American Journal of Applied Sciences 11 (5): 811-817, 2014

ISSN: 1546-9239

©2014 Science Publication

doi:10.3844/ajassp.2014.811.817 Published Onlingb12014 (http://www.thescipub.com/ajas.toc)

DISTRIBUTION OF LOAD USING
MOBILE AGENT IN DISTRIBUTED WEB SERVERS

Vijayakumar G. Dhasand V. Rhymend Uthariar aj
Ramanujan Computing Centre, Anna University Chenndialn

Received 2012-06-14; Revised 2014-02-07; Accepted-P2128
ABSTRACT

The continuing growth of the World-Wide Web is fitecincreasing demands on popular Web servers. Many
the sites are now using distributed Web servegs (iroups of machines) to service the increasimgber of
client requests, as a single server cannot hahdlevorkload. Incoming client requests must be itligied in
some fashion among the machines in the distribwedl server to improve the performance. In the iegist
work, reducing the high message complexity is dlenge. This study introduces a novel algorithmijclthas
low message complexity named Load Distribution Yayasinically Fixing input to the server using Molslgent
(LDFM) which distributes the incoming request, taarrives from the client world, to avoid overloagliof the
distributed web servers. LDFM uses prefetch teakasgo balance the load among the distributed epleis.
Mobile agents are susceptible to failure. Thisassualso addressed to bring reliability to theoatgm. The
simulation results confirm that the proposed meti®deliable. The relative improvement in throughpu
comparing with the exiting methods is appreciable.

Keywords: Mobile Agents, LDFM, Load Balancing, Distributegistem

1. INTRODUCTION collects load information from the servers. The
collection of load information consumes a lot of
The exponential increase in demand for web servicesnetwork bandwidth as the dispatcher and the multi
makes distributed multiserver system the preferredservers communicate with each other.
choice of solution to handle the requests effettive The unique contribution of the proposed work is to
(Colajanni et al., 1998). Balancing the workload in a reduce the message complexity in the system dlaatb
distributed multiserver is critical to improve the balancing. This results in conserving the bandwidth
performance (Jie and Kameda, 1998). In a distribute usage, which can be used effectively for carrying o
multiserver, load balancing is done by transferijiolgs other tasks like handling more user request. The
from the overloaded server to under loaded server. throughput of the whole system improves.

order to successfully carry out load balancing, ted Mobile agent is used to collect the load informatio
balancing policy is updated with load informatiointioe of the server proactively and to communicate tredlo
servers in the distributed environment. information to the dispatcher. The mobile managemen

Dispatcher based load balancing in the distributedunit in the dispatcher receives the load informatémd
multiserver system improves the performance of thecomputes the rank of the server. The least loadees
servers (Pao and Chen, 2006). In a dispatcher basei$ given a rank of one. Based on the rank of theese
system, the collection of load information aboutvee the mobile management unit updates the dispatcher
and scheduling of job among servers is done by thetable in the dispatcher. The dispatcher table is
dispatcher. Basically, the scheduling policy and dynamically updated. The dispatcher uses the
scheduler functions are present in the dispatchrer. dispatcher table to dispatch the request to theeser
existing dispatcher based systems, the dispatcheusing round robin scheduling policy.

Corresponding Author: Vijayakumar G. Dhas, Ramanujan Computing Centre, Asmiaersity Chennai, India

////4 Science Publications 811 AJAS

Vijayakumar G. Dhas and V. Rhymend Uthariaraj / Aicen Journal of Applied Sciences 11 (5): 811-&(r14

Mobile agents are used for load balancing of server Reallocation of request from server queue leads to
However when mobile agent is lost the load balancin delay in execution. Considerable time is spent in
policy fails (Ciardoet al., 2001) and the reliability of the collecting the load information negotiating witheth
algorithm is compromised. In order to improve the server to accept the job, if the job is not acogptesn
reliability, the proposed work determines the stafe find an alternate server. The number of hops requir
mobile agent and creates a new mobile agent, ifired, before the job is accepted adds to the delay ingaging

The remainder of this study is organised as follows the request. The problem of redistribution of jeluest
In section 2, some of the related work is reviewed.is observed in the study of Zhaetal. (2005).

Section 3, presents the proposed work for loadnicaig Mobile agent enabled approach for load balancing
in distributed multiserver system. In section 4g th distributed web servers was proposed by &ab. (2003).
structure of the experiment set up is explainedti&e 5, They show that load balancing approaches involve
presents the results from the experimental studgtih frequent message exchanges between the dispatother a
6 contains the conclusion and future work of oudsgt the servers to detect and exchange load informatibe
message exchange increases the bandwidth utilizatid
2. RELATED WORK reduces the availability of network bandwidth faher

useful purpose. They have pointed out that forctffe
Colajanni et al. (1998) have considered load |pad balancing, comprehensive and up to date load
balancing of multi servers and pointed out that jnformation should be available.
overloaded servers and high bandwidth utilizatieads Aramudhan and Uthariaraj, (2006) (Aramudtetal.,
the user to spend more time in waiting to access th 2008) have proposed an approach for load balarnisimg
documents. It is observed that when DNS schedsler i mobile agents. This method has certain drawbadkst, F
used for load balancing, the scheduler has lingtadrol consider that the mobile agent is lost then theeseh
over scheduling of the job. Once the URL is tratesldo waits for twice the Round trip time before procegsihe
IP address, it is cached in the client's browser.request. It can be inferred that loss of a mobdena
Subsequent requests are sent to the same web serveannot be left as it is, as this results in lovetighput and
resulting in skewed load on the server. In thiedablS steps must be taken to correct this situation.
cannot control caching. Karjoth et al. (1997) have pointed out that
Load balancing of multiservers in a distributed mechanisms must be in place to prevent attacksosh h
environment is a job scheduling policy, where agsba can implant its own tasks or modify the agentstesté
whole is taken and assigned to a server (Jie amieda, the agents’ state is changed by a selfish host the
1998). In this approach only partial load inforroatis ~ behaviour of the agent can be counterproductive.
used to determine scheduling of job and the message In the existing work, it is clear that message demity
overhead is also high. and throughput are parameters to be considered for
Using one virtual URL name for the clustered web improving the performance of the distributed maltier
system, the problem of load balancing was approdiche environment. In addition, loss of mobile agent,rinaading
(Hong et al., 2006). In this method http requests are of server, reallocation of request from queue heedther
assigned to the server with least load by the |p-factors thatneed to be considered.
address dispatcher. The load information is codléct
and broadcast to all the web servers, leading ¢ hi 3. PROPOSED SYSTEM

message complexity. . The literature survey reveals that for effectivado
Pao and Chen (2006) used dispatcher based weBgjancing, comprehensive and current load inforomati
server load balancing architecture to improve thegphguld be available. In the pursuit of achieving th
performance of popular web sites. The current lgdi apove, excessive bandwidth of the network is etilim
on the back end server is taken in to account befor the existing methods for collection and exchangad
forwarding the request to the least loaded serVee information. The limited availability of bandwidth
load information is advertised by back end sereeis is hampers in carrying out other useful work. There is
collected by the dispatcher. This approach alsdsda contention between collecting load information and
high message complexity. dispatching user request for using the limited bédth.

////A Science Publications 812 AJAS

Vijayakumar G. Dhas and V. Rhymend Uthariaraj / Aicen Journal of Applied Sciences 11 (5): 811-&(r14

This contention for bandwidth usage must be strieeattl ~ ascending order. Once the server loads are siriedised
for effective utilization of resources. The requissalso to update dispatcher table. The dispatcher table no
migrated from server to server and this contribtbethe ~ contains the IP address of the servers accordintheo
latency in processing the request. Also in the tigs ascending order of server load. The least loadegrseill
system, when mobile agents fail the reliabilitytied load D€ the first entry in the table and the heavilydemhserver

balancing mechanism is reduced and thereby incrgasi Will be the last entry in the table. The table ynamically
the possibility of system overload. updated on collection of server load information

The proposed system of Load Distribution by proactive!y. The dispatcher table is shoyvﬁ'ah)le 1 .
dynamically Fixing input to the server using Mobile The d|spatcher is a front end ma‘?h'”e' has a dispat
agent (LDFM) address the problem of excessive table end a Mobile Management Unit (MMU_). The serve
utilization of network bandwidth for collecting and t© Which the hitp request is to be sent for prdogssy the
exchange of load information. When mobile agenils fa dispatcher is available in the dlspatcher table elvthe
the problem of reduced reliability of the load badiang h_ttp reques.ts sent by the user arrives at the tdfspathe
mechanism and system over load is also considereddiSPatcher increments the count value by one. Tt h
The proposed system consists of a set of clientsaan request is associated with a Request Identificationber
network of servers. The LDFM framework defines two ‘(RlD),' The RID is generated for each request using
worlds, namely: Client world and server world. The ™Mod" function. The mod function computes the RID
client world is an aggregation of all the clientsthe ~ USing count value and the number of servers availab
physical world and the server world is an aggregati the distributed system. for serving http requestsnfithe
of the clustered web servers, which are calledcapl user. The RID value is comppted as.RID =_count mod

The client world communicates with the server world (L*1). When the hitp request is assom_ated withRI2,
through the dispatcher. In this system the number o the http requestis sent to the server using theltifess of
servers in the multiserver environment is configues (e Server available in the dispatcher table by the
fixed number of servers. The fixed number is reféras ~ dispatcher. The dispatcher uses round robin pdicy
L. The block diagram of the proposed system is shipw ~ distributing the http requests. _

Fig. 1. In this system two data structures are deployed, When Fhe request with RID IS received a_t the server
one for collection of the load information from teerver e incoming RID is compared with the previous RID
and the other organising the same for distributibne the queue. The comparison result shows that iptasent

data structure deployed for collection of data frime RID is Iesser than _the previous RID then the loithe _
server is called the queue and organized as: server is communicated to the MMU. The request is
processed by the server.

The MMU initiates the mobile agent to the server.
Mobile agents are used to collect load informatiem
the server world and communicate to the MMU runrimg
the dispatcher. This enables reduced communication
overhead between the mobile agent and MMU. The MMU
ranks the server according to the load informatémeived
from the mobile agent. The MMU then updates the
dispatcher table according to the rank of the sefike

Struct gitem {

int load;

int ipaddr [4];

} mmu_queue [L];

The data structure deployed for receiving the rdnke
data from the queue is called the dispatcher tabk

defined as: MMU is responsible for the mobile agent and make su

that it is active and has not crashed.

Struct ipdata { The mobile agent periodically sends an | Am Alive

char servr_id [L]; (IAA) signal to the MMU. The MMU based on the IAA

int ipaddr [4]; signal checks the status of mobile agent and eatew

int rank; mobile agent when needed. The MMU sets the time out

} dispatcher_table [L]; timer on receipt of IAA. When the time out occursew
mobile agent is initiated from the MMU for the serv

The function of the mmu_queue is to receive theeser An event based algorithm is developed to handle

load information according to the IP address ofdfyeer. the various events in the system. The algorithm is
The MMU uses this information to sort the serverdian presented here.

////A Science Publications 813 AJAS

Vijayakumar G. Dhas and V. Rhymend Uthariaraj / Aicen Journal of Applied Sciences 11 (5): 811-&(r14

Server world

Server 1 | | Server 2 | ————————————————
A L3
! i |
i 1
1 1
e e Mobile agent
Hittp request Http response
Dispatcher
Hip request Hitp response

Client world

Client 1 | | Client 2 }

fffffffffffffff

Fig. 1. Proposed system

Table 1. Dispatcher table

Server ID IP address Rank
P 192.168.1.100 1
Q 192.168.1.101 2
R 192.168.1.102 3

Algorithm for load allocation
On receiving http request from client at dispatcher
count = count+1
RID = count mod (L+1)
send request with RID to server

On receiving request with RID at server from dispat
if (incoming RID < present RID in the queue)
send load of server using mobile agent to disjgatch
running Mobile Management Unit (MMU)
process the request
On receiving server load from mobile agent at didper
running MMU
Accept the load of server
Compute the rank of server
Update the dispatcher table according to the adnk
server
On receiving | Am Alive (IAA) signal from mobile agt
at dispatcher running MMU
Set time out timer
On time out at MMU
create mobile agent
move mobile agent to corresponding server
On receiving server response at dispatcher
Send server response to corresponding client

////A Science Publications 814

3.1. Updating of Dispatch Table

Each server in the server world has a mobile agent
initiated from the MMU so that polling of server by
the mobile agent is avoided. This reduces the taten
in collecting the load information. This also helips
avoiding unnecessary usage of network bandwidth for
communicating load information. At any point in #m
only one mobile agent will be communicating thedoa
information to the MMU. Initially the dispatcher
assigns the user request with RID’s to the sertets
3....Nin a round robin fashion.

This process continues as long as the incoming
RID is greater than the present RID. Due to thdicyc
property of the mod function the above conditiorl wi
fail, initiating the mobile agent. This arrangement
enables staggered communication between the mobile
agent and the MMU. The mobile agent collects the
load of the server proactively and sends it to the
MMU. The mobile management unit after receiving
the information from the mobile agent computes and
updates the dispatcher table with IP addressesgalon
with ranks 1, 2, 3... of N servers with lightest load
The ranking of the server is according to the |oBue
list of IP address of the server in the dispatdadie
will be different every time the load informatios i
received and the dispatcher table is updated
dynamically. The table is used by dispatcher for
allocation of server for new http request.

AJAS

Vijayakumar G. Dhas and V. Rhymend Uthariaraj / Aicen Journal of Applied Sciences 11 (5): 811-&(r14

4. EXPERIMENTAL SETUP assumed to be the same. The initial order of dibpaf
request was 1, 2, 3 and 4. The dispatcher wasnassane
The experiment was conducted using computers in avirtual address. The request from the user will ehav
LAN network. The processors used were of InteliBeng ~ uniform execution time. The servers are heterogeseo
or core or core 2 duo. The memory capacity washén t having varying CPU, Memory capacity and
range of one to four GB. Simulation was done ugmga in ~ configurations. The experiment was conducted by
LINUX environment. Aglets software development kit gradually increasing the number of users in theesysind
AGLETS SDK 2.0.1was used for mobile agents. the corresponding throughput_ was taken. The exgertim
The web server processes only hitp requests. Th&Va@S repeated_a number of times and the average valu
server processes the request in FIFO (First irt bing) used. The failure of mobile agent was simulated by
manner. User requests are handled only by thed'sabIIng the 1AA signal. On time out the crgatun‘mgw
dispatcher. In our approach it is assumed thatlhe mobile agent was observed. Similar experiment isedo

address dispatcher is not overloaded by http résues for the system without LDFM and the average wasrtak

The queue at the dispatcher has a finite bufferaatuall 5. RESULT

drop discard policy. The dispatcher is highly able

and has sufficient capacity to process the requests Among various performance parameters, system

Mobile agent was implemented using aglets. throughput i.e., the total number of request preegger

second by the given system is considered. LDFMri

4.1. Methodology is simula%/ed fo% varioﬁs numbers of requests a‘eﬂrggt
Initial values were assigned. The number of seftjer frequencies and the system throughput is measured.

was chosen to be 4. The requests were generatedtie The system throughput of the server (the total

clients and sent to the dispatcher. One mobiletagas ~ number of request processed per second) is plagachst

initiated from the MMU to each of the server. The the number of request from client world. The resilt

dispatcher table was initialized with IP address of the experiment using LDFM algorithm and without

computers. The load request sent to the computer waLDFM algorithm is shown irFig. 2.

18
16
14 4
ig 4

10 4
8 -

P

2 4

Request (sec)

0

0 200 400 600 800 1000 1200
No of clients

—+—L DFM-#— Without LDFM

Fig. 2. System throughput

///// Science Publications 815 AJAS

Vijayakumar G. Dhas and V. Rhymend Uthariaraj / Aicen Journal of Applied Sciences 11 (5): 811-&(r14

It was observed that without LDFM the throughput of tolerance system is introduced to keep track of the
the system gradually gets degraded. With LDFM the mobile agent and to restore the mobile agent. Our
system throughput comparatively increases. Theltresu analysis shows that improvement in throughput is tu

also shows a performance degradation when mobilgeduced message complexity. In case of failure of

agent failure was simulated. mobile agent, the reliability of the algorithm isstored
with creation of new mobile agent.
6. DISCUSSION It is assumed that the dispatcher is not overloaded

However if the dispatcher is overloaded there is a

The improvement in performance is attributed to the Performance impairment. The mobile agents are ptone
reduced message complexity of mobile agents. Theattacks, have security issues and needs to bessdi.
reduced message complexity compared with otheradeth Additionally, more parameters apart from load afvee
has contributed to processing more user requests. T Which help to make the dynamic change of inputht t
reduction in message complexity is achieved by gusin Server more optimal can be introduced. More oveneso
mobile agent to communicate with the MMU for Priority can be introduced in processing of requeshe
collection of load information. The mobile agent dueue. The improvement to the above limitationslwan
communicate only when the RID condition fail. The considered for future work.
failure of the condition is achieved by the use'mbd’
function. This arrangement helps the mobile agent t 8. REFERENCES
communicate always in a sequential manner. In the o
previous work of Hongt al. (2006) the load information ~Aramudhan, M. and V.R. Uthariaraj, 2006. LDMA and

was broadcast to all the servers. Also Pao and (3686) WLDMA: Load balancing strategies for distributed.
have used the advertisement technique to convejpside IJCSNS Int. J. Comp. Sci. Netw. Security, 6: 76-84.
information to dispatcher from backend servers. TheAramudhan, M., S. Karthikeyan, K. Mohan and V.R
communication is not at all regulated. In the eipent Uthariaraj, 2008. ELDMA: Enhanced load balancing
there is no distribution of job request from the oieue to decision making using decentralized mobile agent
another. The load information was proactively aéd, framework. Proceeding of the International Confeeen
ranked and dispatcher table updated. The sequehce o On computer and Communication Engineering, May,
distribution of user request by the dispatchehéserver is 13-15, IEEE Xplore Press, Kuala Lumpur, pp: 11-14.
altered whenever the dispatcher table is updated. DOI: 10.1109/ICCCE.2008.4580559

New mobile is created after timeout, when mobile Ciardo, G., A. Riska and E. Smirni, 2001. EquiLoad:
agent fails. However a performance de gradation was load balancing policy for clustered web servers.

observed and this is due to the fact that in theriening Performance Eval., 46: 101-124.
period the mobile agent is not communicating thedlo ~ Colajanni, M., P.S. Yu and D.M. Dias, 1998. Anadyst
information and the dispatcher table is not updafér task assignment policies in scalable distributet-we

dispatcher table is not update with the current server systems. |EEE Trans. Parallel Distributed
information of load on the server, resulting in the Syst., 9:585-600. DOI: 10.1109/71.689446
performance de gradation. The same phenomenon walong, Y.S., J.H. No and S.Y. Kim, 2006. DNS-based

observed in the other works, but the failure cdadit load balancing in distributed web-server systems.
was restored by our intervention. If the failurendition Proceedings of the 4th IEEE Workshop on Software
was not restored, the performance will be poor. Technologies for Future Embedded and Ubiquitous
Systems, Apr. 27-28, IEEE Xplore Pre€sjeongju.
7 CONCLUSION DOI: 10.1109/SEUS-WCCIA.2006.23
Cao, J., Y. Sun, X. Wang and S.K. Das, 2003. Stalab
A load-balancing algorithm that improves throughput load balancing on distributed web servers using

and reduces communication overhead due to collectio mobile agents. J. Parallel Distributed Comput., 63:
of load information was presented and discusse@ Th 996-1005. DOI: 10.1016/S0743-7315(03)00099-6

method uses mobile agent and mobile management unidie, L. and H. Kameda, 1998. Load balancing problem

for load information collection, ranking of serveasd for multiclass jobs in distributed/parallel compute
dynamic update of dispatch table. Reallocation af j systems. I[EEE Tran. Comp., 47: 62-76. DO
request from queue is eliminated. If there is & lo§ 10.1109/12.660168

mobile agent, there is a possibility that all tleguest Karjoth, G., D.B. Lange and M. Oshima, 1997. A
end up reaching a single server, leading to adverse security model for aglets. IEEE Internet Complit.,
effects due to overloading. To avoid this, a fault 68-77. DOI: 10.1109/4236.612220

////A Science Publications 816 AJAS

Vijayakumar G. Dhas and V. Rhymend Uthariaraj / Aicen Journal of Applied Sciences 11 (5): 811-8014

Pao, T.L. and J.B. Chen, 2006. The scalability of Zzhang, Q., A. Riska, W. Sun, E. Smirni and C.

heterogeneous dispatcher-based web server load

balancing architecture.

Proceedings of the 7th

International Conference on Parallel and Distridute
Computing, Applications and Technologies, Dec. 4-
7, IEEE Xplore Press, Taipei, pp: 213-216. DOI:

10.1109/PDCAT.2006.110

///// Science Publications

817

Gianfranco, 2005. Workload-aware load balancing
for clustered web servers. IEEE Tran. Parallel
Distributed Syst., 16: 219-233. DOI:
10.1109/TPDS.2005.38

AJAS

