTSDEVICESSELECTION

system. The dynamic and the steady state stability The various possible problems that can occur in the

possible problems and the devices to be used q),yer system are tabulated Tmble 1 and 2 as steady
overcome are discussed. For the selection of tl€TFA  gi41e stability and dynamic stability state (Kiremal.,

devices the other criteria necessary are its veltagits,  2011). The FACTS devices can be classified based on
thermal limits, loop flow, short circuit level artde sub-  who they are connected to the power system as shunt
synchronous resonance. series or both together. The different types of F&C

There are various researches in progress to improvelevices are TCSC, TSSC, UPFC, SVC, STATCOM and
the static performance of the power system. Theis@  some other devices.
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Table 1. Dynamic stability state

Issue Type of system

Corrective action

FACTS mmiler

Transient stability Radial, Interconnected,

loosely meshed network

Interconnected, loosely

and tightly meshed network
Radial,

Interconnected, loosely

meshed network

Dampening

Radial, Interconnected,
loosely meshed network

Post Contingency
Voltage Control

Radial, Interconnected, loosely

and tightly meshed network
Interconnected, loosely and
tightly meshed network

Voltage Stability

Inceeggnchronizing
torque
Dynamic load flow

Damper 1Hz oscillation

Damper low frequency
oscillations
Dynamitagel
supportféoa control
Reduced impact of
contingency
Rieactupport
Network control actions

TCSC, TSSC, UPFC
TCPAR, UPFCSC

SVC, TCSTABCOM

SVC, TCSC, URAB,TCOM
SVC, UPFC, TCSC
VC,SITCSC, STATCOM, UPFC

UPFC, SVC, STATCOM
RIR TCSC, STATCOM

Table 2. Steady state stability

Issue Problem

Corrective action

FACTS contralleed

Voltage limits Low voltage at heavy load
High voltage at light load
Low voltage and outage

Line or transformer

Tripping of parallel circuit

Parallel line load sharing

Post-fault sharing

Flow direction reversal
Excessive breaker fault cutren
Generator shaft damage

Thermal limits
over load
Loop flow

Short circuit level
SSR

Supphactive power
Remove reactive power
Prevent overload

Supply reactive power and
limit over load

Reduce overload
Limiting @uit loading
Adjust serfeactance
Rearrange network
Adjust phase angle

Limit short circuit current
Mitigate oscillations

SVC, TCSC, STATCOM
TCSC, STATCOM
TCPAR, TCSC
TCSC, UPFC, STATCOM, SVC

TCSC, UPFC, TCPAR
UPFC, TCSC
UPFC, TCSC
TCSC, UPFC, TRPA
TCPARFQG
TCSC, UPFC
TCSC

From the dynamic stability state tabulation it dan

concluded that for most of the problems, the neugss

corrective measure and the device to be connected t

overcome the problem in most of the cases are:

- UPFC
. TCSC

3. COST FUNNCTION

As stated earlier the objective in this study is to

reduce the overall cost function of both generatiost
(Subramaniet al., 2012) and investment cost of the
FACTS devices (Kiranet al., 2012). Also, to find
simultaneously the optimal choice and location of

FACTS device so the overall cost is minimized.
From the tabulation iTable 2 it can be concluded . .
that for all the possible problems in steady ssability ~ 3-1. Generation Cost Function
the same devices to be connected to overcome the

; The costs function of the generation represented by
problem in most of the cases:

quadratic polynomial as follows Equation (1):

« TCSC

. UPEG C2(PG=a,+a,PGra, PG 1)

In the analysis of the problems that are tabulited Whereas PG is the output of the generator (MW) @nd
the Table 1 and 2 the best devices that can be used in % @nda are cost coefficients.

the power system are UPFC and TSCS. 3.2. Facts Controller Cost Function

This study does not deal with modelling of the TCSC
Based the Siemens AG Database the cost function for

and UPFC. Only the device selection and the ratihg
the FACTS device to be used are obtained as thdt.res  the controller that has been selected to use dimlaws:
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The cost function for UPFC is Equation (2): B1(f) and B2(g) = The inequality constraints for
FACTS controllers and the
Ciuprc = 0.00038 —0.2691s 18802 USS$/ky 2) conventional power flow
) ) ) respectively.
The cost function for TCSC is Equation (3): f& PG = vectors that represent the variables
Coroec= 000158 ~0.7130s 1535 USS/ kY 3) of FACTS controllers and the active

power outputs of the generators.
Represents the operating state of the
power system.

«
1

The rating of the device is given by Equation (4 &n
Rycsc =1t *0.45-0.2% Mvay 4) The unit for generation cost is US$/Hour and the
investment cost of FACTS controllers are US$. Thmst
Ryprc = If *180(MVar) ) be unified into US$/Hour. Normally the FACTS cottiets
will be in service for many years. However onlyaatf its
life time is employed to regulate the power flow. this
study three years is employed to evaluate thefanstion.
Therefore the average value of the investment cargts
calculated as follows Equation (9):

3.3. Optimal Power Flow with Facts Device
Cif)=c(f)/{8760x } 9)

The total cost of the FACTS devices along with the
generation cost is implemented as Equation (6:to 8)

Where Guprc and Grese are in US$/kVar and s is
the operating of the FACTS controller in MVar. The
cost function of the TCSC and UPFC are found as
shown inFig. 1.

As mentioned above, power system parameters can
Minimum CTotal= C{ fj+ C% PG (6) be changed using FACTS controllers. These di_ffer_ent
parameters derive different results on the objectiv
function. Also, the variation of FACTS locationsdan
FACTS types has also influences on the objective
function. Therefore, using the conventional
optimization methods is not easy to find the optima

where, CTotal-the overall cost objective functiohiet location of FACTS devices, types and control

includes the average investment costs of FACTSceevi parameters S|muIt§1neoust. To solve .th's pro_blem,
C1(f) and the generation cost C2(PG). optimization technique such as Genetic Algorithm,

_ Enhanced Genetic Algorithm and Particle Swarm
E (f.9) = The conventional power flow Algorithm are employed in conjunction with
equations. conventional NR power flow method.

Subjected to E f,p= @

B1(f) <b1,B2 g < bz (8)

USS$/kVar

160
140
120 =
100
30 _
60 I
40
20

— 1 T 1 1 1 1 1 "o [ |
100 200 300 400 500

Operating range in MVAr

Source: Siemens AG database

Fig. 1. Typical investment cost for TCSC and UPFC
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4. GENETIC ALGORITHM segments of information stored in parent
chromosomes. Until now, many crossover schemes,

GA's are general purpose optimization algorithms such as single point, multipoint, or uniform crosso
(Popov and Hamburg, 2008) based on the mechanichave been proposed in the literature. Uniform
of natural selection and genetics. They operate oncrossover has been used in our implementation.
string  structures  (chromosomes), typically a  While crossover is the main genetic operator
concatenated list of binary digits representing aexploiting the information included in the current
coding of the control parameters (phenotype) of ageneration, it does not produce new information.
given problem. Chromosomes themselves are Mutation is the operator responsible for the inect
composed of genes. The real value of a controlof new information. With a small probability, rando
parameter, encoded in a gene, is called an allele. bits of the offspring chromosomes flip from 0 tcadd

GA's are an attractive alternative to other yjce versa and give new characteristics that doemist
optimization methods because of their robustnelere’ i the parent population. In our approach, the tiunta
are three major differences between GAs andgperator is applied with a relatively small probiapi

conventional ~optimization algorithms. First, GAs (0.0001-0.001) to every bit of the chromosome.
operates on the encoded string of the problem peteam

rather than the actual parameters of the probIth The a|gorithm flow sequence of S|mp|e genetic
string can be thought of as a chromosome thatalgorithm is as follows:

completely describes one candidate solution to the

problem. Second, GAs uses a population of pointse Begin

rather than a single point in their search. Thisved « Initialization of generation and population

the GA to explore several areas of the search space Check for generation level

simultaneously, reducing the probability of finding « Evaluation of the fithess function

local optima. Third, GAs do not require any prior . gelect the best parent in the generation
knowledge, space limitations, or special propertés . Crossover the parent generation to form a new
the function to be optimized, such as smoothness,  generation

convexity or existence of derivatives. They onlguie « Increases the generation by one move to step 3

the evaluation of the so-called Fitness Functior) (o e End

assign a quality value to every solution produced.

Assuming an initial random population produced and  The FF evaluation and genetic evolution take part i
evaluated, genetic evolution takes place by medns 0, jierative procedure, which ends when a maximum
three basic genetic operators: number of generations are reached.

When applying GAs to solve a particular
optimization problem (OPF in our case), two maBues
must be addressed:

+ Parent selection
» Crossover
* Mutation
L . e The encoding, i.e., how the problem physical

Parent selection is a simple procedure whereby tWo  jecision variables are translated to a GA
chromosomes are selected from the parent population  hromosome and its inverse operator, decoding
based on their fitness value. Solutions with hiihess ¢ gefinition of the FF to be maximized by the GA
values have a high probability of contributing new (the GA FF is formed by an appropriate
offspring to the next generation. The selectior used transformation of the initial problem objective

in our approach is a simple roulef(te-wheel selectio function augmented by penalty terms that penalize
Crossover is an extremely important operator for the violation of the problem constraints

the GA. It is responsible for the structure
recombination (information exchange between mating ;
chromosomes) and the convergence speed of the Gﬁ'l' Encoding
and is usually applied with high probability (0.6} In the SGA, after the application of the basic
The chromosomes of the two parents selected argenetic operators (parent selection, crossover and
combined to form new chromosomes that inherit mutation) the advanced and problem-specific
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operators are applied to produce the new generationand mutation) the advanced and problem-specific
All chromosomes in the initial population are cezht  operators are applied to produce the new generation
at random (every bit in the chromosome has equal All chromosomes in the initial population are cesht
probability of being switched ON or OFF). at random (every bit in the chromosome has equal
Due to the decoding process selection, theprobability of being switched ON or OFF). Due teth
corresponding control variables of the initial ptaion ~ decoding process selected, the corresponding dontro
satisfy their upper—lower bound or discrete value variables of the initial population satisfy theipper—
constraints. Population statistics are then used tdower bound or discrete value constraints. Howetles,
adaptively change the crossover and mutationinitial population candidate solutions may not sigtthe
probabilities. If premature convergence is detedtesl ~ functional operating constraints or even the lof
mutation probability is increased and the crossoverconstraints since the random, within limits, se@ctof
probability is decreased. The contrary happenshin t € control variables may lead to load flow diverge.
case of high population diversity. _ Popula‘uo.n statistics computed for the new genemati
include maximum, minimum and average fitness values
4.2. Fitness Function and the 90% percentile.

GAS i v desianed ¢ imize the FF Population statistics are then used to adaptively
S IS usually designed so as 1o maximize the 'change the crossover and mutation probabilities. If

which is a measure of the quality of each candldatepremature convergence is detected the mutation

solution. The objective of the OPF problem is 0 hrgnapility is increased and the crossover protighis

minimize the total operating cost (6). decreased. The contrary happens in the case of high
Therefore, a transformation is needed to convest th population diversity.

cost objective of the OPF problem to an appropridte
to be maximized by the GA. The OPF functional 5.1. Advanced and Problem-Specific Genetic
operating constraints (9) are included in the GAitian Operators

by augmenting the GA FF by appropriate penalty term

for each violated functional constraint. Constraion the lution is the effecti ¢ th
control variables (8) are automatically satisfiegthe ~ €volution is the effective rearrangement of the ogype
selected GA encoding/decoding scheme. information. In the SGA, crossover is the main gene

Therefore, the GA FF is formed as follows Equation OPerator responsible or the exploitation of infatiova

One of the most important issues in the genetic

(10 and 11): while mutation brings new non-existent bit struegurlt is
widely recognized that the SGA scheme is capable of
A locating the neighbourhood of the optimal or neziroal
FF= (10) : - ;
Ng Ne . solutions, but in general, requires a large numbkr
;F'(PG'H;‘*’J’PG“J generations to converge. This problem becomes more

intense for large-scale optimization problems wiifficult
search spaces and lengthy chromosomes, where the

Penj=| hi(x,u} |_( h{ XL)) (11) possibility for the SGA to get trapped in local iog!
increases and the convergence speed of the SGéadesr
Where: _ _ At this point, a suitable combination of the basic,
FF = Fitness function advanced and problem-specific genetic operators baus
A = Constant o introduced in order to enhance the performancehef t
Fi(PGi) = Fuel cost of uniti _ GA. Advanced and problem-specific genetic operators
H(.) = Heaviside (step) function usually combine local search techniques and exseerti
NG = Number of units , _ derived from the nature of the problem.
Nc = Number of functional operating constraints A set of advanced and problem-specific genetic
operators has been added to the SGA in order teage
5.ENHANCED GENETIC its convergence speed and improve the quality of
ALGORITHM (EGA) solutions. Our interest was focused on construdinmgple

yet powerful enhanced genetic operators that éffdyt
In the EGA, (Goyal and Singh, 2012) the application explore the problem search space. The advanceatdsat
of the basic genetic operators (parent selectimssover  included in our GA implementation are as follows.
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5.2. Fitness Scaling 5.7. Gene Copy Operator (GCO)

In order to avoid early domination of extraordinary This operator randomly selects one gene in a
strings and to encourage a healthy competition gmon chromosome and with equal probability copies ilsi@o
equals, a scaling of the fitness of the populatisn the predecessor or the successor gene of the sarelc
necessary. In our approach, the fitness is scaje@d b type as shown iffig. 4. This operator has been introduced
linear transformation. in order to force consecutive controls (e.g., id@htunits
5.3. Elitism on the same bus) to operate at the same outplit leve

Elitism ensures that the best solution found tauss ~ 9-8- Genelnverse Operator (GIO)
never lost when moving from one generation to agroth

. i This operator acts like a sophisticated mutation
The best solution of each generation replaces goraly P P

. ; operator. It randomly selects one gene in a chromes
selected chromosome in the new generation. . . . .
and inverses its bit-values from one to zero arwk vi
versa as shown ifrig. 5. The GIO searches for bit

5.4. Hill Climbing
In order to increase the GA search speed at smootr?trUCtureS of improved performance, exploits neaaar

areas of the search space a hill-climbing operigor of the search space far away from the current isolut

introduced, which perturbs a randomly selected robnt @nd retains the diversity of the population.
variable. The modified chromosome is acceptedeifeths 5.9. Gene Max-Min Operator (GMMO)
an increase in FF value; otherwise, the old chrames e

remains unchanged. This operator is applied onlshéo
best chromosome (elite) of every generation.

The GMMO tries to identify binding control variable

upper/lower limit constraints. It selects a randgame in

In addition to the above advanced features, whieh a a chromosome and, with the same probability (G,

called “advanced” despite their wide use in moseng
GA implementations to distinguish between the SGA a

its area with 1s or Os as showrfig. 6.

The step by step procedure for the Enhanced Genetic

our EGA, operators specific to the OPF problem haveAlgorithm is as follows

been added.

All problem-specific operators introduce random

modification to all chromosomes of a new generatlén

Input of the data: vib, vub, PC, Pm, the functidn o

the modified chromosome proves to have better ditne adaptation and_ size of the_ populanon_

it replaces the original one in the new population. * 10 choose arbitrary the initial population

Otherwise, the original chromosome is retainedhia t * T0 decode the chains to calculate the value of the
new population. All problem-specific operators are  function to be optimized. For that, it is enough to
applied with a probability of 0.2. The followingqislem- inject the values of chains decoded in the function
specific operators have been used. * To use the three following operators:

Reproduction

5.5. Gene Swap Operator (GSO) Crossover

This operator randomly selects two genes in a Mutation

chromosome and swaps their values as showfign * To use the three following operators:

2. This operator swaps the active power output af tw Reproduction

units, the voltage magnitude of two-generation Buse Crossover

Swapping among different types of control variables Mutation

is not allowed. * Advanced and problem specific operators
Hill Climbing

5.6. Gene Cross-Swap Operator (GCSO)

The GCSO is a variant of the GSO. It randomly
selects two different chromosomes from the poportati
and two genes, one from every selected chromosaonhe a
swaps their values as shownRig. 3. While crossover
exchanges information between high-fit chromosomes,*
the GCSO searches for alternative alleles, expipiti
information stored even in low-fit strings. .

Gene swap operator

Gene cross-swap operator

Gene copy operator

Gene Inverse Operator

Gene max-min operator

If the convergence of GAs is reached we print the
optimal values and stop;

else go to the second step
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15t control 2d control | e, Ntb control
ol 1 1]0 1] 1 o] 1 [ [ | ol 1 [1]o
r A
15t control 2nd control | Nt control
ol 1] 1]o0 1] 1]o0] 1 | [ | ol 1]17]o
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Fig. 2. Gene swap operator
1% control 28 control | ceereeenieeenenie Nt control
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Fig. 3. Gene cross-swap operator

(N-1)" control N control (N+1)™ control
0 1 1 0 1 1 0 1 1 0 0 1 0 1 1 0
T et
Fig. 4. Gene copy operator

1¥! control 22 control | N control

0 1 1 0 1 1 0 1 0 1 1
Y

1 0 1 0 0 0 1 0 0 0 1 0

Fig. 5. Gene inverse operator

1 0 1 0 0 0 0 0 0 0 1 0
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Fig. 6. Gene max-min operator
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6. PARTICLE SWARM Update particle position according to Equation;(13

End;
OPTIMIZATION (PSO) Update the value of the weight factei(option);

PSO is a population-based stochastic optimization —Check if termination=true;
technique (Kiranet al., 2012) developed by Eberhart End
and Kennedy (1995), inspired by the social behaviou ]
of bird flocking or fish schooling. These phenomena 6.1. Implementation
can also be observed on insect colonies, e.g., leiss
applicable to solving a number of problems wheralo
methods fail or their usage is ineffective, ashis tase.

One of the most important features of PSO is thiktyab both d b i th
of optimizing large complex  multi-criteria oth parameters are represented by a vector in the

combinatorial problems where the problem with the Program implementation. The particles were coded by
design of criteria function occurs, for example,ist natural numbers. The position of each element & th
hard to derive or is not continuous. vector space represents the number of the nodéichw
PSO however does not need this as it only requires® shunt capacitor should be placed whose value
the evaluation of each solution by the fitness fiomc  designates the capacitor type. The whole set dicfes
depending on the set of optimized parameters. Thisat a time is called the population. The subset mefde
function is also used by GA and so is the ideahef t newly born particles is called the generation.
initialization of parameter setup as a random The first generation of particles is produced with
generation. The main advantage of PSO compared t@andom position and velocity. Particle velocity is
GA is the simpler method of providing new solutions checked whether it is within the limits. The topeed
based only on two variables-velocity and position can be different for each unit of velocity vecttrthe
related by two linear equations. Each possibletsmiu  velocity component exceeds the maximum allowed
are represented by a particle, which flies throtlh  value, then it is set to the top value. After thisrection,
searched space, which is limited by restrictive the solution is evaluated by the fitness functidine
maximum anpl minimum v_alues, toyvard_the_ current fiiness  function plays a key role in the program;
optimal position. The particle has its directiondan inarefore it is necessary to describe it in motaitie
speed of movement (velocity) but it can also rangom
decide to move to the best position of all poskion to 6.2. Fitness and penalization functions
its own best position. Each particle holds inforimat ) . . .
about its own position (which represents one piént The .fltness function evaluates the quality of Sohs
solution), the velocity and the position with thesb and it incorporates numerous parameters, such es th

fitness function it ever has flown through. capital cost of capacitors, expenses covering theep
The flow sequence of the Particle Swarm losses in the network per year and functioifhe power
Optimization Algorithm (Poliet al., 2007) is illustrated ~ l0sses are calculated by steady state analysishef t

The program was implemented in the Matlab
environment. The position here represents one paten
solution, the velocity shows the trend of this mégtand

as follows: network. The output of the fitness function is tgt@arly

Algorithm PSO operational costs of the network. The lower thaefis
Begin function value, the better the solution. The figes
Generate random population of N function is calculated by the following equation:
solutions(particles);
For each individual ¢ N calculate fitness (i); FF=15 A — (12)
Initialize the value of the weight factor; 3 Fi(PGi)+ Y wi-Penj

For each particle; =) i

Set pBest as the best position of particle i;

If fitness (i) is better than pBest; Where:

pBest(i)=fitness (i); FF = Fitness function

End; A = Constant

Set gBest as the best fithess of all particles; Fi(PGi) = Fuel cost of unit i

For each particle; H(.) = Heaviside (step) function

Calculate particle velocity according to Equation NG = Number of units

(12); Nc = Number of functional operating constraints (2)
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(13)

Penj:| hi(x, Ub‘ H( h( X L))

6.3. Next population

After evaluation, the solutions can be sorted with
respect to their fitness functions and it is polesito
develop a new generation, as can be seehign 2.
The first cycle ends after the creation of a new
velocity vector and the calculation of the new piosi
of the particular particle.

The new vector of velocity is calculated by the
formula Equation (14):

v

=V + €, Req= Rod * 6 0 Gesm "G (14)

where, v denotes the new vector of velocity, is the
original vector of velocity, cand ¢ are the constants
which are set to the weight of differences of posi, n
and n are the random variable8,_ is the best position

est

of particle, P, is the current position of particle and

0S

bestj,. is the best position of all particles.
The new position is determined by the formula

Equation (15):

Pbest = Ppos+ v

(15)

6.4. Border

Each particle should be kept in a confined space
corresponding to the parameter limitations. Thisbpgm
is solved in this program by one of four methodsthe
first case, the particle arriving in the forbiddanea
returns to its previous position. In the secondecdlse
particle is held on the border. In the third cades
particle is bounced back to the allowed space.
Bouncing back to the allowed space can be perfect o
imperfect. Regarding the imperfect bounce, it is
possible for the particle to end up in a randomitpms
In the fourth case, the particle can fly througke th
forbidden area back to the allowed space, but @n th
other side of the allowed space. This approachbean
used in the case of a very specific limited sp&ig ().

6.5. Parallel operation

One of the advantages of PSO utilization is the
possibility to introduce parallel operations withutual
coupling, which enables searching in a larger aka

///// Science Publications 288

feasible solutions and thereby finding the optimum
solution more quickly. Parallel operation meansttha
instead of a single branch of evolution several
branches are created. These branches influence one
another during the evolution only after a given
number of generations when the temporary best
solution of all the branches is transferred to ofieer
branches. Thus the evolution of the branches
independent, but they can also use the resulthef t
other branches. This modification limits a potehtia
deadlock of the algorithm in the local minimum.

7. TEST RESULTS

is

A MATLAB coding is developed for each algorithm
inter linked with the conventional Newton Raphson’s
method for load flow study. IEEE 14-bus systermalen
to verify the effective operation of the algorithifhe
Fig. 8 shows the line diagram of IEEE 14-bus system.

The total population size in each algorithm is cielé
as 30, the mutation probability as 0.01 and crossov
probability as 1.0.

From the coding results obtained with genetic
algorithm it is found that each time the coding is
executed a new result is obtained as tabulat@alihe 3.
From the observation made from thable 3 we could
say that with genetic algorithm analysis the use @6C
controller with rating of 1.0 to -1.0 p.u at thendi
connecting the bus 4 to bus 9.

0 1 2 3 4 5 6 71 8 9
PROHIBITED

Il AREA

,

’ b4

4 5

& - .

b é r

e
6 o
,I
5 PERMITTED T
AREA
8
0

Fig. 7. Border of the space under examination-particle is
returned to allowed space by (a) perfect bouncg; (b
flight trough prohibited area
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TEEE 14 bus test system

[#]-Transmission line #'s

@ -Bus #°s
®@

Fig. 8. Line diagram of IEEE 14-bus system

Table 3. Result obtained for simple genetic algorithm Table 5. Result obtained for particle swarm algorithm
Device Bus Controller Bus
Sl Type Rating (p.u) nl o S Type Rating (p.u) ni nr
1 UPFC -0.6086 9 1 L UPFC -0.0496 5 6
2 TCcsc 0.9657 4 9 2 UPFC -0.2579 4 9
3 UPFC 10.3852 4 7 3 UPFC 0.1543 5 6
4 UPFC 0.6015 3 s 4 Tese -0.1129 5 6
5 TCSC 0.7654 4 9 5 UPFC -0.9757 4 9
From the result obtained it is found that the ue o
Table 4. Result obtained for enhanced genetic algorithm UPFC controller will be more efficient with a ragin
Controller Bus of 1.0 to -0.3 p.u at the line connecting the bum1

bus 5. Though the TCSC controller is repeated more

S| Type Rating (p.u) nl nr number of times than UPFC controller the bus

1 TCSC .0.2766 2 3 location for TCSC controller is different in eadme

2 TCSsc -1.0000 4 7 when TCSC controller is .selecté'dible 4._ _

3 UPEC 0.9899 1 5 Table 5 shows the coding result obtained for particle
: swarm algorithm is used. The controller selectedhiy

4 UPFC "0.2212 1 5 algorithm is UPFC with a rating ranging from 0.0-100

5 TCSC 0.5297 5 6

p.u at the line connecting bus 5 to bus 6.
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8. CONCLUSION Goyal, S.K. and M. Singh, 2012. Enhanced genetic
algorithm based load balancing in grid. Int. J.
The three optimization techniques were coded to Comput. Sci., 9: 260-266.

present the optimal solution to the power flow peab  Kiran, S.H., C. Subramani, S.S. Dash, M. Arunbhaska

in power system and to find the rating and locawdén and M. Jagadeeshkumar, 2011. Particle swarm
FACTS devices. In each of the method the power  gptimization algorithm to find the location of fact
injection model of FACTS device is incorporated fwit controllers for a transmission line. Proceedings of

the conventional AC optimal power flow. the International Conference on Process Automation

On comparing the results obtained from each Control and Computing, Jul. 20-22, IEEE Xplore
optimization techniques it can be said that the ofke Press Coimbatore pp: 1.5 DOI:

UPFC controller at the line connecting the bus bue 6 10.1109/PACC.2011 5978856

:‘,:;r;il;?ee sr(z)ilt?i?)nof/viho?r.;n;?ni-sls.i%%uof\lvsrl!a?(:\r/r?urittugwe Kiran, S.H., C. Subramani, S.S. Dash, M. Arunbhaska
P and M. Jagadeeshkumar, 2012. Particle swarm

transmission in the power system. Gimizati laorithm to find the locat f fact
However, it can also increases the controllability optimization aigorithm fo Tind the focation of 1ac
controllers for a transmission line. Adv. Intellof§

and feasibility of the system and provide a wider _ _
operating margin and higher voltage stability with Comput., 132: 861-868. DOI: 10.1007/978-3-642-

higher reserve capacity. In these optimization  27443-5_99 _
methods, all the techniques can effectively fing th Poli, R., J. Kennedy and T. Blackwell, 2007. P#atic
optimal setting of the control parameters using the ~ Swarm optimization an overview. Swarm Intell., 1:

conventional load flow method. 33-57. DOI: 10.1007/s11721-007-0002-0
The further scope of this study is to extend thekwo Popov, A. and Hamburg, 2008. Genetic algorithm for
to find the location of the device in the transidadine optimization.
entire stretch and also to find the effect of tleeide in Subramani, C., S.S. Dash, V. Kumar and H. Kirar, 220
power system. Implementation of line stability index for
contingency analysis and screening in power system.
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