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ABSTRACT 

The aspect of this study is to compare the three different algorithms such as Genetic Algorithm (GA), 
Enhanced Genetic Algorithm (EGA) and Particle Swarm Optimization (PSO) to fine the optimal location of 
the FACTS device in the transmission line. The FACTS devices Thyristor Controlled Series Compensator 
(TCSC) and Unified Power Flow Controller (UPFC) are selected based on the steady stability state and 
dynamic stability state. Each of the algorithms is coded in MATLAB and incorporated it with the 
conventional Newton Raphson’s load flow analysis. To find the effectiveness of the proposed algorithm 
IEEE 14-bus system is taken as the test system. 
 
Keywords: Optimal Power Flow (OPF), Flexible AC Transmission System (FACTS), Genetic Algorithm 

(GA), Enhanced Genetic Algorithm (EGA), Particle Swarm Optimization (PSO), Newton 
Raphson’s (NR) Power Flow 

1. INTRODUCTION 

The power flow in the power system has become 
very complex. In order to have a maximum power 
transfer and utilization of the existing power system 
resources. This can be archived by the use of the FACTS 
devices in the power system. 

The various improvements when the FACTS devices 
are connected in the power system network are the 
stability, behaviour and the reliability of the power 
system. The dynamic and the steady state stability 
possible problems and the devices to be used to 
overcome are discussed. For the selection of the FACTS 
devices the other criteria necessary are its voltage limits, 
thermal limits, loop flow, short circuit level and the sub-
synchronous resonance. 

There are various researches in progress to improve 
the static performance of the power system. The cost is a 

main factor to select the FACTS devices. Hence the 
generation cost and the cost of device to be used. There 
are many works still is progress to find the location and 
the optimal choice of the device. 

The main idea is to develop a MATLAB based code 
for the algorithms to find device and the rating to be 
connected along with it the generators limits such that the 
overall system cost including the device cost is minimized. 

2. FACTS DEVICES SELECTION 

The various possible problems that can occur in the 
power system are tabulated in Table 1 and 2 as steady 
state stability and dynamic stability state (Kiran et al., 
2011). The FACTS devices can be classified based on 
who they are connected to the power system as shunt, 
series or both together. The different types of FACTS 
devices are TCSC, TSSC, UPFC, SVC, STATCOM and 
some other devices. 
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Table 1. Dynamic stability state 
Issue  Type of system  Corrective action  FACTS controller  
Transient stability Radial, Interconnected,  Increase synchronizing 
 loosely meshed network  torque  TCSC, TSSC, UPFC  
 Interconnected, loosely Dynamic load flow TCPAR, UPFC, TCSC 
 and tightly meshed network 
Dampening Radial,  Damper 1Hz oscillation  SVC, TCSC, STATCOM  
 Interconnected, loosely 
 meshed network  Damper low frequency  SVC, TCSC, UPFC, STATCOM 
  oscillations  
Post Contingency  Radial, Interconnected, Dynamic voltage SVC, UPFC, TCSC 
Voltage Control loosely meshed network  support and flow control  
 Radial, Interconnected, loosely  Reduced impact of SVC, TCSC, STATCOM, UPFC 
 and tightly meshed network contingency 
Voltage Stability  Interconnected, loosely and Reactive support UPFC, SVC, STATCOM 
 tightly meshed network  Network control actions UPFC, TCSC, STATCOM 

 
Table 2. Steady state stability 
Issue  Problem  Corrective action  FACTS controller used  
Voltage limits  Low voltage at heavy load  Supply reactive power  SVC, TCSC, STATCOM  
 High voltage at light load  Remove reactive power  TCSC, STATCOM  
 Low voltage and outage Prevent overload  TCPAR, TCSC  
  Supply reactive power and  TCSC, UPFC, STATCOM, SVC 
  limit over load 
Thermal limits  Line or transformer  Reduce overload  TCSC, UPFC, TCPAR  
over load Tripping of parallel circuit Limiting circuit loading  UPFC, TCSC  
Loop flow  Parallel line load sharing  Adjust series reactance  UPFC, TCSC  
 Post-fault sharing Rearrange network  TCSC, UPFC, TCPAR  
 Flow direction reversal Adjust phase angle  TCPAR, UPFC  
Short circuit level  Excessive breaker fault current Limit short circuit current  TCSC, UPFC  
SSR  Generator shaft damage  Mitigate oscillations  TCSC  

 
From the dynamic stability state tabulation it can be 

concluded that for most of the problems, the necessary 
corrective measure and the device to be connected to 
overcome the problem in most of the cases are: 
 
• UPFC 
• TCSC 
 

From the tabulation in Table 2 it can be concluded 
that for all the possible problems in steady state stability 
the same devices to be connected to overcome the 
problem in most of the cases: 
 
• TCSC 
• UPFC 
 

In the analysis of the problems that are tabulated in 
the Table 1 and 2 the best devices that can be used in 
the power system are UPFC and TSCS.  

This study does not deal with modelling of the TCSC 
and UPFC. Only the device selection and the rating of 
the FACTS device to be used are obtained as the result. 

3. COST FUNNCTION 

As stated earlier the objective in this study is to 
reduce the overall cost function of both generation cost 
(Subramani et al., 2012) and investment cost of the 
FACTS devices (Kiran et al., 2012). Also, to find 
simultaneously the optimal choice and location of 
FACTS device so the overall cost is minimized.  

3.1. Generation Cost Function 

The costs function of the generation represented by a 
quadratic polynomial as follows Equation (1): 
 

( ) 2
0 1 2C2 PG PG PG= α + α + α  (1) 

 
whereas PG is the output of the generator (MW) and α0, 
α1 and α2 are cost coefficients. 

3.2. Facts Controller Cost Function 

Based the Siemens AG Database the cost function for 
the controller that has been selected to use are as follows: 
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The cost function for UPFC is Equation (2): 
 

( )2
1UPFCC 0.0003s – 0.2691s 188.22 US$ / kvar= +  (2) 

 
The cost function for TCSC is Equation (3): 

 
( )2

1TCSCC 0.0015s – 0.7130s 153.75 US$ / kVar= +  (3) 
 

The rating of the device is given by Equation (4 and 5): 
 

( )TCSCR rf *0.45 – 0.25 Mvar=  (4) 
 

( )UPFCR rf *180 MVar=  (5) 
 

Where C1UPFC and C1TCSC are in US$/kVar and s is 
the operating of the FACTS controller in MVar. The 
cost function of the TCSC and UPFC are found as 
shown in Fig. 1. 

3.3. Optimal Power Flow with Facts Device 

The total cost of the FACTS devices along with the 
generation cost is implemented as Equation (6 to 8): 
 

( ) ( )Minimum CTotal C1 f C2 PG= +  (6) 
 

( )Subjected to E f ,g 0=  (7) 
 

( ) ( )B1 f b1,B2 g b2< <  (8) 
 
where, CTotal-the overall cost objective function which 
includes the average investment costs of FACTS devices 
C1(f) and the generation cost C2(PG). 

E (f.g) = The conventional power flow 
equations. 

B1(f) and B2(g) = The inequality constraints for 
FACTS controllers and the 
conventional power flow 
respectively.  

f & PG = vectors that represent the variables 
of FACTS controllers and the active 
power outputs of the generators. 

g = Represents the operating state of the 
power system. 

 
The unit for generation cost is US$/Hour and the 

investment cost of FACTS controllers are US$. They must 
be unified into US$/Hour. Normally the FACTS controllers 
will be in service for many years. However only a part of its 
life time is employed to regulate the power flow. In this 
study three years is employed to evaluate the cost function. 
Therefore the average value of the investment costs are 
calculated as follows Equation (9): 
 

( ) ( ) { }C1 f C f / 8760 3= ×  (9) 
 

As mentioned above, power system parameters can 
be changed using FACTS controllers. These different 
parameters derive different results on the objective 
function. Also, the variation of FACTS locations and 
FACTS types has also influences on the objective 
function. Therefore, using the conventional 
optimization methods is not easy to find the optimal 
location of FACTS devices, types and control 
parameters simultaneously. To solve this problem, 
optimization technique such as Genetic Algorithm, 
Enhanced Genetic Algorithm and Particle Swarm 
Algorithm are employed in conjunction with 
conventional NR power flow method. 

 

 
 

Fig. 1. Typical investment cost for TCSC and UPFC 
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4. GENETIC ALGORITHM 

GA’s are general purpose optimization algorithms 
(Popov and Hamburg, 2008) based on the mechanics 
of natural selection and genetics. They operate on 
string structures (chromosomes), typically a 
concatenated list of binary digits representing a 
coding of the control parameters (phenotype) of a 
given problem. Chromosomes themselves are 
composed of genes. The real value of a control 
parameter, encoded in a gene, is called an allele. 

GA’s are an attractive alternative to other 
optimization methods because of their robustness. There 
are three major differences between GAs and 
conventional optimization algorithms. First, GAs 
operates on the encoded string of the problem parameters 
rather than the actual parameters of the problem. Each 
string can be thought of as a chromosome that 
completely describes one candidate solution to the 
problem. Second, GAs uses a population of points 
rather than a single point in their search. This allows 
the GA to explore several areas of the search space 
simultaneously, reducing the probability of finding 
local optima. Third, GAs do not require any prior 
knowledge, space limitations, or special properties of 
the function to be optimized, such as smoothness, 
convexity or existence of derivatives. They only require 
the evaluation of the so-called Fitness Function (FF) to 
assign a quality value to every solution produced. 

Assuming an initial random population produced and 
evaluated, genetic evolution takes place by means of 
three basic genetic operators: 
 
• Parent selection 
• Crossover 
• Mutation 
 

Parent selection is a simple procedure whereby two 
chromosomes are selected from the parent population 
based on their fitness value. Solutions with high fitness 
values have a high probability of contributing new 
offspring to the next generation. The selection rule used 
in our approach is a simple roulette-wheel selection. 

Crossover is an extremely important operator for 
the GA. It is responsible for the structure 
recombination (information exchange between mating 
chromosomes) and the convergence speed of the GA 
and is usually applied with high probability (0.6-0.9). 
The chromosomes of the two parents selected are 
combined to form new chromosomes that inherit 

segments of information stored in parent 
chromosomes. Until now, many crossover schemes, 
such as single point, multipoint, or uniform crossover 
have been proposed in the literature. Uniform 
crossover has been used in our implementation. 

While crossover is the main genetic operator 
exploiting the information included in the current 
generation, it does not produce new information. 

Mutation is the operator responsible for the injection 
of new information. With a small probability, random 
bits of the offspring chromosomes flip from 0 to 1 and 
vice versa and give new characteristics that do not exist 
in the parent population. In our approach, the mutation 
operator is applied with a relatively small probability 
(0.0001-0.001) to every bit of the chromosome. 

 
The algorithm flow sequence of Simple genetic 

algorithm is as follows: 
 

• Begin 
• Initialization of generation and population 
• Check for generation level 
• Evaluation of the fitness function 
• Select the best parent in the generation 
• Crossover the parent generation to form a new 

generation 
• Increases the generation by one move to step 3 
• End 
 

The FF evaluation and genetic evolution take part in 
an iterative procedure, which ends when a maximum 
number of generations are reached. 

When applying GAs to solve a particular 
optimization problem (OPF in our case), two main issues 
must be addressed: 
 
• The encoding, i.e., how the problem physical 

decision variables are translated to a GA 
chromosome and its inverse operator, decoding 

• The definition of the FF to be maximized by the GA 
(the GA FF is formed by an appropriate 
transformation of the initial problem objective 
function augmented by penalty terms that penalize 
the violation of the problem constraints 

 
4.1. Encoding 

In the SGA, after the application of the basic 
genetic operators (parent selection, crossover and 
mutation) the advanced and problem-specific 
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operators are applied to produce the new generation. 
All chromosomes in the initial population are created 
at random (every bit in the chromosome has equal 
probability of being switched ON or OFF). 

Due to the decoding process selection, the 
corresponding control variables of the initial population 
satisfy their upper–lower bound or discrete value 
constraints. Population statistics are then used to 
adaptively change the crossover and mutation 
probabilities. If premature convergence is detected the 
mutation probability is increased and the crossover 
probability is decreased. The contrary happens in the 
case of high population diversity. 

4.2. Fitness Function 

GAs is usually designed so as to maximize the FF, 
which is a measure of the quality of each candidate 
solution. The objective of the OPF problem is to 
minimize the total operating cost (6). 

Therefore, a transformation is needed to convert the 
cost objective of the OPF problem to an appropriate FF 
to be maximized by the GA. The OPF functional 
operating constraints (9) are included in the GA solution 
by augmenting the GA FF by appropriate penalty terms 
for each violated functional constraint. Constraints on the 
control variables (8) are automatically satisfied by the 
selected GA encoding/decoding scheme. 

Therefore, the GA FF is formed as follows Equation 
(10 and 11): 
 

Ng Nc

i 1 i 1

A
FF

Fi(PGi) j Penj
= =

=
+ ω∑ ∑ i

 (10) 

 

( )( )Penj hj(x,u) H hj x,u= i  (11) 

 
Where: 
FF = Fitness function 
A = Constant 
Fi(PGi) = Fuel cost of unit i 
H(.) = Heaviside (step) function 
NG = Number of units 
Nc = Number of functional operating constraints 
 

5. ENHANCED GENETIC 
ALGORITHM (EGA) 

In the EGA, (Goyal and Singh, 2012) the application 
of the basic genetic operators (parent selection, crossover 

and mutation) the advanced and problem-specific 
operators are applied to produce the new generation. 

All chromosomes in the initial population are created 
at random (every bit in the chromosome has equal 
probability of being switched ON or OFF). Due to the 
decoding process selected, the corresponding control 
variables of the initial population satisfy their upper–
lower bound or discrete value constraints. However, the 
initial population candidate solutions may not satisfy the 
functional operating constraints or even the load flow 
constraints since the random, within limits, selection of 
the control variables may lead to load flow divergence. 

Population statistics computed for the new generation 
include maximum, minimum and average fitness values 
and the 90% percentile. 

Population statistics are then used to adaptively 
change the crossover and mutation probabilities. If 
premature convergence is detected the mutation 
probability is increased and the crossover probability is 
decreased. The contrary happens in the case of high 
population diversity. 

5.1. Advanced and Problem-Specific Genetic 
Operators 

One of the most important issues in the genetic 
evolution is the effective rearrangement of the genotype 
information. In the SGA, crossover is the main genetic 
operator responsible or the exploitation of information 
while mutation brings new non-existent bit structures. It is 
widely recognized that the SGA scheme is capable of 
locating the neighbourhood of the optimal or near-optimal 
solutions, but in general, requires a large number of 
generations to converge. This problem becomes more 
intense for large-scale optimization problems with difficult 
search spaces and lengthy chromosomes, where the 
possibility for the SGA to get trapped in local optimal 
increases and the convergence speed of the SGA decreases. 

At this point, a suitable combination of the basic, 
advanced and problem-specific genetic operators must be 
introduced in order to enhance the performance of the 
GA. Advanced and problem-specific genetic operators 
usually combine local search techniques and expertise 
derived from the nature of the problem.  

A set of advanced and problem-specific genetic 
operators has been added to the SGA in order to increase 
its convergence speed and improve the quality of 
solutions. Our interest was focused on constructing simple 
yet powerful enhanced genetic operators that effectively 
explore the problem search space. The advanced features 
included in our GA implementation are as follows. 
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5.2. Fitness Scaling 

In order to avoid early domination of extraordinary 
strings and to encourage a healthy competition among 
equals, a scaling of the fitness of the population is 
necessary. In our approach, the fitness is scaled by a 
linear transformation. 

5.3. Elitism 

Elitism ensures that the best solution found thus far is 
never lost when moving from one generation to another. 
The best solution of each generation replaces a randomly 
selected chromosome in the new generation. 

5.4. Hill Climbing 

In order to increase the GA search speed at smooth 
areas of the search space a hill-climbing operator is 
introduced, which perturbs a randomly selected control 
variable. The modified chromosome is accepted if there is 
an increase in FF value; otherwise, the old chromosome 
remains unchanged. This operator is applied only to the 
best chromosome (elite) of every generation. 

In addition to the above advanced features, which are 
called “advanced” despite their wide use in most recent 
GA implementations to distinguish between the SGA and 
our EGA, operators specific to the OPF problem have 
been added. 

All problem-specific operators introduce random 
modification to all chromosomes of a new generation. If 
the modified chromosome proves to have better fitness, 
it replaces the original one in the new population. 
Otherwise, the original chromosome is retained in the 
new population. All problem-specific operators are 
applied with a probability of 0.2. The following problem-
specific operators have been used.  

5.5. Gene Swap Operator (GSO) 

This operator randomly selects two genes in a 
chromosome and swaps their values as shown in Fig. 
2. This operator swaps the active power output of two 
units, the voltage magnitude of two-generation buses. 
Swapping among different types of control variables 
is not allowed. 

5.6. Gene Cross-Swap Operator (GCSO) 

The GCSO is a variant of the GSO. It randomly 
selects two different chromosomes from the population 
and two genes, one from every selected chromosome and 
swaps their values as shown in Fig. 3. While crossover 
exchanges information between high-fit chromosomes, 
the GCSO searches for alternative alleles, exploiting 
information stored even in low-fit strings. 

5.7. Gene Copy Operator (GCO) 

This operator randomly selects one gene in a 
chromosome and with equal probability copies its value to 
the predecessor or the successor gene of the same control 
type as shown in Fig. 4. This operator has been introduced 
in order to force consecutive controls (e.g., identical units 
on the same bus) to operate at the same output level. 

5.8. Gene Inverse Operator (GIO) 

This operator acts like a sophisticated mutation 
operator. It randomly selects one gene in a chromosome 
and inverses its bit-values from one to zero and vice 
versa as shown in Fig. 5. The GIO searches for bit 
structures of improved performance, exploits new areas 
of the search space far away from the current solution 
and retains the diversity of the population. 

5.9. Gene Max-Min Operator (GMMO) 

The GMMO tries to identify binding control variable 
upper/lower limit constraints. It selects a random gene in 
a chromosome and, with the same probability (0.5), fills 
its area with 1s or 0s as shown in Fig. 6. 

The step by step procedure for the Enhanced Genetic 
Algorithm is as follows 
 
• Input of the data: vlb, vub, PC, Pm, the function of 

adaptation and size of the population 
• To choose arbitrary the initial population 
• To decode the chains to calculate the value of the 

function to be optimized. For that, it is enough to 
inject the values of chains decoded in the function 

• To use the three following operators: 
Reproduction 
Crossover 
Mutation 

• To use the three following operators: 
Reproduction 
Crossover 
Mutation 

• Advanced and problem specific operators 
Hill Climbing 
Gene swap operator 
Gene cross-swap operator 
Gene copy operator 
Gene Inverse Operator 
Gene max-min operator 

• If the convergence of GAs is reached we print the 
optimal values and stop; 

• else go to the second step 
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Fig. 2. Gene swap operator 
 

 
 

Fig. 3. Gene cross-swap operator 
 

 
 

Fig. 4. Gene copy operator 
 

 
 

Fig. 5. Gene inverse operator 
 

 
 

Fig. 6. Gene max-min operator 
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6. PARTICLE SWARM 
OPTIMIZATION (PSO) 

PSO is a population-based stochastic optimization 
technique (Kiran et al., 2012) developed by Eberhart 
and Kennedy (1995), inspired by the social behaviour 
of bird flocking or fish schooling. These phenomena 
can also be observed on insect colonies, e.g., bees. It is 
applicable to solving a number of problems where local 
methods fail or their usage is ineffective, as in this case. 
One of the most important features of PSO is the ability 
of optimizing large complex multi-criteria 
combinatorial problems where the problem with the 
design of criteria function occurs, for example, it is 
hard to derive or is not continuous. 

PSO however does not need this as it only requires 
the evaluation of each solution by the fitness function 
depending on the set of optimized parameters. This 
function is also used by GA and so is the idea of the 
initialization of parameter setup as a random 
generation. The main advantage of PSO compared to 
GA is the simpler method of providing new solutions 
based only on two variables-velocity and position 
related by two linear equations. Each possible solution 
are represented by a particle, which flies through the 
searched space, which is limited by restrictive 
maximum and minimum values, toward the current 
optimal position. The particle has its direction and 
speed of movement (velocity) but it can also randomly 
decide to move to the best position of all positions or to 
its own best position. Each particle holds information 
about its own position (which represents one potential 
solution), the velocity and the position with the best 
fitness function it ever has flown through. 

The flow sequence of the Particle Swarm 
Optimization Algorithm (Poli et al., 2007) is illustrated 
as follows: 

Algorithm PSO 
Begin  
Generate random population of N 
solutions(particles);  
For each individual I ε N calculate fitness ( i );  
Initialize the value of the weight factor ω;  

For each particle;  
Set pBest as the best position of particle i;  
If fitness (i) is better than pBest;  
pBest(i)=fitness (i);  
End;  
Set gBest as the best fitness of all particles;  
For each particle;  

 Calculate particle velocity according to Equation 
(12);  

 Update particle position according to Equation (13);  
End;  

Update the value of the weight factor ω (option);  
Check if termination=true;  
End 

 
6.1. Implementation 

The program was implemented in the Matlab 
environment. The position here represents one potential 
solution, the velocity shows the trend of this particle and 
both parameters are represented by a vector in the 
program implementation. The particles were coded by 
natural numbers. The position of each element in the 
vector space represents the number of the node in which 
a shunt capacitor should be placed whose value 
designates the capacitor type. The whole set of particles 
at a time is called the population. The subset made of 
newly born particles is called the generation. 

The first generation of particles is produced with 
random position and velocity. Particle velocity is 
checked whether it is within the limits. The top speed 
can be different for each unit of velocity vector. If the 
velocity component exceeds the maximum allowed 
value, then it is set to the top value. After this correction, 
the solution is evaluated by the fitness function. The 
fitness function plays a key role in the program; 
therefore it is necessary to describe it in more details. 

6.2. Fitness and penalization functions 

The fitness function evaluates the quality of solutions 
and it incorporates numerous parameters, such as the 
capital cost of capacitors, expenses covering the power 
losses in the network per year and function γ. The power 
losses are calculated by steady state analysis of the 
network. The output of the fitness function is total yearly 
operational costs of the network. The lower the fitness 
function value, the better the solution. The fitness 
function is calculated by the following equation: 
 

Ng Nc

i 1 i 1

A
FF

Fi(PGi) j Penj
= =

=
+ ω∑ ∑ i

 (12) 

 
Where: 
FF = Fitness function 
A = Constant 
Fi(PGi) = Fuel cost of unit i 
H(.) = Heaviside (step) function 
NG = Number of units 
Nc = Number of functional operating constraints (2): 
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( )( )Penj hj(x, u) H hj x, u= i  (13) 

 
6.3. Next population 

After evaluation, the solutions can be sorted with 
respect to their fitness functions and it is possible to 
develop a new generation, as can be seen in Fig. 2. 
The first cycle ends after the creation of a new 
velocity vector and the calculation of the new position 
of the particular particle. 

The new vector of velocity is calculated by the 
formula Equation (14): 
 

( ) ( )0 1 1 2 2best pos best posv v c .n . P P c .n . g g= + − + −
� � � �� �

 (14) 

 
where, v

�

 denotes the new vector of velocity, 0v
�  is the 

original vector of velocity, c1 and c2 are the constants 
which are set to the weight of differences of positions, n1 
and n2 are the random variables, bestP

�

is the best position 

of particle, posP
�

 is the current position of particle and 

best bestg
�

 is the best position of all particles. 

The new position is determined by the formula 
Equation (15): 
 

best posP P v= +
� � �

 (15) 

 
6.4. Border 

Each particle should be kept in a confined space 
corresponding to the parameter limitations. This problem 
is solved in this program by one of four methods. In the 
first case, the particle arriving in the forbidden area 
returns to its previous position. In the second case, the 
particle is held on the border. In the third case, the 
particle is bounced back to the allowed space. 
Bouncing back to the allowed space can be perfect or 
imperfect. Regarding the imperfect bounce, it is 
possible for the particle to end up in a random position. 
In the fourth case, the particle can fly through the 
forbidden area back to the allowed space, but on the 
other side of the allowed space. This approach can be 
used in the case of a very specific limited space (Fig. 7). 

6.5. Parallel operation 

One of the advantages of PSO utilization is the 
possibility to introduce parallel operations with mutual 
coupling, which enables searching in a larger area of 

feasible solutions and thereby finding the optimum 
solution more quickly. Parallel operation means that 
instead of a single branch of evolution several 
branches are created. These branches influence one 
another during the evolution only after a given 
number of generations when the temporary best 
solution of all the branches is transferred to the other 
branches. Thus the evolution of the branches is 
independent, but they can also use the results of the 
other branches. This modification limits a potential 
deadlock of the algorithm in the local minimum. 

7. TEST RESULTS 

A MATLAB coding is developed for each algorithm 
inter linked with the conventional Newton Raphson’s 
method for load flow study. IEEE 14-bus system is taken 
to verify the effective operation of the algorithm. The 
Fig. 8 shows the line diagram of IEEE 14-bus system. 

The total population size in each algorithm is selected 
as 30, the mutation probability as 0.01 and crossover 
probability as 1.0. 

From the coding results obtained with genetic 
algorithm it is found that each time the coding is 
executed a new result is obtained as tabulated in Table 3. 
From the observation made from the Table 3 we could 
say that with genetic algorithm analysis the use of TCSC 
controller with rating of 1.0 to -1.0 p.u at the line 
connecting the bus 4 to bus 9. 
 

 

 

Fig. 7. Border of the space under examination-particle is 
returned to allowed space by (a) perfect bounce; (b) 
flight trough prohibited area 
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Fig. 8. Line diagram of IEEE 14-bus system 

 
Table 3. Result obtained for simple genetic algorithm 

 Device  Bus 
 ------------------------------------ -------------------- 
SI Type Rating (p.u) nl nr 

1 UPFC -0.6086 9 14 
2 TCSC -0.9657 4 9 
3 UPFC -0.3852 4 7 
4 UPFC 0.6015 3 4 
5 TCSC 0.7654 4 9 

 
Table 4. Result obtained for enhanced genetic algorithm 

 Controller  Bus 
 ---------------------------------- --------------------- 
SI Type Rating (p.u) nl nr 

1 TCSC -0.2766 2 3 
2 TCSC -1.0000 4 7 
3 UPFC 0.9899 1 5 
4 UPFC -0.2212 1 5 
5 TCSC 0.5297 5 6 

Table 5. Result obtained for particle swarm algorithm 
 Controller  Bus 
 --------------------------------- ------------------ 
SI Type Rating (p.u) nl nr 

1 UPFC -0.0496 5 6 
2 UPFC -0.2579 4 9 
3 UPFC -0.1543 5 6 
4 TCSC -0.1129 5 6 
5 UPFC -0.9757 4 9 

 
From the result obtained it is found that the use of 

UPFC controller will be more efficient with a rating 
of 1.0 to -0.3 p.u at the line connecting the bus 1 to 
bus 5. Though the TCSC controller is repeated more 
number of times than UPFC controller the bus 
location for TCSC controller is different in each time 
when TCSC controller is selected Table 4. 

Table 5 shows the coding result obtained for particle 
swarm algorithm is used. The controller selected by this 
algorithm is UPFC with a rating ranging from 0.0 to -1.0 
p.u at the line connecting bus 5 to bus 6. 
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8. CONCLUSION 

The three optimization techniques were coded to 
present the optimal solution to the power flow problem 
in power system and to find the rating and location of 
FACTS devices. In each of the method the power 
injection model of FACTS device is incorporated with 
the conventional AC optimal power flow.  

On comparing the results obtained from each 
optimization techniques it can be said that the use of 
UPFC controller at the line connecting the bus 5 to bus 6 
with the rating of 1.0p.u to -1.0p.u will give a better 
feasible solution with transmission of maximum power 
transmission in the power system. 

However, it can also increases the controllability 
and feasibility of the system and provide a wider 
operating margin and higher voltage stability with 
higher reserve capacity. In these optimization 
methods, all the techniques can effectively find the 
optimal setting of the control parameters using the 
conventional load flow method.  

The further scope of this study is to extend the work 
to find the location of the device in the transmission line 
entire stretch and also to find the effect of the device in 
power system. 
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